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Abstract: Principal Component Analysis (PCA) is a multivariate procedure that investigates a data slab in which 

clarifications are designated by numerous inter-correlated measureable reliant variables. Its objective is to excerpt the 

imperative evidence from the table, to characterise it as a set of new orthogonal variables called principal components, 

and to show the outline of resemblance of the clarifications and of the variables as points in maps. The worth of the 

PCA model can be estimated using cross-validation procedures. Statistically, PCA be contingent upon the Eigen-

decomposition of positive semi-definite matrices and upon the singular value decomposition of rectangular matrices. 

The number of principal components is less than or equivalent to the number of unique variables. It is a way of 

classifying patterns in data, and conveying the data in such a way as to highpoint their resemblances and modifications. 

This  is  the  survey  paper  of  the  previous  concept  and  procedures for PCA. 
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I. INTRODUCTION 

 

Principal Component Analysis (PCA) is probably the most popular multivariate statistical technique and it is used by 

almost all scientific disciplines. It is also likely to be the oldest multivariate technique. The  number  of  principal  

components  are  less  than  or  equal  to  the  number  of original variables. This transformation is defined in such a 

way that the first principal component has the largest possible variance (that is, accounts for as much of the variability 

in the data as possible), and each succeeding component  in  turn  has  the  highest  variance  possible  under  the  

constraint  that  it  be  orthogonal  to  (i.e., uncorrelated with) the preceding components  [3]. Principal components are 

guaranteed to be independent if the data set is jointly normally distributed. PCA is sensitive to the relative scaling of 

the original variables. 

 

Many papers of PCA are survey here and find that, no papers are combined with the techniques of PCA and the 

relevant example. That‟s why this type of paper is written where all these things are combined together which is easy to 

understand the beginner. PCA is a widely used mathematical tool for high dimension data analysis. Just within the 

fields of computer graphics and visualization alone, PCA has been used for face recognition [10], motion analysis and 

synthesis [7], clustering [4], dimension reduction [2], etc. 

 

II. PRINCIPAL COMPONENT ANALYSIS 

 

Principal Component Analysis (PCA) is a dimension-reduction tool that can be used to reduce a large set of variables to 

a small set that still contains most of the information in the large set. Principal Component Analysis (PCA) is a 

mathematical procedure that transforms a number of (possibly) correlated variables into a (smaller) number of 

uncorrelated variables called principal components. The first principal component accounts for as much of the 

variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as 

possible.  Principal components analysis is similar to another multivariate procedure called Factor Analysis. They are 

often confused and many scientists do not understand the difference between the two methods or what types of analyses 

they are each best suited. 
 

A. Objectives of principal component analysis:  
 

• PCA reduces attribute space from a larger number of variables to a smaller number of factors and as such is a "non-

dependent" procedure (that is, it does not assume a dependent variable is specified).  
 

• PCA is a dimensionality reduction or data compression method. The goal is dimension reduction and there is no 

guarantee that the dimensions are interpretable (a fact often not appreciated by (amateur) statisticians).  
 

•To select a subset of variables from a larger set, based on which original variables have the highest correlations with 

the principal component. 
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B. Properties of Principal Component 
 

Technically, a principal component can be defined as a linear combination of optimally-weighted observed variables. 

The output of PCA are these principal components, the number of which is less than or equal to the number of original 

variables. Less, in case when we wish to discard or reduce the dimensions in our dataset. The PCs possess some useful 

properties which are listed below: 

 

1. The PCs are essentially the linear combinations of the original variables, the weights vector in this 

combination is actually the eigenvector found which in turn satisfies the principle of least squares. 
 

2. The PCs are orthogonal, as already discussed. 
 

3. The variation present in the PCs decrease as we move from the 1st PC to the last one, hence the importance. 

The least important PCs are also sometimes useful in regression, outlier detection, etc. 

 

C. Steps in PCA 

 

Step 1: Normalize the data 
 

First step is to normalize the data that we have so that PCA works properly. This is done by subtracting the respective 

means from the numbers in the respective column. So if we have two dimensions X and Y, all X become 𝔁- and all 

Y become 𝒚-. This produces a dataset whose mean is zero. 

