
IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 

Vol. 7, Issue 11, November 2018 

 

Copyright to IJARCCE                                  DOI  10.17148/IJARCCE.2018.71116                                                           71 
 

Using BM25 weighting and Cluster Shrinkage 

for Detecting Duplicate Bug Reports 
 

Nhan Minh Phuc 

Faculty of Information Technology, Tra Vinh University, Viet Nam 

 

Abstract: In software maintenance, bug reports play an important role for the correctness of software packages. 

Unfortunately, a duplicate bug report problem arises because there are significant many duplicate bug reports in various 

software projects. Processing duplicate bug reports is thus time-consuming and has high cost of software maintenance. 

In this research, we propose a detection scheme based on the BM25 weighting and cluster shrinkage (BM25-CS) to 

enhance the detection performance. The effectiveness of this method is verified in an empirical study with three open-

source projects, SVN, Argo UML, and Apache. The experimental results show that our method outperforms other 

detection schemes about 6-10% in all cases. 
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I. INTRODUCTION 

 

In software maintenance, bug reports are an important resource to fix software bugs. For many software projects, such 

as Eclipse and Subversion, bug tracking systems (BTS) are used to receive bug reports in which reporters can describe, 

track, and classify observed software bugs. From these BTS repositories, a triager analyzes the incoming bug reports 

and then decides appropriate programmers to fix the bugs. As reported in [14], the triaging process is usually time-

consuming.  For example, around 30 minutes are estimated for processing a bug report on average in Sony Ericsson 

[14].  Automatic mechanisms are thus important for triagers to shorten the triaging time.  In the triaging work, detecting 

duplicate bug reports is one of the important issues in recent research work [10, 14, 15, 16, 17, 20]. The main reason is 

that the number of the duplicate bug reports to the total bug reports is usually significant. For example, in [1] reported 

that 20% of the bug reports were duplicated in a collected Eclipse dataset of 18,165 bug reports. It similarity to Firefox 

dataset, 36% of total bug reports are duplicated. For Eclipse, Apache, and Fedora Core, the duplicate rates are 17%, 

14%, and 13%, respectively. This means processing duplicate bug reports costs much precious triaging time.  

 

In previous work, many automatic detection schemes have been proposed [7, 10, 11, 15]. They can be mainly classified 

into two categories: duplicate detection based on textual bug descriptions only [6, 10, 11, 14, 17, 20],  and duplicate 

detection based on textual information and software execution information [18]. The schemes of the first category of 

using textual information mainly focus on exploring the implicit semantic meanings of the bug reports. For instance, 

Hiew proposes a clustering technique using TF- IDF (term frequency-inverse document frequency) to calculate the 

similarity for detection [10]. Runeson et al. propose a detection scheme using basic natural language processing (NLP) 

techniques, such as stemming and synonym expansion, to detect duplicate bug reports [14]. Sureka and Jalote then 

propose an n-gram scheme to improve the detection performance [16]. Therefore, the detection performance relies on 

the effectiveness of employed text mining, natural language processing, and information retrieval techniques. Due to 

the ambiguity of textual descriptions using natural languages, achieving high detection performance is a challenging 

research issue. 

 

For the second category of detection schemes using both textual information and software execution information can be 

achieved high detection performance. For example, Wang et al. proposed a framework calculating different similarity 

metrics for textual information and execution information [18, 20]. Their experimental results show that this approach 

outperforms other approaches using textual information alone. However, collecting software execution information is 

not a straightforward task. Using execution information needs a large amount of additional storage space to store 

execution traces. In addition, generalizing this framework for different software projects may need many human efforts 

to customize the process for collecting information. Therefore, the feasibility is limited. In this paper, we focus on the 

improvement on the first category by proposing a BM25-CS scheme. In this scheme, the BM25 weighting information 

and cluster shrinkage are considered to improve the discriminative effectiveness of important textual features. It is an 

important part in support for duplicate detection scheme. 
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Figure 1.1:  An Example of a Duplicate Bug Report in SVN 

 

II. PROBLEM DEFINITONS 
 

In this research, duplicate bug reports are defined as the bug reports that describe the same bug issue as a master bug 

report. Figure 1.1 shows an example of a duplicate bug report #983 in software project Subversion (SVN). From the 

figure, we can find that bug report #983 is identified as a duplicate of its master bug report #88. Therefore, to solve the 

duplication detection problem for a given set of bug reports is to design a mechanism which can automatically identify 

duplicate bug reports. 
 

