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Abstract: Retrieving information is an active research area over the years. The main focus is to improve the accuracy 

of the retrieval systems, and it is seen as one time execution process. It is inadequate for real-world applications when 

this is seen as long running processes. One of the drawbacks of retrieval is that it needs to be started from the scratch to 

entire warehouse when there is an interruption. To overcome this Parse Tree Query Language is high level extraction 

query language is used that enables information retrieval over parse trees. Parse Tree Query Language is an extension 

of the linguistic query language and intermediate output of each text processing component is stored so that only the 

improved component has to be deployed to the entire warehouse. Retrieval is performed on both the previously 

processed data from the unchanged components as well as the updated data generated by the improved component. 

Performing such kind of enhanced retrieval can result in a huge reduction of processing time and   provides quality to 

the retrieval. 
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1. INTRODUCTION 

 

It is estimated that each year more than 600,000 articles are  published in the biomedical literature, with close  to 20 

million  publication entries  being  stored in the  Medline database. To uncover information from such a large corpus of 

documents, it is vital to address the information needs in an automated manner.  The field of information Retrieval (IR) 

seeks to develop methods for fetching structured information from natural language text. IR is typically   seen as a one-

time process for the extraction of a particular kind of relationships of interest from a document collection.  IR is usually 

deployed as  a pipeline  of  special-purpose  programs, which include sentence splitters, tokenizers, named   entity 

recognizers, shallow or deep  syntactic parsers, and extraction based  on collection of patterns. The  high  demand of IR 

in various domains results in the development of frameworks such as UIMA [1] and GATE [2], providing a way to 

perform extraction by defining workflows of components. This type of retrieval frameworks is usually file based   and 

the processed data can be utilized between components. In this traditional setting, relational databases are  typically  not 

involved in the extraction process, but are only used for storing the extracted relationships. While file-based 

frameworks are  suitable for one-time extraction, it is important to notice that there are cases when IR has to be  

performed  repeatedly  even  on  the  same document collection.  

To  realize  this  new  information extraction  framework,   we  propose to choose  database management  systems over 

file-based storage systems to  address the  dynamic  retrieval  needs.   Our proposed information retrieval is composed 

of two phases: 

. Initial Phase: We perform a one-time parse, entity recognition, & tagging (identifying individual entries as  

belonging to a class  of  interest) on  the whole corpus based on the current knowledge. (The generated syntactic parse 

trees and semantic entity tagging of the processed text is stored in a relational database, called parse tree database 

(PTDB)). 
 

To express  extraction patterns, we  designed and  implemented a  query   language  called   parse  tree  query  language 

(PTQL)  that  is suitable only for  generic  extraction. Note that  in the event  of a change  to the extraction goals (e.g.,  

the  user  becomes  interested in  new  types  of relations   between  entities)   or   a   change   to  an extraction module  

(e.g.,  an  improved  component for named entity  recognition becomes available), the responsible module is deployed  

for  the  entire  text corpus and  the  processed  data  are  populated into the   PTDB.  Queries   are   issued   to identify    

the sentences with newly   recognized mentions.  Then extraction can be performed only on such affected sentences 

rather than   the entire   corpus. Thus, we achieve incremental extraction, which   avoids the need to reprocess the entire 

collection of text unlike the file-based pipeline approaches. 
 

Using database queries instead of writing individual special-purpose programs, information retrieval becomes generic   

for diverse applications and becomes easier for the user.  However, writing such queries may still require many users 

effort. To further reduce users’ learning burden, we propose algorithms that can automatically generate PTQL queries 

from training data or a user’s keyword queries. 

We highlight the contributions of this paper. 
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- Novel Database-Centric Framework for   Information Extraction. Unlike  the traditional approaches, where IR  is  

achieved  by  special-purpose programs  and databases are  only used   for  storing the  extraction results,   we   propose  

to   store   intermediate  text processing  output in  a database, parse tree database. This  approach minimizes the  need  

of reprocessing the  entire  collection  of text  in  the  presence  of  new extraction    goals   and   deployment  of   

improved processing components. -Query Language for Information Retrieval.  Information Retrieval is expressed as 

queries on the parse tree database. As query  languages such as XPath and XQuery   are   not   suitable  for  extracting   

linguistic patterns [6], we designed and implemented a query language  called   parse  tree   query  language,  which  

allows   a   user   to   define  extraction  patterns  on grammatical   structures  such   as   constituent  trees and linkages. 

Since extraction is specified as queries, a user no longer   needs   to write   and   run special- purpose programs for each 

specific extraction goal. 

