
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.757 35

Systematic Review of Web Application Security

Vulnerabilities
Miss. Rohini Padmakar Pawar

Software Test Engineer, Kanaka Software Consulting Private Limited, Pune, India

Abstract: Increasing web technologies in collaboration with changing business environment means that web

applications are becoming more popular today in corporate, public and government services. It is essential to

understand the vulnerabilities commonly found in web applications. The number of reported web application

vulnerabilities is increasing dramatically. The most of vulnerabilities result from improper input or improper security

layer implementation in web application development this paper presents a new approach to vulnerability analysis

which incorporates the different security vulnerabilities in web application and how they occur and how we can prevent

from attack.

Keywords: Web Application, Vulnerabilities analysis, SQL Injection, XSS, Insecure Direct Object Reference, Failure

to restrict URL Access.

I. INTRODUCTION

Increasing web technologies in collaboration with changing business environment means that web applications are

becoming more popular today in corporate, public and government services. Although web applications can provide

convenience and efficiency, there are also many new security threats, which can potentially create significant risks to

an organization's information technology infrastructure if it is not done properly, more than a decade By the time, the

organization's role to protect its IT infrastructure To protect the structure has been dependent on security measures on

the periphery of the network. However, traditional network security measures and technologies are not enough to

protect web applications from new threats because the attacks are now specifically targeting security flaws in the design

of web applications. New security measures need to be implemented with the development of web applications for both

technical and administrative to deal with the dangers related to these new application services, it is necessary to

understand the vulnerabilities found in web applications. This article discusses important web application weaknesses

and how they can be addressed during various stages of the System Development Life Cycle. Tips for surfing the

internet safely are also provided to end users as these web apps may have the weakest link in information security.

II. VULNERABILITIES INWEB APPLICATION

In general, there are three kinds of security vulnerabilities among web applications at completely different levels: [1]

input validation vulnerability at the single request level, [2] session management vulnerability at the session level and

[3] application logic vulnerability at the extent of the whole application. In what follows, description of the above three

kinds of vulnerabilities are presented and the common attacks that exploit these vulnerabilities.

A. Cross-Site Scripting (XSS)

XSS is one of the most common web applications layer attacks. The XSS vulnerability target scripts are embedded in a

page that runs on client-side (in the user's web browser) instead of server-side. XSS is a threat that is brought into the

client-side scripting languages by Internet security vulnerabilities, such as manipulating the concept of HTML and

JavaScript XSS client-side script of the web application to execute the desired way by a malicious user. This kind of

impact can embed a script in a page that which is executed every time the page is loaded in browser, or whenever

ansupplementary event is done. XSS is the most common security vulnerability in the software today. This should not

be the case because it is easy to find and fix XSS. The results of XSS vulnerabilities can be in the form of tampering

and sensitive data theft. An XSS vulnerability arises when web applications take data from users and without

dynamically incorporate it into web pages, without properly validating data XSS vulnerabilities allowed an attacker to

execute arbitrary commands and display arbitrary content in the victim's user's browser. A successful XSS attack leads

to an attacker controlling the account on the victim's browser or the weak web application. Although XSS is enabled by

weaker pages in a web application, XSS is user of victim application of attack, not the application itself. The power of

the XSS vulnerability lies in the fact that malicious code executes the context of the victim's session, so that the

attacker can bypass the general security restriction.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.757 36

1. Example Attack Scenarios: The application gives permission to user to submit a state-changing request that

does not include anything secrete.

 For example: The application uses untrusted data in the construction of the following HTML snippet without

validation or escaping

(String) page += "<input name='creditcard' type='TEXT' value='" + request.getParameter("CC") + "'>";

The attacker modifies the 'CC' parameter in their browser to:

'<script>document.location= 'http://www.attacker.com/cgi-bin/cookie.cgi ?foo='+document.cookie</script>'.

This causes the user’s session ID to be sent to the attacker’s website, allowing the attacker to hijack the user’s current

session[2].