Table 1.1: An example of master bug reports  and their duplicate reports of SVN 

 

 

 

 

 

 

 

 

 
 

In the previous studies, this problem is investigated by giving a duplication recommendation list for each incoming bug 

report [14]. Therefore, the historical bug reports are first classified into clusters according to their duplication 

relationship. Table 1.1 shows an example for SVN in which bug reports are classified into n clusters. Each duplicate 

bug report cluster has a master bug report. In this study, we use the earliest one without loss of generality. That is, the 

bug report of the smallest bug report ID is the master bug report. Then, for each incoming bug report, the 

recommendation list ranks the historical bug reports. The detection performance can then be decided with the recall rate 

which is the number of correct predictions to the number of total correct duplicates. The performance evaluation of 

duplication detection schemes can be conducted using their top-k recall rates. The research goal is to improve the top-k 

recall rate of the detection mechanism. 

Cluster  No. Master BR Duplicate BR 

1 689 793 
2 703 792, 797 

3 70 836 
4 491 492, 897 
5 88 983 
... ... ... 

N 872 968, 1048 
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III. DUPLICATE DETECTION SCHEME 

 

Figure 3.1 illustrates the entire detection process in the proposed BM25-CS scheme. The detection flow has the 

following five steps. 

 

A. Natural language processing (NLP) preprocessing: In this step, each term feature of the bug reports is 

extracted and processed with standard NLP preprocessing techniques, such as tokenization, stopword removal, and 

stemming. When an incoming bug report is submitted, both the historical bug reports and the incoming one are 

transformed into a vector space model after the standard NLP preprocessing steps, such as tokenization, stemming, and 

stopword removal Error! Reference source not found.. In NLP preprocessing, the Porter stemming algorithm Error! 

Reference source not found. is adopted for stemming and a  standard stopword list is used with some special 

characters like „,‟, „.‟, „?‟, „*‟, and „$‟ to remove common words. 

 

Table 3.1: An example of mapping duplicate bug reports and the incoming 
 

 

 

 

 

 
B. Cluster Shrinkage : We use the cluster shrinkage to help us find the semantics of bug report overlap. In this 

way, it will increase the member of cluster relationship by the threshold. The first, we have to find a center of cluster. 

The second, we shrink all of bug report to its center. 

 

 
Figure 3.1: detection process in BM25-CS scheme 

 

1. Centroid of Clusters: the centroid, we use it to represent the cluster, is a center vector. Each cluster has a centroid that 

with all information in its cluster. We use the average vector that in a cluster to calculate centroid. Because the 

submitter does not always describe the bug in detail, it will make the similarity calculation inefficient. The reason is two 

duplicate bug reports with seldom same words and it will make to determine whether they are duplicate bug report 

become difficult. So the centroid can help us increase similarity between duplicate bug reports, it have more words.  
 

2. Using Cluster Shrinkage: After we find the each centroid of cluster, we shrink all of bug report to its centroid of 

cluster. The symbol is a threshold. The symbol v represents a bug report vector. The symbol v′ means the new vector. 

 

For each cluster { 

     N is the number of bug reports in S  

             

Compute its centroid: 

                           C=
1

N
 vN    

Cluster No. Duplicate Bug Report Incoming Bug Report 

1 

2 

… 

122 

… 

329 

387 

… 

1382, 1482, 2287 

… 

330 

433 

… 

2460 

… 
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For each bug report v ∈ S  

                            { 

                                    v′=(1 - λ) v + λc 

                                    Where  0 ≤ λ ≤ 1  

                             } 

 

Table 4.1: Datasets of three open-source projects 

 

 

 

 

 

 

 

 

 

 

 
 

According to the duplication relationship information, the historical bug reports are classified into clusters (classes) for 

further detection operations. Table 3.1 shows an example of the clusters in project SVN. In Table 3.1, the bug report with 

the largest ID will be used as the testing bug report for evaluation. Figure 3.2 illustrates documents in each cluster are 

moved toward the cluster centroid c in cluster shrinkage. 

 

 

Figure 3.2: documents in each cluster are moved toward the cluster centroid c in cluster shrinkage 

 

C. Enhanced BM25 weighting: In information retrieval, BM25 is a ranking function used by search engines to 

rank matching documents according to their relevance to a given search query. In the case of processing duplicate bug 

reports, documents are ranked based on a bag-of-words retrieval function, and each term is treated as a query term to 

calculate term occurrences in all the documents. In addition, it can also be represented with slightly different 

components and parameters to adjust to respective information retrieval applications Error! Reference source not 

found.. The weighting function of BM25 for a query string q and a document d is defined as follows Error! Reference 

source not found.:  
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Where tf(qi,d) is the term frequency qi appears in the document d, |d| is the length of d in words, and dlavg is the average 

document length in the collection. The parameters k1 and b are free parameters for controlling the weighting between 

the term frequency and the normalized document length. They are usually chosen as 1.2  k1  2.0 and 0.5  b  0.8. In 

this paper, we use the common settings of k1 = 2.0 and b = 0.8 as other studies.  

