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Abstract:  Accurate estimation of Gaussian noise level is of fundamental interest in a wide variety of vision and image 

processing applications as it is critical to the processing techniques that follow. In this work, a new effective noise level 

estimation method is approaches on the basis of the study of singular values of noise-corrupted images. Two novel 

aspects of this project address the major challenges in noise estimation:1)how to infer the noise level according to 

image singular values out of SVD space .2)to add new noise to image to be estimated and analyses the change of 

singular values in order to determine the content related parameter in the model , so that the proposed scheme is 

adaptive to visual signals, thereby enabling a wider application scope of the proposed scheme. In this work example of 

algorithms noise estimates include motion estimation, denoising, super-resolution, shape-from-shading, and feature 

extraction.  Noise level estimation is useful for many computer vision and other image processing algorithms that 

require knowing the noise level. It the fast noise estimation algorithm using a Gaussian filters in order to estimate the 

amount noise, images are spilt into a number of blocks and smooth blocks are selected. SVD is a basic tool for signal 

processing and analysis for long, but it is explored for noise estimation in images. The analysis and experiment results 

demonstrate that the proposed algorithm can reliably infer noise levels and show robust behavior over a wide range of 

visual content and noise conditions, and that is outperforms relevant existing methods. 

 

Keywords: SVD, AWGN, MAD, ACF. 

 

1 INTRODUCTION 

 

Many computer vision algorithms can work well only if the parameters of the algorithm are hand-tweaked to account 

for characteristics of the particular images under study. One of the most common needs for algorithm parameter 

adjustment is to account for variations in noise level over input images. These variations can be caused by changes in 

the light level or acquisition modality, and the amount of variation can be severe. An essential step toward achieving 

reliable, automatic computer vision algorithms is the ability to accurately estimate the noise level of images.  

Estimating the noise level from a single image seems like an impossible task: we need to recognize whether local image 

variations are due to colour, texture, or lighting variations from the image itself, or due to the noise. It might seem that 

accurate estimation of the noise level would require a very sophisticated prior model for images. However, in this work 

we use a very simple image model–piecewise smooth over segmented regions–to derive a bound on the image noise 

comparison with the area of de noising). Apart from de noising, other algorithms that can benefit from noise level 

estimates include motion estimation, super-resolution, shape from- shading, and feature extraction. 

 

There are two major challenges in noise estimation from a single image:  

1) how to prepare a data basis for noise level estimation with minimum influence of the image signal itself (otherwise, 

we would estimate noise based upon signal data) and  

2) how to allow the algorithm adaptive to visual content so that it is suitable for different images. Noise estimation 

algorithms developed so far can be classified into three different approaches: filter- (or smoothing-) based, block based 

and transform-based.  To illustrate that estimating the noise can make vision algorithms more robust, we apply our 

noise inference to two algorithms: bilateral filtering for feature-preserving smoothing, and edge detection. The resulting 

algorithms, properly accounting for image noise, show robust behaviour over a wide range of noise conditions. 

 

 

1.2 PROPOSED METHOD: 

INTRODUCTION: 

Noise is unavoidable during visual data acquisition, processing and transmission, and often exhibits as the random 

variation of brightness or colour in images. Possible sources of random noise include film grain, various sensors and 

circuits of digital equipment (e.g., a scanner, digital camera, or photon detector), signal quantization and 

communication channels.  Denoising is therefore a very important step to improve the accuracy or performance of 

many image processing techniques, such as image segmentation  and recognition . There has been a large body of 
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literature on image denoising. Although very promising denoising results have been achieved using a variety of 

methods, such as wavelets, anisotropic diffusion and bilateral filtering, the noise level in the image is often assumed 

known or already estimated beforehand. Different attempts for noise and artefact estimation have been performed; the 

estimation of noise level is difficult in practice, and overall, noise estimation is a relatively less investigated issue in the 

literature (in comparison with the area of denoising). Apart from denoising, other algorithms that can benefit from noise 

level estimates include motion estimation, super-resolution, shape from- shading, and feature extraction. 

