
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 6, June 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7611 66

Obtaining a Feasible Path with Maximum

Flow Rate in a Network

Shreekant Jere
Presidency University, Bangalore

Abstract: This research work proposes an algorithm to find a path which has the maximum allowed flow rate for data,

between source and destination in a network. Unlike max-flow and min-cut theorem, algorithm is selecting single path

for data transmission. To find a path in a network there are multiple techniques. Prim’s technique is used recursively in

our proposed algorithm to find different paths between source and destination. The maximum allowed flow rate for

each of those paths is calculated and finally we take the maximum of those calculated flow rates.

Keywords: Maximum flow rate; max-flow and min-cut theorem; Prim’s algorithm.

I. INTRODUCTION

n many transport networks, knowledge about finding a path with maximum flow rate, from source node to destination

node is essential. Such information can be acquired through, study of weighted connected graphs in which vertices

represent nodes and the edges represent the links of the network. In such graphs, the weight of an edge represents the

capacity of the link; namely, the maximum amount of flow possible per unit of time. It will be assumed that there is no

accumulation of data at any node along the path and that the node itself can handle as much flow as allowed through the

links. It will further be assumed that the links are lossless. Our proposed algorithm is a maximum flow rate algorithm

which mainly finds the path between source and destination such that selected path should have maximum allowed flow

rate. Here, maximum allowed flow rate refers to a path with maximum allowable data rate that can flow between

selected source and the destination. To find a path between source and destination we have used Prim’s algorithm [1].

Prim’s algorithm finds a minimum spanning tree in a given network [2]. Here, Prim’s algorithm has been utilized to find

different paths between source and destination. Our proposed algorithm finds maximum flow for each path selected from

Prim’s algorithm. Finally, we find maximum of maximum flow rate that can flow in a network from the set of calculated

maximum flow rates.

II. PRIM’S ALGORITHM

 Prim’s algorithm constructs minimum spanning tree through a sequence of expanding subtrees. The initial subtree in

such a sequence consists of a single vertex selected arbitrarily from the set V of the graph’s vertices. On each iteration,

we expand the current tree in the greedy manner by simply attaching to it the nearest vertex not in that tree. The

algorithm stops after all the graph’s vertices have been included in the tree being constructed. Since the algorithm

expands a tree by exactly one vertex on each of its iterations, the total number of such iterations is n-1, where n is the

number of vertices in the graph. The tree generated by the algorithm is obtained as the set of edges used for the tree

expansions.

ALGORITHM: Prim (G)

//Input: A weighted connected graph G = (V, E)

//Output: ET, the set of edges composing a minimum spanning tree of G

1: VT ← {v0} //set of tree vertices initialized with any vertex

2: ET ← Ø

3: for i ← 1 to |V| – 1 do

4: find a minimum- weight edge e
*
=(v

*
, u

*
) among all

 the edges (v, u) such that v is in VT and u is in V- VT

5: VT ← VT ∪ {u
*
}

6: ET ← ET ∪ {e
*
}

7: return ET

III. MAXFLOW ALGORITHM

Maximum flow algorithm finds out the path between source and destination with maximum allowable flow rate.

Unlike max-flow and min-cut theorem, we are selecting single path for data transmission [3-6]. In the initial network

source node s and destination node d are selected from the set of nodes V. The weights on the link represents maximum

allowed flow rate for a particular time period. Using Prim’s algorithm, we find path between s and d. On each iteration

I

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 6, June 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7611 67

after finding maximum flow the link with minimum flow rate is deleted. This method is done recursively until there is no

path between s and d. Finally maximum of maximum allowed flow rate is calculated.

MaxFlowRate = 0 //global variable, initialized to 0

ALGORITHM: Maxflow (G, s, d)

1: visited[]={0}

2: Copy graph G to graph Rate

3: visited[s]=1

4: ne=1

5: while ne < │V│ and visited[d]!=1

6: for i←1 to │V│ do

7: min←∞

8: for j←1 to │V│ do

9: if Rate(i, j) < min

10: if visited[i]!=0

11: min←Rate(i, j)