2. Preventions for Attack: Preventing XSS requires separation of untrusted data from active browser content.

 The preferred option is to run all unreliable data properly on the basis of HTML references (body, attribute,

JavaScript, CSS, or URL), which will be kept in data. For details on techniques to avoid essential data, see

OWASP XSS Prevention Cheatsheet [2].

 Positive or "Whitelist" server-side input validation is also recommended as it helps to protect against XSS, but

there is no complete security because many applications require special characters in their input. Before

accepting the input, the validity of this type of verification should be, the length, character, format, and

business rules on that data.

 For rich content, consider auto-sanitization libraries like OWASP’s AntiSamy or the Java HTML Sanitizer

Project[1].

3. Technical Business Impact

 When attackers succeed in exploiting XSS vulnerabilities, they can gain access to the account credentials.

They can also spread webworms or reach the user's computer and users can see the business value of affected

data or application functions. Do not imagine that the users are aiming to take these actions on the impact of

your reputations Consider browser history or browser remotely after receiving control over the hunting

system, attackers can also analyse and use other intranet applications. The attacking victims can victimize

victims to execute the changing operation in any state, which is authorized to hunt, For Example: updating

account details, making a purchase, log out and even login.

B. Insecure Direct Object References

Insecure Direct Object References occurs when an application delivers direct access to the object based on user-

supplied input. As a result of this vulnerability attackers, bypassing the authority in the system and using resources, for

example database records or files. In insecure direct object references, the attacker allows to bypass the authorization

and access the resources by modifying the value of the parameters used to directly point to the object.[2] Such

resources may have database entries related to other users, files in the system, and more. This is due to the fact that the

app provides input to the user and uses it to recover an object without checking enough authorization. When preparing

web pages, apps often use the real name or key of an object. Apps do not always verify that the user is authorized for

the target object. This causes unprotected direct object reference defects. In order to detect such defects, the testers can

easily manipulate the parameter values. Code analysis quickly identifies whether the authorization is verified properly

or not.

1. Example Attack Scenario

 http://test.com/changepassword?user=someusers

In the above case, the value of the user parameter is used to say the web application for which user it should change the

password. In many cases, this step will be a part of a wizard or a multi-step operation. In the first step the application

will get a request stating for which user's password is to be changed, and in the next step, the user will provide a new

password (without asking for the current one)[1]. The user parameter is used to directly reference the object of the user

for whom the password change operation will be performed. To test for this scenario of the case, the tester should try to

provide a different test username than the one currently logged in user and check whether it is possible to change the

password of another user.

https://www.owasp.org/index.php/AntiSamy
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.757 37

 http://test.bar/showImage?img=img045

In this case, the value of the file parameter is used to say the application what file the user intends to retrieve. By

providing the name or identifier of a different file (for example file=image0045.jpg) the attacker will be able to retrieve

objects or details belonging to other users.

2. Preventions for Attack:

Avoidinginsecure direct object references requires selecting a method for defending each user available object.

 Use indirect object reference per user or session.This prevents the attackers from directly targeting

unauthorized resources. For example, instead of using the resource key of the resource, a drop-down list of six

resources authorized for the current user, to use numbers 1 to 6, to indicate which value the user chose The

application has to map back the non-user contextual reference to the actual database key on the server.

 OAWAS's ESAPI includes sequential and random access reference maps that developers can use to eliminate

direct object references [1].Role Based access in use of a direct object reference from an untrusted source must

include an access control check to ensure the user is authorized for the requested object.

3. Technical Business Impact:

 Such flaws can compromise with all data that can be referred by the parameter. Unless the object references

are unpredictable, the attacker is easy to access all available data of that type. Consider the business value of

the exposed data, and also consider the effect of the business of public exposure at risk.

