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Abstract:  This research work proposes an algorithm to find a path which has the maximum allowed flow rate for data, 

between source and destination in a network. Unlike max-flow and min-cut theorem, algorithm is selecting single path 

for data transmission. To find a path in a network there are multiple techniques. Prim’s technique is used recursively in 

our proposed algorithm to find different paths between source and destination. The maximum allowed flow rate for 

each of those paths is calculated and finally we take the maximum of those calculated flow rates.  
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I. INTRODUCTION 

n many transport networks, knowledge about finding a path with maximum flow rate, from source node to destination 

node is essential. Such information can be acquired through, study of weighted connected graphs in which vertices 

represent nodes and the edges represent the links of the network. In such graphs, the weight of an edge represents the 

capacity of the link; namely, the maximum amount of flow possible per unit of time. It will be assumed that there is no 

accumulation of data at any node along the path and that the node itself can handle as much flow as allowed through the 

links. It will further be assumed that the links are lossless. Our proposed algorithm is a maximum flow rate algorithm 

which mainly finds the path between source and destination such that selected path should have maximum allowed flow 

rate. Here, maximum allowed flow rate refers to a path with maximum allowable data rate that can flow between 

selected source and the destination. To find a path between source and destination we have used Prim’s algorithm [1]. 

Prim’s algorithm finds a minimum spanning tree in a given network [2]. Here, Prim’s algorithm has been utilized to find 

different paths between source and destination. Our proposed algorithm finds maximum flow for each path selected from 

Prim’s algorithm. Finally, we find maximum of maximum flow rate that can flow in a network from the set of calculated 

maximum flow rates. 

II. PRIM’S ALGORITHM 

     Prim’s algorithm constructs minimum spanning tree through a sequence of expanding subtrees. The initial subtree in 

such a sequence consists of a single vertex selected arbitrarily from the set V of the graph’s vertices. On each iteration, 

we expand the current tree in the greedy manner by simply attaching to it the nearest vertex not in that tree. The 

algorithm stops after all the graph’s vertices have been included in the tree being constructed. Since the algorithm 

expands a tree by exactly one vertex on each of its iterations, the total number of such iterations is n-1, where n is the 

number of vertices in the graph. The tree generated by the algorithm is obtained as the set of edges used for the tree 

expansions. 
 

ALGORITHM:  Prim (G) 

//Input: A weighted connected graph G = (V, E) 

//Output: ET, the set of edges composing a minimum spanning tree of G 

1: VT ← {v0} //set of tree vertices initialized with any vertex 

2: ET ← Ø  

3: for i ← 1 to |V| – 1 do 

4:     find a minimum- weight edge e
*
=(v

*
, u

*
) among all 

               the edges (v, u) such that v is in VT  and u is in V- VT   

5:            VT ← VT  ∪ {u
*
}  

6:            ET ← ET  ∪ {e
*
} 

7: return   ET               

III. MAXFLOW ALGORITHM 

Maximum flow algorithm finds out the path between source and destination with maximum allowable flow rate. 

Unlike max-flow and min-cut theorem, we are selecting single path for data transmission [3-6]. In the initial network 

source node s and destination node d are selected from the set of nodes V. The weights on the link represents maximum 

allowed flow rate for a particular time period. Using Prim’s algorithm, we find path between s and d. On each iteration 

I 
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after finding maximum flow the link with minimum flow rate is deleted. This method is done recursively until there is no 

path between s and d. Finally maximum of maximum allowed flow rate is calculated. 

MaxFlowRate = 0   //global variable, initialized to 0 

 

ALGORITHM: Maxflow (G, s, d) 

1: visited[]={0} 

2: Copy graph G to graph Rate 

3: visited[s]=1 

4: ne=1 

5: while ne < │V│ and visited[d]!=1 

6:         for i←1 to │V│ do 

7:                min←∞ 

8:               for j←1 to │V│ do 

9:                    if Rate(i, j) < min 

10:                        if visited[i]!=0 

11:                             min←Rate(i, j) 