12: u←i

13: v←j

14: if visited[u]==0 or visited[v]==0

15: ne++

16: edge_minrate = edge_minrate + min

17: visited[v] ←1

18: Rate(u, v) ← Rate(v, u) ← ∞

19: flag ← 0

20: if there is a link from at least one visited node to the

 unvisited node

21: flag ← 1

22: if flag == 0

23: go to step 25

24: end while

25: if flag == 0 and visited[d] == 0

26: Terminate //There is no further path to the destination

27: else

28: MinFlowRateEdge ← ∞

29: find the edge with minimum rate

30: MinimumFlowRateEdge ← minimum rate of the edge

31: if MinimumFlowRateEdge > MaxFlowRate

32: if MinimumFlowRateEdge != ∞

33: MaxFlowRate = MinimumFlowRateEdge

34: assign the edge in G with minimum flow rate in a path

 from s to d to ∞

35: Maxflow(G, s, d)

The maxflowrate is the global variable which is initially set to zero. Line 1 set all the elements of array visited[] to

zero. Line 2 copy the graph(network) G to graph Rate. For further calculations we use the graph Rate and the operations

carried out on the graph Rate doesn’t reflect on the original graph G. Line 3 sets the visited[s] to 1. Line 4 sets variable

ne to 1, which is the initialization condition for while loop. The while loop of lines 5-24 finds the path between source

and destination. If there is no path exists from source to destination, variable flag is set to zero and the control goes to

step 25. Line 25 checks whether the flag is set to zero. Also, it checks whether d is not visited. If both the conditions are

true then the Maxflow function terminates. Else, it continues with the step 27. Line 28 sets the MaxFlowRate to ∞. Line

29 finds the edge in the path with minimum rate. Line 30 sets the MinimumFlowRateEdge to the calculated minimum

rate of the edge. Line 31 checks whether MinimumFlowRateEdge is greater than MaxFlowRate and Line 32 checks

whether MinimumFlowRateEdge is not equal to ∞. If both are true then MaxFlowRate is set to MinimumFlowRateEdge.

Line 34 assigns the edge in G with minimum flow rate in a path from s to d, to ∞. Line 35 calls the function Maxflow(G,

s, d) recursively.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 6, June 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7611 68

IV. DETAILED EXAMPLE

 Consider the network graph as shown in fig.1:

Fig. 1. Initial graph before 1

st
 iteration

The abutment matrix of this example is like this:

0 3 ∞ 7 ∞

3 0 4 2 ∞

∞ 4 0 5 6
7 2 5 0 4
∞ ∞ 6 4 0

Iteration 1:

Step 1: Path from source 1 to destination 5 is 1 → 2 → 4 → 5. Here maximum allowed flow rate of individual links 1

→ 2, 2 → 4 and 4 → 5 are 3, 2 and 4 respectively.

From the above flow rates of the individual links 3, 2, and 4, minimum allowed flow rate is 2. Therefore here,

the maximum allowed flow rate from source node 1 to destination node 5 is 2.

Step 2: Now delete the link 2 → 4 which has the minimum allowed flow rate among all the individual links in the

considered path 1 → 2 → 4 → 5.

The resultant graph after iteration 1 is shown in fig.2:

Fig. 2. Residual network after 1

st
 iteration

The corresponding matrix for the above graph is:

0 3 ∞ 7 ∞

3 0 4 ∞ ∞

∞ 4 0 5 6
7 ∞ 5 0 4
∞ ∞ 6 4 0

Iteration 2:

Step 1: From the above resultant graph after iteration 1, path from source 1 to destination 5 is 1 → 2 → 3 → 4 → 5. Here

maximum allowed flow rate of individual links 1 → 2, 2 → 3, 3 → 4 and 4 → 5 are 3, 4, 5 and 4 respectively.

From the above flow rates of the individual links 3, 4, 5 and 4, minimum allowed flow rate is 3. Here, the maximum

allowed flow rate from source node 1 to destination node 5 is 3.

Step 2: Now delete the link 1 → 2 which has the minimum allowed flow rate among all the individual links in the

considered path 1 → 2 → 3 → 4 → 5.

The resultant graph after iteration 2 is shown in fig.3:

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 6, June 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7611 69

Fig. 3. Residual network after 2

nd
 iteration

The corresponding matrix for the above graph is:

0 ∞ ∞ 7 ∞

∞ 0 4 ∞ ∞

∞ 4 0 5 6
7 ∞ 5 0 4
∞ ∞ 6 4 0

Iteration 3:

Step 1: From the above resultant graph after iteration 2, path from source 1 to destination 5 is 1 → 4 → 5. Here,

maximum allowed flow rate of individual links 1 → 4, and 4 → 5 are 7 and 4 respectively.