 

Step 2: Calculate the covariance matrix 
 

Since the dataset we took is 2-dimensional, this will result in a 2x2 Covariance matrix. 

 

Step 3: Calculate the eigenvalues and eigenvectors 

Next step is to calculate the eigenvalues and eigenvectors for the covariance matrix. The same is possible because it is a 

square matrix. ƛ is an eigenvalue for a matrix A if it is a solution of the characteristic equation: 

det( ƛI - A ) = 0 

Where, I is the identity matrix of the same dimension as A which is a required condition for the matrix subtraction as 

well in this case and „det‟ is the determinant of the matrix. For each eigenvalue ƛ, a corresponding eigen-vector v, can 

be found by solving: 

( ƛI - A )v = 0 

 

Step 4: Choosing components and forming a feature vector: 
 

We order the eigen values from largest to smallest so that it gives us the components in order or significance.  

Here comes the dimensionality reduction part. If we have a dataset with n variables, then we have the corresponding n 

eigen values and eigenvectors. It turns out that the eigenvector corresponding to the highest eigen value is the principal 

component of the dataset and it is our call as to how many eigenvalues we choose to proceed our analysis with. To 

reduce the dimensions, we choose the first p eigenvalues and ignore the rest. We do lose out some information in the 

process, but if the eigen values are small, we do not lose much. 

 

Step 5: Forming Principal Components: 
 

This is the final step where we actually form the principal components using all the math we did till here. For the same, 

we take the transpose of the feature vector and left-multiply it with the transpose of scaled version of original dataset. 
 

NewData = FeatureVector
T
 x ScaledData

T
 

Here, 

NewData is the Matrix consisting of the principal components, 

FeatureVector is the matrix we formed using the eigenvectors we chose to keep, and 

ScaledData is the scaled version of original dataset 

(„T‟ in the superscript denotes transpose of a matrix which is formed by interchanging the rows to columns and vice 

versa. In particular, a 2x3 matrix has a transpose of size 3x2) 

 

  If we go back to the theory of Eigen values and eigenvectors, we see that, essentially, eigenvectors provide us 

with information about the patterns in the data. In particular, in the running example of 2-D set, if we plot the 

eigenvectors on the scatter plot of data, we find that the principal eigenvector (corresponding to the largest Eigen value) 

actually fits well with the data. it, does not carry much information and hence, we are at not much loss when 

deprecating it, hence reducing the dimension. 
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III. LITERATURE REVIEW  

 

In this Chapter we review the literature related to Principal Component Analysis (PCA) methods in brief. For better 

understanding we classify the literature into various categories. In this section, we present significant research carried 

out in PCA.  

 

Principal components of CMB non-Gaussianity- The skew-spectrum statistic introduced by Munshi & Heavens has 

recently been used in studies of non-Gaussianity from diverse cosmological data sets including the detection of primary 

and secondary non-Gaussianity of cosmic microwave background (CMB) radiation. We describe how the bias induced 

in the estimation of primordial non-Gaussianity due to secondary non-Gaussianity may be evaluated for arbitrary 

primordial models using a PCA analysis. The PCA approach allows one to infer approximate (but generally accurate) 

constraints using CMB data sets on any reasonably smooth model by use of a look-up table and performing a simple 

computation. This principle is validated by computing constraints on the Dirac–Born–Infield spectrum using a PCA 

analysis of the standard templates.  

 

Principle Component Analysis Based Cooperative Spectrum Sensing in Cognitive Radio – This paper introduces an 

improved cooperative spectrum sensing (CSS) algorithm for cognitive radio (CR) networks based on the machine 

learning technique. In this scheme, spectrum sensing consists of two steps. The offline training is performed by K-

means clustering method and the threshold is defined by the classification result towards unsupervised data. As for the 

online classification stage, the similarity between the received signal and the cluster in training data is exploited for 

channel availability decision. The features of both the received signal and the training samples are extracted by 

principle component analysis (PCA). The fusion center will make final decision according to the local sensing result 

from differently sensors sequentially. Each sensor is responsible for the analysis towards certain period of the received 

signal. In this way, the initial sensing result (which will be updated due to the latest input signal) is available within 

short period of time. 