12:                             u←i 

13:                             v←j 

14:         if visited[u]==0 or visited[v]==0 

15:                  ne++ 

16:                  edge_minrate = edge_minrate + min 

17:                  visited[v] ←1 

18:             Rate(u, v) ← Rate(v, u) ← ∞ 

19:             flag ← 0 

20:             if there is a link from at least one visited node to the  

                  unvisited node 

21:                   flag ← 1 

22:            if flag == 0 

23:                   go to step 25 

24: end while 

25: if flag == 0 and visited[d] == 0 

26:     Terminate //There is no further path to the destination 

27: else 

28:      MinFlowRateEdge ← ∞ 

29:      find the edge with minimum rate 

30:      MinimumFlowRateEdge ← minimum rate of the edge 

31:      if MinimumFlowRateEdge > MaxFlowRate 

32:           if MinimumFlowRateEdge != ∞ 

33:                MaxFlowRate = MinimumFlowRateEdge 

34:      assign the edge in G with minimum flow rate in a path  

           from s to d to ∞ 

35:     Maxflow(G, s, d) 

 

The maxflowrate is the global variable which is initially set to zero. Line 1 set all the elements of array visited[] to 

zero. Line 2 copy the graph(network) G to graph Rate. For further calculations we use the graph Rate and the operations 

carried out on the graph Rate doesn’t reflect on the original graph G. Line 3 sets the visited[s] to 1. Line 4 sets variable 

ne to 1, which is the initialization condition for while loop. The while loop of lines 5-24 finds the path between source 

and destination. If there is no path exists from source to destination, variable flag is set to zero and the control goes to 

step 25. Line 25 checks whether the flag is set to zero. Also, it checks whether d is not visited. If both the conditions are 

true then the Maxflow function terminates. Else, it continues with the step 27. Line 28 sets the MaxFlowRate to ∞. Line 

29 finds the edge in the path with minimum rate. Line 30 sets the MinimumFlowRateEdge to the calculated minimum 

rate of the edge. Line 31 checks whether MinimumFlowRateEdge is greater than MaxFlowRate and Line 32 checks 

whether MinimumFlowRateEdge is not equal to ∞. If both are true then MaxFlowRate is set to MinimumFlowRateEdge. 

Line 34 assigns the edge in G with minimum flow rate in a path from s to d, to ∞. Line 35 calls the function Maxflow(G, 

s, d) recursively. 
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IV. DETAILED EXAMPLE 

   Consider the network graph as shown in fig.1: 

 
Fig. 1. Initial graph before 1

st
 iteration 

 

The abutment matrix of this example is like this: 

 

 
 
 
 
 
0 3 ∞ 7 ∞

3 0 4 2 ∞

∞ 4 0 5 6
7 2 5 0 4
∞ ∞ 6 4 0 

 
 
 
 

 

 

Iteration 1: 

Step 1: Path from source 1 to destination 5 is 1 → 2 → 4 → 5. Here maximum allowed flow rate of individual links 1 

→ 2, 2 → 4 and 4 → 5 are 3, 2 and 4 respectively. 

From the above flow rates of the individual links 3, 2, and 4, minimum allowed flow rate is 2. Therefore here, 

the maximum allowed flow rate from source node 1 to destination node 5 is 2. 

Step 2: Now delete the link 2 → 4 which has the minimum allowed flow rate among all the individual links in the 

considered path 1 → 2 → 4 → 5. 

 

The resultant graph after iteration 1 is shown in fig.2: 

 
Fig. 2. Residual network after 1

st
 iteration  

 

The corresponding matrix for the above graph is: 

 

 
 
 
 
 
0 3 ∞ 7 ∞

3 0 4 ∞ ∞

∞ 4 0 5 6
7 ∞ 5 0 4
∞ ∞ 6 4 0 

 
 
 
 

 

 

Iteration 2: 

Step 1: From the above resultant graph after iteration 1, path from source 1 to destination 5 is 1 → 2 → 3 → 4 → 5. Here 

maximum allowed flow rate of individual links 1 → 2, 2 → 3, 3 → 4 and 4 → 5 are 3, 4, 5 and 4 respectively. 

From the above flow rates of the individual links 3, 4, 5 and 4, minimum allowed flow rate is 3. Here, the maximum 

allowed flow rate from source node 1 to destination node 5 is 3. 

Step 2: Now delete the link 1 → 2 which has the minimum allowed flow rate among all the individual links in the 

considered path 1 → 2 → 3 → 4 → 5. 