C. Insecure Direct Object References

SQL injection refers to an injection attack, in which an attacker malicious SQL statement (commonly referred to as a

malicious payload) can execute a web application's database server (usually relational database management systems -

RDBMS [3], Since SQL injection vulnerability can affect any website or web application Which uses SQL-based

databases, vulnerability is the oldest, most prevalent and most dangerous of web application vulnerabilities

By taking advantage of the SQL injection vulnerability, under the right conditions, an attacking web application can use

it to bypass authentication and authorization mechanisms and retrieve the contents of the entire database. SQL injection

can be used to add, modify and delete records in the database, thereby affecting data integrity. To such extent, SQL

injection can provide access to sensitive data, including an invader, customer data, personally identifiable information

(PII), trade secret, intellectual property and other sensitive information. SQL is a standardized language that is accessed

and used by the database [3].SQL queries are used to execute commands for creating customizable data views for each

user, such as data retrieval, updating and removing records, various SQL elements implement these tasks.

1. Example Attack Scenario

In order to run malicious SQL queries against a database server, an attacker must first find an input within the web

application that is included inside of an SQL query. In order for an SQL Injection attack to take place, the vulnerable

website needs to directly include user input within an SQL statement. An attacker can then insert a payload that will be

included as part of the SQL query and run against the database server [3].

The following server-side pseudo-code is used to authenticate users to the web application.

Define POST variables

uname = request.POST['UNAME']

passwd = request.POST['PASSWORD']

SQL query vulnerable

sql = ―SELECT id FROM tblUser WHERE username=’‖ + UNAME + ―’ AND PASSWORD=’‖ + passwd + ―’‖

Execute the SQL statement

database.execute(sql)

The above script is a simple example of authenticating a user with a username and a password against a database with a

table named tblUser, and a username and password column.The above script is vulnerable to SQL Injection because an

attacker could submit malicious input in such a way that would alter the SQL statement being executed by the database

server. A simple example of an SQL Injection attack payload could be somewhat as simple as setting the password

field to password’ OR 1=1.This would result in the following SQL query being run against the database server.

SELECT id FROM tbl_users WHERE username=’username’ AND password=’password’ OR 1=1’

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.757 38

An attacker can also comment out the rest of the SQL statement to control the execution of the SQL query further.

-- MySQL, MSSQL, Oracle, PostgreSQL, SQLite

' OR '1'='1' --
' OR '1'='1' /*
-- MySQL

' OR '1'='1' #
-- Access (using null characters)

' OR '1'='1' %00
' OR '1'='1' %16
Once the query executes on the server, the result is returned to the application to be processed, resulting in an

authentication bypass. In the event of authentication bypass being possible, the application will most likely log the

attacker in with the first account from the query result — the first account in a database is generally of an

administrative user [1].

2. Prevention for Attack:

 Preventing injection requires keeping untrusted data separate from commands and queries.

 The preferred option is to use a safe API which avoids the use of the interpreter entirely or provides a

parameterized interface. Be careful with APIs, such as stored procedures that are parameterized, but can still

introduce injection under the hood [1].

 If a parameterized API is not available, you should carefully escape special characters using the specific

escape syntax for that interpreter. OWASP’s ESAPI provides many of these escaping routines[1].

 Positive or ―white list‖ input validation is also recommended but is not a complete defense as many

applications require special characters in their input. If special characters are required, only approaches 1. And

2. Above will make their use safe. OWASP’s ESAPI has an extensible library of white list input validation

routines[1].

3. Technical-Business Impact

 SQL Injection can effect in data loss or fraud, lack of accountability, or denial of access. SQL Injection can

sometimes lead to complete host takeover. Consider the business value of the affected data and the platform

running the interpreter [1]. All data could be stolen, modified, or deleted. SQL is used to delete records from a

database. An attacker could use an SQL Injection vulnerability to delete data from a database. Even if an

appropriate backup strategy is employed, deletion of data could affect an application’s availability until the

database is restored [6].

D. Failure to Restrict URL Access

If your app fails to properly restrict access to URL access, security can be compromised through a technique called

compulsory browsing.

1. Example Attack Scenario
Attackers can use a direct way to access and relate with hidden / unlinked pages on a website, the most common attack

known as "forced browsing‖. Forced browsing attacks can take place when an attacker is able to correctly guess the

URL of or use brute force to access an unprotected page. "If there is any flaw in this page's access control policy, then

this process is very easy on the attacker."These flaws typically include hidden pages with guessable URLs, applications

that permit access to pages that are meant to be hidden/restricted, outdated access-control policy code, and a lack of

server-side access-control policy.