 

Human Movements Separation Based on Principle Component Analysis – With more and more attention to terrorist 

attacks, rescue after disaster and medical treatments, the study on human motions has become a hot topic in recent 

years. Thanks to the unique mechanism of humans, the m-D signatures, which contain extensive information, of each 

segment are obviously distinct. It remains a great challenge to separate the movement of humans‟ each part. In this 

paper, a method for human movements separation based on a principle component analysis (PCA) is proposed. As one 

of the classical methods in the blind source separation problems, PCA decomposes the signal to a series of orthogonal 

basis functions to construct the Eigen subspace. The original signal can be represented by the linear combination of the 

orthogonal basis functions. In addition, information criterion is utilized to determine the minimal number of output for 

PCA. 

 

Jointly Informative and Manifold Structure Representative Sampling Based Active Learning for Remote Sensing Image 

Classification – Active Learning (AL) methods that select unlabeled samples only querying by informative measures 

(i.e., uncertainty and/or diversity criteria) have been extensively investigated. However, these methods usually do not 

exploit the manifold structure of the unlabeled data from the geometrical point of view, a choice that might lead to a 

sample bias and consequently undesirable performances. To control and possibly overcome such drawbacks, this paper 

explores AL methods based on joint informative and manifold structure representative sampling (JI-MSRS). In JI-

MSRS, a portion of the unlabeled samples that are added at each iteration is selected according to the informative 

measures, whereas another portion is selected according to their capability to represent the data cluster structure. Four 

popular manifold learning methods, namely, principle component analysis (PCA), linear discriminant analysis, kernel 

PCA, and neighbourhood preserving embedding, are used to model the data structure. 

 

An Events Rearrangement Strategy-Based Robust Principle Component Analysis – Random noise in seismic data can 

affect the performance of reservoir characterization and interpretation, which makes denoising become an essential 

procedure. This letter focuses on suppressing random noise in post stack seismic data while preserving the edges of 

desired signals. Due to the lateral continuity of seismic data, polynomial fitting (PF) method can be a good alternative 

in attenuating random noise. However, discontinuities exist widely in post stack seismic data, which might be damaged 

by the PF filter. By contrast, principle component analysis (PCA)-based filters have better performance in edge 

preserving, but there appear artifacts in the demonised results using the PCA-based filters. Thus, we propose an edge-

preserving polynomial PCA filter which combines advantages of the PF and PCA methods by optimizing a PCA 

problem with a weighted polynomial constraint.  

 

A Probabilistic Approach to Outdoor Localization Using Clustering and Principal Component Transformations – A 

probabilistic approach f o r outdoor location estimation using GSM received signal strength (RSS) from base stations 

(BSs) is presented. The proposed approach first divides the region of interest into different clusters based on deviations 
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from the path loss mode lf or each RSS component. In each cluster, the proposed algorithm uses principal component 

analysis (PCA) to intelligently transform RSS into new uncorrelated dimensions. This retains accuracy by not losing 

the substantial RSS correlations in each cluster, b u t also accommodates the different RSS distributions in each cluster. 

Our experiments are conducted in a real GSM outdoor environment. The proposed approach is compared with a 

traditional probabilistic algorithm f o r three different area partitioning methods. The experimental results show that the 

positioning accuracy is significantly improved and our clustering scheme gives good support f o r location estimation.  

 

IV. CONCLUSION AND FUTURE WORK 

 

In this work, we reviewed the state-of-the-art of PCA literature, which include multiple PCA methods. Subsequently, 

we discussed how these PCA methods address the problems faced by classical PCA. In this work, we focus on study of 

PCA methods. In subsequent we propose a common framework for PCA methods and identify issues to be addressed, 

we bring out some novel PCA methods, which alleviate the problems faced by both the existing PCA methods and 

classical PCA methods, we establish general properties of PCA methods by performing a theoretical analysis and we 

extend our feature partitioning ideas to cluster analysis and subspace classification. Principal Component Analysis are 

useful as data reduction but not for understanding the structure of the data. In future work, we use to proposing a 

framework which brings the existing PCA methods under a common framework and identify the issues need to be 

addressed in this framework. 
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