 

In most cases, noise can be modelled as Gaussian distribution, and such noise includes: 

1) The amplifier noise of an image sensor; 

2) The shot noise of a photon detector, which is a type of electronic noise that may be dominant when a finite number 

of particles that carry energy is sufficiently small; and 

3) The grain noise of photographic film. Estimating the Gaussian noise level from a single image is a difficult task: we 

need to decide whether local image variations are due to colour, texture and lighting variations of the image itself, or 

due to the noise. In the image denoising literature, noise is often assumed to be zero-mean additive white Gaussian 

noise (AWGN). 

 

In filter-based methods, a noisy image is first filtered by a low-pass filter to suppress the noise. Then the noise variance 

is computed from the difference between the noisy image and the filtered image. The main difficulty of filter-based 

methods in preparing the data basis is that the difference image is assumed to be the noise but this assumption is not 

held in general, because it is well known that a low pass filtered image is not the original image, especially for an 

image with strong structure or other visual details. In order to get a data basis for noise level estimation with minimum 

influence of the image signal itself, in, the vertical and  horizontal information of an image is used for extracting 

vertical/horizontal detail components and histogram information for noise estimation, but it has a high computational 

load and a number of user-defined parameters to determine. In blocked-based methods, images are tessellated into a 

number of blocks. The noise variance is then computed from a set of homogeneous blocks. The main assumption here 

is that a homogeneous block in an image is a result of an absolutely smooth image block with added noise. In fact, 

homogeneity is a relative condition in real-world images, and a relatively homogeneous block has a big chance to 

contain some visual activities there. Another issue of block-based methods is how to identify the homogeneous blocks 

with model parameters suitable for images in general. 

 

ADVANTAGES 

 

1) Denoising is possible even in disturbed images regarding colour 

2) Method is also applicable  for texture images 

3) Noise reduction is possible also in images with lightning variations 

4) Noise estimation in high artefacts images is possible 

5) Noise in Water marked images are also estimated using this method 

 

OVERVIEW OF THE PROJECT 

 

Initially we are giving an input image and then we are estimating the white Gaussian noise then we go for adding the 

noise and then noise is estimated using the SVD domain. Here the white Gaussian noise is estimated by using the 

Singular Value Decomposition method in which we can make use of the equations given in the next units. 

 

PROPOSED APPROACH 

 

Accurate estimation of Gaussian noise level is of fundamental interest in a wide variety of vision and image processing 

applications as it is critical to the processing techniques that follow. In this paper, a new effective noise level estimation 

method is proposed on the basis of the study of singular values of noise-corrupted images. Two novel aspects of this 

paper address the major challenges in noise estimation: 

 

1) the use of the tail of singular values for noise estimation to alleviate the influence of the signal on the data basis for 

the noise estimation process and  

2) the addition of known noise to estimate the content-dependent parameter, so that the proposed scheme is adaptive to 

visual signals, thereby enabling a wider application scope of the proposed scheme.  

 

The analysis and experiment results demonstrate that the proposed algorithm can reliably infer noise levels and show 

robust behavior over a wide range of visual content and noise conditions, and that is outperforms relevant existing 

methods. 
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Noise is unavoidable during visual data acquisition, processing and transmission, and often exhibits as the random 

variation of brightness or colour in images. Possible sources of random noise include film grain, various sensors and 

circuits of digital equipment (e.g., a scanner, digital camera, or photon detector), signal quantization and 

communication channels. Denoising is therefore a very important step to improve the accuracy or performance of many 

image processing techniques, such as image segmentation  and recognition . There has been a large body of literature 

on image denoising . Although very promising denoising results have been achieved using a variety of methods, such 

as wavelets, anisotropic diffusion and bilateral filtering, the noise level in the image is often assumed known or already 

estimated beforehand. Different attempts for noise and artefact estimation have been performed; the estimation of noise 

level is difficult in practice, and overall, noise estimation is a relatively less investigated issue in the literature (in 

comparison with the area of denoising). Apart from denoising, other algorithms that can benefit from noise level 

estimates include motion estimation, super-resolution, shape from- shading, and feature extraction. 