2. Preventions for Attack:

To prevent unauthorized URL access, it is essential for each page to select an approach to require proper authentication

and proper authorization [1]."Frequently, such protection is provided by one or more components external to the

application code. Regardless of the mechanism(s), all of the following are recommended:

https://www.owasp.org/index.php/ESAPI
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0.1/org/owasp/esapi/Encoder.html
https://www.owasp.org/index.php/ESAPI
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0.1/org/owasp/esapi/Validator.html
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0.1/org/owasp/esapi/Validator.html
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0.1/org/owasp/esapi/Validator.html

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.757 39

 The authentication and authorization policies are role-based, to minimize the effort required to maintain these

policies.

 "The policy should be highly configurable, so that any difficult coded aspects of the policy can be reduced."

 "The enforcement mechanism should deny access to all by default, explicit access to specific users and roles

are required for access to each page[1]."

 "If the page is included in a workflow, check to ensure that conditions are in the proper position to allow

access."

3. Technical-Business Impact

 Such flaws can allow attacking some or all of the accounts. If successful, an attacker can do anything he can

do.Privileged accounts are frequently targeted.

E. Clickjacking

A web framing attack knows as "clickjacking" uses a transparent iframe (HTML tags to specify an inline frame that is

used to embed another document in the original HTML document) to hijack the users clicks[1]. In a typical

clickjacking attack scenario, a malicious web page is constructed by an attacker in order to trick the victim into clicking

on elements of the web page within an invisible iframe to perform unintended actions. Recently, click jacketing strikes

have a lot of interest and many redressed techniques are proposed, however, it is still unclear whether these defence

mechanisms have been implemented effectively or not. Clickjacking is a web-based attack that was first reported by

Jeremiah Grossman and Robert Hansen in 2008. It is a technique in which the user is induced to click on an element of

a web page which is designed by the attacker.[1]

1. Example Attack Scenario

As mentioned above, such attacks are often planned to allow user actions on a site targeted by an attacker site, even if

the anti-anti anti-CSRF is being used. Therefore, for the CSRF attack, it is important to isolate the web pages of the

targeted site that take input from the user. We have to know that if we are testing on the website, then there is no

security against clickjacking attacks or if the developers have implemented certain types of security if these techniques

are liable for bypass. Once we know that the website is weak, we can make "proof of concept" to take advantage of the

vulnerability. The first step to finding out is that if a website is unsafe, it is to check whether the target web page can be

loaded in the iframe. To do this, you need to create a simple web page that includes the frame with the target web page.

The HTML code is displayed in the following snippet to create this test web page:

<html>

<head>

<title>Clickjack testing page</title>

</head>

<body>

<p>Website should be vulnerable to clickjacking!</p>

<iframesrc="http://www.target.site" width="500" height="500"></iframe>

</body>

</html>

Result Expected:
If you can see both texts "Website is unsafe for clicking!" At the top of the page and your targeted web page has been

successfully loaded in the frame, your site is weak and there is no protection against click-linking attacks. Now you can

make a "proof of concept" directly to demonstrate that an attacker can take advantage of this vulnerability.

2. Prevention for Attack:

Clickjacking can be prevented using a host of client-side browser plugins such as:

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.757 40

 Send a header to the appropriate Content Protection Policy (CSP) Frame-Ancestors Guidelines, which instruct

the browser to allow framing from other domains. (This replaces the old X-Frame-Option HTTP header.)

 This explains that plug-ins are recommended for daily browsing and can also protect users against additional

client-side attacks, such as XSS (cross-site scripting). Below are plug-in client-side protection techniques that

should be taught to all user applications; However, steps should also be taken from the developer's end[1].