 

 

Description ArgoUML Apache SVN 

Language Java Java C 

Software Type UML Tool HTTP Server SCM Tool 

SCM Subversion Subversion Subversion 

Repository Tigris Bugzilla Tigris 

Data Period 00/02-07/05 01/01-07/02 01/03-07/05 

# of Bug Reports 6.613 2.771 2.296 

# of Duplicates 755 614 313 

https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Ranking_function
https://en.wikipedia.org/wiki/Search_engine
https://en.wikipedia.org/wiki/Relevance_(information_retrieval)
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Finally, idf(qi) is the IDF (inverse document frequency) weight of the query term qi. It is computed as: 
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where N is the total number of documents in the collection, and df(qi) is the number of documents containing qi. 

In Error! Reference source not found., BM25 can properly represent both the local weights and the global weights by 

considering the term frequency, the inverse document frequency, and the document length. For each term ti in a bug 

report BRj, its weight wi is adjusted Accordingly as follows: 
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where idf(ti) is computed as:  
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In (4) we adjust its value to a floor of 0 because it can return a negative value when the term ti appears in more than half 

of the documents, this means that adjustment of the IDF function the common terms appearing in more than half of the 

bug reports are ignored. Only the terms appear in less than half of the documents are considered as the significant 

features to represent the document vectors.  

 

D. Cosine similarity: Cosine measure is employed to compare the similarity between a new bug report and the 

cluster centroids. Due to Cosine measure in [2] has the best performance in comparison with the Dice coefficient, and 

the Jaccard index. The Cosine similarity is calculated by the following formula: 
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where iX


 represents the feature vector of an incoming bug report, and jY


 represents a centroid of existing bug reports 

in the dataset Y.  

 

E. Top-n recommendation: We present the result like as previous work [4]. Using the top-n recommendation 

system can help user to find the duplicate bug reports. We list rank from 1 to 20 and observe the performance in every 

rank. Then, we compare the top-N recommendation with past researches. Finally, the recall rate is calculated as the 

detection performance in this study. 

 

IV. EXPERIMENTAL RESULTS 

 

A. Experimental Datasets: For the experimental datasets, we used three datasets of open source software 

projects, Apache, ArgoUML, and SVN. Table 4.1 lists the detailed information of these three datasets. To evaluate the 

BM25-CS scheme and related duplication detection schemes, the recall rate metrics in Equation (4.1) was used in the 

experiments. Equation (4.1) illustrates how to calculate the recall rate, where Ncorr is the number of duplicate reports 

that are correctly identified, and Ntotal is the total number of duplicate reports. 
 

         Recall Rate =  
Ncorr

Ntotal

                               4.1  

 

It is defined as the percentage of the duplicates that can correctly find the corresponding master bug reports in the top-n 

recommendations. 

 

B. Comparison evaluation: To explore the effectiveness of BM25-CS in comparison with related detection 

schemes, experiments were conducted to study the work of Zang [19], the work of Sureka [16], the work of Runeson 

[14], Hiew [10], and BM25-CS. The results are shown in Figures 4.13. From the results, we can find that BM25-CS 

outperforms other detection schemes. The main reason is that the BM25 weighting combined with cluster chrinkage  

can effectively enhance the discrimibility for duplication detection. The results demonstrate its effectiveness. 
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(a) SVN 

 

 
(b) ArgoUML 

 

 
(c) Apache 

 

Fig. 4.13 Detection performance for three software projects: Apache, ArgoUML, and SVN 

 

CONCLUSIONS 

 

Duplication detection of bug reports is an important issue in software maintenance. This is because the same bugs or 

failures may be reported several times. Since the number of duplicate bug reports is significant in previous 

observations, identity it with a detection scheme can save much human effort and cost. In this research, we propose a 

detection scheme called BM25-CS using BM25 weighting  to improve the detection performance. The experiments 

show that the BM25-CS scheme can achieve the best performance among several state-of the-art related schemes. There 

are still many issues to be discussed. For example, how to find the best parameter settings of BM25 weighting can be a 

challenging issue. However, our experiments show that some settings can achieve extremely high performance. This 

demonstrates the feasibility of BM25-CS.  

 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 

Vol. 7, Issue 11, November 2018 

 

Copyright to IJARCCE                                  DOI  10.17148/IJARCCE.2018.71116                                                           77 
 

REFERENCES 

 
[1]. John Anvik, Lyndon Hiew, and Gail C. Murphy, “Coping with an Open Bug Repository,” in Proceedings of the 2005 OOPSLA Workshop on 

Eclipse Technology eXchange (eclipse ‟05), 2005, pp. 35–39. 
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