 

In most cases, noise can be modelled as Gaussian distribution, and such noise includes: 

 1) The amplifier noise of an image sensor; 

 2) The shot noise of a photon detector, which is a type of electronic noise that may be dominant when a finite number 

of particles that carry energy is sufficiently small; and 

 3) The grain noise of photographic film. Estimating the Gaussian noise level from a single image is a difficult task: we 

need to decide whether local image variations are due to colour, texture and lighting variations of the image itself, or 

due to the noise. In the image denoising literature, noise is often assumed to be zero-mean additive white Gaussian 

noise (AWGN). 

 

In filter-based methods, a noisy image is first filtered by a low-pass filter to suppress the noise. Then the noise variance 

is computed from the difference between the noisy image and the filtered image. The main difficulty of filter-based 

methods in preparing the data basis is that the difference image is assumed to be the noise but this assumption is not 

held in general, because it is well known that a low pass filtered image is not the original image, especially for an 

image with strong structure or other visual details. In order to get a data basis for noise level estimation with minimum 

influence of the image signal itself, in, the vertical and  horizontal information of an image is used for extracting 

vertical/horizontal detail components and histogram information for noise estimation, but it has a high computational 

load and a number of user-defined parameters to determine. In blocked-based methods, images are tessellated into a 

number of blocks. The noise variance is then computed from a set of homogeneous blocks. The main assumption here 

is that a homogeneous block in an image is a result of an absolutely smooth image block with added noise. In fact, 

homogeneity is a relative condition in real-world images, and a relatively homogeneous block has a big chance to 

contain some visual activities there. Another issue of block-based methods is how to identify the homogeneous blocks 

with model parameters suitable for images in general. 

 

There have been modified filter-based and block based approaches for better noise estimation. Generally, block-based 

algorithms are simple, but their estimates may vary significantly depending on the input image and noise level. Filter-

based algorithms yield good estimates for large noise cases, but they require a high computational load and a large 

amount of memory. There have some compromised methods as the combination of filter-based and block-based 

estimation algorithms. Among transform-based methods, a widely used estimation method is based on Mean Absolute 

Deviation (MAD).  To address the two aforementioned major challenges and overcome the drawbacks in the existing 

work, we investigate into the possibility to estimate noise in singular value decomposition (SVD) domain. The SVD 

has been successfully applied to many image restoration and recognition problems. As to be analyzed in the next 

section, the remarkable property of the SVD is its statistical representations of image details in subspaces of decreasing 

importance, while the influence of noise maintains in all subspaces. 

 

This fact is helpful since the tail of singular values (i.e., the later SVD subspaces) can be used as the proper data basis 

for noise estimation and image details do not have significant influence in that part of subspaces. In essence, the use of 

SVD enables separation of image details and noise in a single image and such separation is difficult otherwise.To be 

more specific in analysis, we divide ―the singular‖ values S of a noise-corrupted image into two parts in SVD — Ss and 

Sn, where Ss denotes the part contributed by image structure and Sn denotes the part contributed by noise (we will 

explain how to calculate Ss and Sn in Section II). We did abundant experiments. Figure 1 shows experimental result of 

the Lena image of different sizes for Ss and Sn, with different noise injection. We can see that image details contribute 

very little to the later part of the singular values, as Ss; on the contrary, noise dominates the later part of the singular 

values, as Sn. When noise level (σ) become lower, the contribution of noise will be smaller either; however, the tail of 

the singular values is still dominated by noise. The figure shows the best dada basis (i.e., the range of singular values) 

for noise estimation is the later 80% of singular values, because this represents the data to which noise is the dominant 

factor. It is worthy of being noted that the influence of signal decreases rapidly in S, so the possible data basis for noise 

estimation can be as large as 80% of S – a bigger amount of data facilitates more reliable noise estimation. 
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SVD FOR IMAGES AND THE INFLUENCE OF AWGN 
 