 

The resultant graph after iteration 2 is shown in fig.3: 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
ISO 3297:2007 Certified 

Vol. 7, Issue 6, June 2018 
 

Copyright to IJARCCE                                              DOI  10.17148/IJARCCE.2018.7611                                                                 69 

 
Fig. 3. Residual network after 2

nd
  iteration  

 

The corresponding matrix for the above graph is: 

 

 
 
 
 
 
0 ∞ ∞ 7 ∞

∞ 0 4 ∞ ∞

∞ 4 0 5 6
7 ∞ 5 0 4
∞ ∞ 6 4 0 

 
 
 
 

 

 

Iteration 3: 

Step 1: From the above resultant graph after iteration 2, path from source 1 to destination 5 is 1 → 4 → 5. Here, 

maximum allowed flow rate of individual links 1 → 4, and 4 → 5 are 7 and 4 respectively. 

 From the above flow rates of the individual links 7 and 4, minimum allowed flow rate is 4. Here, the maximum 

allowed flow rate from source node 1 to destination node 5 is 4. 

Step 2: Now delete the link 4 → 5 which has the minimum allowed flow rate among all the individual links in the 

considered path 1 → 4 → 5. 

The resultant graph after iteration 3 is shown in fig.4: 

 

 
Fig. 4. Residual network after 3

rd
  iteration 

 

The corresponding matrix for the above graph is: 

 

 
 
 
 
 
0 ∞ ∞ 7 ∞

∞ 0 4 ∞ ∞

∞ 4 0 5 6
7 ∞ 5 0 ∞

∞ ∞ 6 ∞ 0 
 
 
 
 

 

 

Iteration 4: 

Step 1: From the above resultant graph after iteration 3, path from source 1 to destination 5 is 1 → 4 → 3 → 5. Here 

maximum allowed flow rate of individual links 1 → 4, 4 → 3 and 3 → 5 are 7, 5 and 6 respectively. 

 From the above flow rates of the individual links 7, 5 and 6, minimum allowed flow rate is 5. Here, the 

maximum allowed flow rate from source node 1 to destination node 5 is 5. 

Step 2: Now delete the link 4 → 3 which has the minimum allowed flow rate among all the individual links in the 

considered path 1 → 4 → 3 → 5. 

 

 

 

 

The resultant graph after iteration 4 is shown in fig.5: 
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Fig. 5. Residual network after 4

th
 iteration  

 

The corresponding matrix for the above graph is: 

 

 
 
 
 
 
0 ∞ ∞ 7 ∞

∞ 0 4 ∞ ∞

∞ 4 0 ∞ 6
7 ∞ ∞ 0 ∞

∞ ∞ 6 ∞ 0 
 
 
 
 

 

 

Iteration 5: 

From the above resultant graph after iteration 4, we can observe that there exists no path from source 1 to destination 5. 

Therefore, algorithm terminates. 

Maximum flow rates in iteration 1, 2, 3 and 4 are 2, 3, 4 and 5 respectively. Among all the maximum flow rates 

obtained from iteration 1, 2, 3 and 4, the maximum allowed flow rate is 5. Hence, it shows that the maximum allowed 

flow rate from source 1 to destination 5 is 5. The corresponding path for this is 1 → 4 → 3 → 5. 
 

V. TIME COMPLEXITY 

 

   The efficiency of the proposed algorithm depends on the data structures chosen for the graph itself and for the priority 

queue of the set V - VT , whose vertex priorities are the maximum allowed data rate to the nearest tree nodes. If a graph is 

represented by its adjacency linked lists and the priority queue is implemented as a min-heap, the running time of our 

algorithm is in Ο(│E│
2   
log│V│) approximately. 

VI. CONCLUSION 

 

Maximum flow rate algorithm is based on obtaining a path with maximum flow rate. Proposed algorithm uses classical 

Prim’s algorithm to find a path from source to destination in a given graph. Here assumption is the data sent from source 

to destination without buffering. The maximum allowed flow rate is computed in all the paths and finally maximum of 

maximum allowed flow rate is selected. We have analyzed the algorithm for different number of nodes in the graph and 

obtained the time complexity. 
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