1. No Script – http://noscript.net

2. Web Protection Suite – http://www.comitari.com/Web_Protection_Suite

3. Technical-Business Impact

 In potential risks of clickjacking and its underlying impact, it provides a moderate risk problem in most

sensitive applications, such as financial or sensitive data handling applications. The reason why it is a medium

risk and not a high-risk issue is down to the delivery method of attack and its execution vectors. This

vulnerability requires a user's contact and as a result of the victims (generally more technically naïve), an

element of social engineering has to voluntarily interact with the malicious page. An example of an attack on a

financial application could consist of sending out emails to authenticated users of the application.

F.Input Sanitization and Validation

Input validation routines aid as the first line of protection for a Web application. Input verification attacks are where an

attacker deliberately sends unusual input into the expectations of confusing the application.

1. Example Attack Scenario

 Attacker Enters Malicious Inputs such as:

http://www.testbank.com/index.php?id= 1 UNION ALL SELECT creditCard_Number,1,1, FROM

CreditCardTableby using this Attacker obtain other customers credit card information so Application sends

that modified query to the database i.e. SELECT Emp_Name, MobileNo, Address FROM Users WHERE

Id=1 UNION ALL SELECT creditCardNumber 1,1 FROM CreditCardTable, which executes it.

 By using following attack user also done the Input attack i.e. HTML Injection, File Injection Attack, Server

Pages Injection Attack, Script Injection.

2. Prevention for Attack:

 Check input validation on every layer and when crossing trust boundaries and also validate the user input with

the special character or HTML code.

3. Technical-Business Impact

It provides a moderate risk problem in most sensitive applications, such as financial or sensitive data handling

applications. Or by using file injection attack hacker hack the system by uploading the .exe file or .bat file Strongly

typed at always, Length validation checked and fields length minimized Range checked if a numeric, Unsigned unless

required to be signed, Syntax or grammar should be checked prior to first use or inspection.

G Default Deny Principle:

The default deny means does not allow something to the user if they don’t have any access to respective web area or

something. Default deny security attack treats everything specific and not allowed as suspects. So in a web application

it’s very necessary to implement the role based privileges authentication means role wise user screen allocation or

access.

1. Example Attack Scenario

 By using the following attack hacker may try to directly access the respective unauthorized URL to get the

access.

 The user also inspects the web page then changes the given URL of changes to the desired URL on any button

click.

http://noscript.net/

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.757 41

2. Prevention for Attack:

 Block the inspect element view from browser.

 Implement the privilege authorization access to a user in server-side/Coding

3. Technical-Business Impact
It provides a moderate risk problem in most sensitive applications, such as financial or sensitive data handling

applications and the hacker can see all most secure data.

III. CONCLUSION

The Web applications are becoming popular and have wide spread interaction medium in our daily lives. But at same

point using vulnerabilities the user sensitive data also disclosed regularly. This paper surveys the different web

application vulnerabilities based on the security properties that web application should be preserved. However, we

enforce to have a pen test, vulnerability assessment of the web application for discussed vulnerabilities which reduces

chances of the occurrence of the vulnerabilities. However, vulnerability assessment tools are automated one which

saves time and money and also defends the web applications from modern threats. At the last the newly advanced

security attacks are always emerging, requires the security professional to have positive security solution without

putting a huge number of web applications at risk.

REFERENCES

[1] https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
[2] https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)

[3] https://www.owasp.org/index.php/Top_10_2010-A4-Insecure_Direct_Object_References

[4] https://www.acunetix.com/websitesecurity/sql-injection/
[5] http://airccse.org/journal/iju/papers/3412iju01.pdf

[6] Sagar Joshi, ―SQL injection attack and defense: Web Application and SQL injection, ‖ 2005

[7] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 1997.

BIOGRAPHY

Miss. Rohini P. Pawar Done BE in Information Technology from North Maharashtra University,

Jalgaon. She is Researcher in Computer Science, website security and currently working as Software

Test Engineer in Kanaka Software Consulting Private Limited. Pune, Maharashtra and her research

interests are web application security, information security and software testing

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A4-Insecure_Direct_Object_References
http://airccse.org/journal/iju/papers/3412iju01.pdf