A. Singular Values and Noise Levels 

The SVD is based on the theory in linear algebra with which a rectangular matrix A can be decomposed into the 

product of three matrices - an orthogonal matrix U, a diagonal matrix S, and the transpose of another orthogonal matrix 

V. To be more specific, the SVD of an m ×n image A (assume r is the rank of A) can be written as: 

                    A = U × S × V
 T  

 

where U
T
U = Imm; V 

T
 V = Inn (Imm and Inn denote the m-square and n-square identity matrices); m and n represent the 

dimensions of A. The columns of U are orthonormal eigenvectors of AA
T
, the columns of V are orthonormal 

eigenvectors of A
T
 A, and S is a diagonal matrix containing the square roots of eigenvalues of AA

T
 or A

T
 A arranged in 

the descending order. Let the singular values be denoted by s(i )(i = 0, 1, . . . , r ), and then s(1) > s(2) > · · · > · · · > 

s(r ). 

 
Fig (a) Lena 512×512, σ = 50 

 

.  

Fig (b) Lena 512×512, σ = 10 

 

 
Fig (c) Lena 256×256, σ = 50 
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Fig. 1. Contribution of signal and noise to singular values. (a) Lena 512×512,  σ = 50. (b) Lena 512×512, σ = 10. (c) 

Lena 256×256, σ = 50.  (d) Lena 256 × 256, σ = 10. 

 

To separate the contribution of image from that of noise, following the notations in the last section Ss and Sn are defined 

as the singular values due to the original image and the additive noise decomposed by singular vectors U and V 
                

   Ss = U
−1

 × A0 × (V 
T
 )

−1 
= U

T
 × A0 × V 

 

   Sn= U
−1

 ×N × (V 
T
 )

−1 
= U

T
 × N× V 

 

Figure 2 shows singular values s(i ) of different test images with different noise levels. In Figure 2, (a), (b) and (c) are 

three standard 512 × 512 grayscale test images; (d) is a standard 256 × 256 grayscale test image; (e) is a 256 × 256 

cartoon image; (f) is a 533 × 512 cartoon image. We can see that addition of noise to images increases the singular 

values in general (in line with what has been shown in Figure 1), and this is also agreeable with the results in [50]. In 

other words, the higher the noise level is, the larger the singular values become. More importantly, the early part of 

singular values (when i is small) are determined mainly by the image content (noise is there also but its influence is 

insignificant due to the strong presence from the signal itself), while the noise level can be distinguished much easily 

with the later part (i.e., the tail) of singular values (when i is large). This is the ground of the proposed technique in this 

paper for noise estimation. 

 

B. AWGN Analysis 

Let N be a zero-mean m×n AWGN image with standard deviation σ, and its SVD can be expressed as: 

                                      N = U × Sn × V 
T 

 

            We use parameter M to represent the number of the last singular values (i.e., the tail) under consideration. 

Obviously, the average of the last M singular values is a function of σ, and can calculated as 

                                PM (σ) =  
1

𝑀
  𝑠𝑛(𝑖)𝑟
𝑖=𝑟−𝑀+1                            

Where 1 ≤ M ≤ r. When M = 1, only the last singular value (i.e., sn(r )) is considered  . When M = r , all singular values 

(i.e., sn(1) to sn(r )) are considered    in the above equation 

 

Singular value decomposition 

In linear algebra, the Singular Value Decomposition (SVD) is a factorization of a real or complex matrix, with many 

useful applications in signal processing and statistics.    