 From the above flow rates of the individual links 7 and 4, minimum allowed flow rate is 4. Here, the maximum

allowed flow rate from source node 1 to destination node 5 is 4.

Step 2: Now delete the link 4 → 5 which has the minimum allowed flow rate among all the individual links in the

considered path 1 → 4 → 5.

The resultant graph after iteration 3 is shown in fig.4:

Fig. 4. Residual network after 3

rd
 iteration

The corresponding matrix for the above graph is:

0 ∞ ∞ 7 ∞

∞ 0 4 ∞ ∞

∞ 4 0 5 6
7 ∞ 5 0 ∞

∞ ∞ 6 ∞ 0

Iteration 4:

Step 1: From the above resultant graph after iteration 3, path from source 1 to destination 5 is 1 → 4 → 3 → 5. Here

maximum allowed flow rate of individual links 1 → 4, 4 → 3 and 3 → 5 are 7, 5 and 6 respectively.

 From the above flow rates of the individual links 7, 5 and 6, minimum allowed flow rate is 5. Here, the

maximum allowed flow rate from source node 1 to destination node 5 is 5.

Step 2: Now delete the link 4 → 3 which has the minimum allowed flow rate among all the individual links in the

considered path 1 → 4 → 3 → 5.

The resultant graph after iteration 4 is shown in fig.5:

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 6, June 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7611 70

Fig. 5. Residual network after 4

th
 iteration

The corresponding matrix for the above graph is:

0 ∞ ∞ 7 ∞

∞ 0 4 ∞ ∞

∞ 4 0 ∞ 6
7 ∞ ∞ 0 ∞

∞ ∞ 6 ∞ 0

Iteration 5:

From the above resultant graph after iteration 4, we can observe that there exists no path from source 1 to destination 5.

Therefore, algorithm terminates.

Maximum flow rates in iteration 1, 2, 3 and 4 are 2, 3, 4 and 5 respectively. Among all the maximum flow rates

obtained from iteration 1, 2, 3 and 4, the maximum allowed flow rate is 5. Hence, it shows that the maximum allowed

flow rate from source 1 to destination 5 is 5. The corresponding path for this is 1 → 4 → 3 → 5.

V. TIME COMPLEXITY

 The efficiency of the proposed algorithm depends on the data structures chosen for the graph itself and for the priority

queue of the set V - VT , whose vertex priorities are the maximum allowed data rate to the nearest tree nodes. If a graph is

represented by its adjacency linked lists and the priority queue is implemented as a min-heap, the running time of our

algorithm is in Ο(│E│
2
log│V│) approximately.

VI. CONCLUSION

Maximum flow rate algorithm is based on obtaining a path with maximum flow rate. Proposed algorithm uses classical

Prim’s algorithm to find a path from source to destination in a given graph. Here assumption is the data sent from source

to destination without buffering. The maximum allowed flow rate is computed in all the paths and finally maximum of

maximum allowed flow rate is selected. We have analyzed the algorithm for different number of nodes in the graph and

obtained the time complexity.

REFERENCES

[1] Prim, R.C. Shortest connection networks and some generalization. Bell System Technical Journal, vol. 36, no 1, 1957, 1389-1401.

[2] D. Cheriton and R. E. Tarjan: Finding minimum spanning trees. generalization. In: SIAM Journal on Computing, 5 (Dec. 1976), pp. 724–741.

[3] Eugene Lawler (2001). "4.5. Combinatorial Implications of Max-Flow Min-Cut Theorem, 4.6. Linear Programming Interpretation of Max-Flow
Min-Cut Theorem". Combinatorial Optimization: Networks and Matroids. Dover. pp. 117–120. ISBN 0-486-41453-1.

[4] Christos H. Papadimitriou, Kenneth Steiglitz (1998). "6.1 The Max-Flow, Min-Cut Theorem". Combinatorial Optimization: Algorithms and

Complexity. Dover. pp. 120–128. ISBN 0-486-40258-4.
[5] L.Ford and D.Fulkerson. "Maximal flow through a network", Canadian Journal of Mathematics,1956. [CrossRef]

[6] A.V. Goldberg and R.E. Tarjan. "A new approach to the maximum flow problem", STOC, 1986.

	INTRODUCTION
	PRIM’S ALGORITHM
	MAXFLOW ALGORITHM
	DETAILED EXAMPLE
	TIME COMPLEXITY
	CONCLUSION
	REFERENCES