Formally, the singular value decomposition of an m × n real or complex matrix M is a factorization of the 

form M = UΣV
∗

, where U is an m × m real or complex unitary matrix, Σ is an m × n rectangular diagonal matrix with 

non-negative real numbers on the diagonal, and V
∗

 (the conjugate transpose of V, or simply the transpose of V if V is 

real) is an n × n real or complex unitary matrix. The diagonal entries Σi,i of Σ are known as the singular values of M. 

The m columns of  U and the n columns of V are called the left-singular vectors and right-singular vectors of M, 

respectively. 

 

The singular value decomposition and the Eigen decomposition are closely related. Namely: 

 The left-singular vectors of M are eigenvectors of MM
∗

. 

 The right-singular vectors of M are eigenvectors of M
∗

M. 

 The non-zero singular values of M (found on the diagonal entries of Σ) are the square roots of the non-

zero eigenvalues of both M
∗

M and MM
∗

. 
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Signal & noise separation 

In general, an observed (recorded) time series comprises of both the signal we wish to analyse and a noise component 

that we would like to remove. Noise or artifact removal often comprises of a data reduction step (altering) followed by 

a data reconstruction technique (such as interpolation). However, the success of the data reduction and reconstruction 

steps is highly dependent upon the nature of the noise and the signal. By definition, noise is the part of the observation 

that masks the underlying signal we wish and in itself adds no information to the analysis. However, for a noise signal 

to carry no information, it must be white with a _at spectrum and an autocorrelation function (ACF) equal to an 

impulse3. Most real noise is not really white, but colored in some respect. In fact, the term noise is often used rather 

loosely and is frequently used to describe signal contamination. For example, muscular activity recorded on the 

electrocardiogram (ECG) is usually thought of as noise or artifact. However, increased muscle artifact on the ECG 

actually tells us that the subject is more active than when little or no muscle noise is present. Muscle noise is therefore a 

source of information about activity, although it reduces the amount of information about the cardiac cycle. Signal and 

noise dentitions are therefore task-related and change depending on the nature of the information you wish to extract 

from your observations. We shall also examine the statistical qualities of these contaminants in terms of their 

probability distribution functions (PDFs) since the power spectrum of a signal is not always sufficient to characterize a 

signal. The shape of a PDF can be described in terms of its Gaussianity, or rather, departures from this idealized form 

(which are therefore called super- or sub-Gaussian). 
 

Fig (a)     fig (b)     fig (c) 

 

Fig   (d)     fig (e)     fig (f) 

Fig. 2. Singular values of different test images with different noise levels. (a) Singular values of Peppers (512×512). (b) 

Singular values of Lena (512×512). (c) Singular values of Barbara (512 ×512). (d) Singular values of Cameraman (256 

×256). (e) Singular values of image (256 ×256). (f) Singular values of image (533 × 512). 
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 If PM is linearly dependent on σ, two sufficient and necessary conditions must be satisfied:  

                                PM(kσ) = k × PM(σ ) 

                             PM(σ + σ1) = PM(σ ) + PM(σ1) 

 

where σ represents the standard deviation of an additional noise N1. 

 

Let us look at the first condition in (9) first. Assume Nk =k × N to be an m × n AWGN image from the same process of 

N : Nk is a modified version (i.e., an amplified or reduced version, depending on k) of N; that is, N and Nk are formed by 

a same AWGN process. The resultant standard deviation will be k × σ, and we have 

                        Nk = k × N  

                      = k × U × Sn × V 
T
  

                      = U × kSn × V 

                      = U × Skn × V 
T 

                                  Where    Skn = k × Sn 

Therefore, 

                      PM (kσ) = 
1

𝑀
  𝑘𝑟
𝑖=𝑟−𝑀+1 sn(i) = k × PM(σ) 

 

Let N1 = (σ1/σ )×N be an m×n AWGN image of the same process of N with standard deviation σ1, and N2 = N1+ N be 

an m × n AWGN image of the same process of N with standard deviation (σ + σ1). We have  

                     N1 = U × S1n × V 
T     

 

                        S1n =
𝜎1

𝜎
 Sn 

 

Figures 3 and 4 take 512×512 noise-corrupted Lena image as an example and show the experimental results. In Figure 

3, M = 384. We can see that the line of PMn is almost the same as that of pure AWGN. The line of PMs is almost 

horizontal, i.e., PMs is a constant. This is agreeable with (19), where PM is the sum of ασ and β, ασ is the contribution 

from noise and constant β is the contribution from image structure. The more complex an image is, the greater the value 

of β is. Figure 4 shows the relationship of PMn and M at different noise levels. We can also see from Figure 1, the tail 

of Sn changes according to noise level. When noise level is low, the tail where noise is dominant is short; when noise 

level is high, the tail is long. 

 

Algorithm: 

1) Choose a proper M (the suggested M value is r ×3/4), and calculate corresponding α; 

2) Perform singular value decomposition to the noised image A; 

3) calculate the average of the last M singular values PM; 

4) Add AWGN of σ1 = 50 to noised image A to yield a new image A1; 

5) Perform singular value decomposition to the acquired image A1; 

6) calculate the average of the last M singular values P1M; 

7) Figure out the estimated noise level. 

 

Simulation results: 

 

A. Performance of the Proposed Method 

The proposed method was tested on various types of images. In our experiments on both cartoon and real-world gray 

images, we calculate PM and P1M as the average of the tail of singular values (the last 75% of singular values, i.e., M = 

(3r)/4). 

                        S1n =
𝜎1

𝜎
 Sn  

                         N2 =U × S2n × V 
T 

 

          Where    PM (σ + σ1) = PM (σ) + PM(σ1). 

 

In the case of different processes of AWGN (e.g., we use the randn( ) function in Matlab to generate an AWGN 

sequence N of standard deviation σ, and then randn( ) is used again to generate another AWGN sequence N1 of 

standard deviation σ1, i.e., N1 is not an amplified or reduced version of N), PM is no longer linearly dependent on σ for 

any M value. The extensive experimental results confirm that PM of a noise from a different process behaves almost 

the same as the case of noise  
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Fig. 7. Influence of σ1 

 

We select some test images shown in Figure 1, the test images (a), (b), (c) are 512 × 512 standard gray scale images; 

among them (a) is an image with simple structure and less visual details, while (c) is a complicated image with lots of 

details; image (d) is a 256 × 256 standard gray scale image; images (e) and (f) are cartoons of size 256 × 256 and 533 × 

512 respectively. A 256 × 256 blank image with gray levels equal to 127 was also included in our experiment as the 

―flattest‖ image. When drawings of cartoonists are scanned into computers, noise is inevitable, so we take cartoons into 

consideration in this research. All these images are selected for test in this work due to their meaningful span and 

variations in visual content and resolution and show the statistical results from the. 

 

CONCLUSION 

 

Singular Value Decomposition (SVD) has been a basic tool for signal processing and analysis for long, but has been 

less explored for noise estimation in images. In this paper, we have firstly shown how to infer the noise level according 

to image singular values out of SVD, due to the fact that the influence of signal and noise can be separated well in the 

SVD space. In addition, we have proposed to\ add new noise (and therefore, known noise) to images to be estimated, 

and analyze the change of singular values in order to determine the content related parameter in the model (so that the 

proposed method can be applied to any kind of images). Our simulation results show that the proposed approach 

outperforms the relevant existing estimation methods over a wide range of visual content and noise conditions.  

Experiments results demonstrated that the proposed algorithm can determine noise levels better. Noise level estimation 

is useful for many computer vision and other image processing algorithms that require knowing the noise level 

beforehand. Examples of algorithms requiring noise level estimates include motion estimation, denoising, super-

resolution, shape-from-shading, and feature extraction. Automatically inferring the image noise level and taking it into 

account in the algorithms that follow are important and meaningful in such algorithms and systems. The proposed and 

image processing algorithms better-grounded and more reliable.    
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