-Automated Query   Generation.  Learning the   query language and manually writing extraction queries could still be a 

time-consuming and labor-intensive process.  Moreover, such an ad hoc approach is likely to cause unsatisfactory 

extraction quality. To further reduce   a   user’s   effort   to   perform    information extraction, we design two algorithms 

to automatically generate extraction queries, in the presence and in the absence of training data, respectively. 
 

2.1 Information Retrieval  

IR has been an active research area that seeks techniques to uncover information from   a   large   collection   of   text. 

Examples of common IR tasks  include the identification of entities (such  as protein names), extraction of relationships 

between  entities (such  as  interactions between  a  pair  of proteins)  and   extraction  of  entity   attributes  (such   as co 

reference  resolution that  identifies variants of mentions corresponding to  the  same  entity)  from  text.  Readers are 

referred to [7] for a detailed survey of IR. 

The examples and   experiments used in our paper involve the use of grammatical structures for relationship extraction. 

A co-occurrence of entities is a typical method in relationship extraction, but often leads to imprecise results. Consider 

that our goal is to extract relations between drug and proteins from the following sentence: 

Quetiapine is metabolized by CYP3A4 and sertindole by CYP2D6. (PMID: 10422890) 

By utilizing our  grammatical knowledge, a human  reader can  observe  that   CYP3A4,  metabolise,  quetiapine  and 

CYP2D6, metabolise, sertindole are the only correct  triplet relations for  the  above  sentence.  This simple example 

highlights the need of [; grammatical knowledge in relationship retrieval. 

A typical IR setting involves a pipeline of text processing modules in order to perform relationship retrieval. These 

include 

. Sentence splitting:  identifies sentences from a Para graph of text, 

. Tokenization: identifies word tokens from sentences, 

. Named entity recognition: identifies mentions of entity types of interest, 

. Syntactic parsing:  identifies grammatical structures of sentences, 

. Pattern matching: obtains relationships based on a set of extraction patterns that utilize lexical, syntactic, and 

semantic features.   

Retrieval   patterns are   typically   obtained   through manually written patterns compiled by experts or automatically   

generated patterns based   on   training data. Different kinds of parsers, which include shallow and deep parsers, can be 

utilized in the pipeline. In our work, the Link Grammar parser [8] is utilized as part of our extraction approach. We 

describe the basic terminologies involved in Link Grammar in the next section. 
 

2.2  Link G r a m m a r  

The Link Grammar parser is a dependency parser based on the Link Grammar theory [8]. Link Grammar consists of a 

set of words and   linking   requirements between   words.   A sentence of the language is defined as a sequence of 

words such   that   the   links   connecting   the   words   satisfy   the following properties: 1) the links do not cross, 2) 

the words form a connected graph, and 3) the links satisfy the linking requirements of each word in the sentence. The 

output of the parser, called a linkage, shows   the dependencies between pairs of words in the sentence. Fig. 1 shows an 

example for the sentence “RAD53, which activates DNA damage, positively regulates the DBF4 protein” (PMID: 

10049915).  The  linkage contains several  links,  which  include link S connecting the subject-noun RAD53 to the 

transitive verb regulates, the O link connecting the transitive verb regulates to the direct  object  DBF4  and   the  MX*r  

link   connecting  the  relative  pronoun  which  to  the   noun   RAD53.  For a complete description of links, we refer 

the reader to [3].Besides producing linkages, the Link Grammar parser is also capable of outputting constituent trees. A 

constituent tree is a syntactic tree of a sentence with the nodes represented by part-of-speech tags and words of the 

sentences in the leaf nodes.  For instance, the corresponding constituent tree for the above sentence is illustrated in Fig. 

1. In the constituent tree,  S  stands  for  a  sentence/clause, SBAR for  a  clause introduced by a subordinating 

conjunction, WHNP for a clause containing a relative  pronoun, NP for a noun  phrase, VP for l verb phrase, and  

ADVP for an adverb phrase. The leaf nodes of the constituent tree represent the words of the sentence and   their   part-

of-speech tags.   For words that   are not recognizable by the parser, the tag U is given for such words for unknown part-

of-speeches. 
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Fig.1 Constituent tree  of the sentence “RAD53, which activates DNA damage, positively regulates the DBF4 protein” 

 

3.       SYSTEM 
 

We first give an overview of our approach, and discuss each of the major components of our system in this section.  

Our approach  is  composed  of  two   phases:   initial   phase  for processing of text  and  extraction phase  for  using  

database queries  to  perform  extraction. The  Text  Processor in  the initial   phase   is  responsible  for   corpus   

processing  and storage  of  the   processed   information  in  the   Parse  Tree Database (PTDB). The retrieval patterns 

over parse trees can be expressed in our proposed parse tree query language. In  the  extraction  phase, the  PTQL  query 

evaluator  takes  a PTQL query and  transforms it into  keyword-based queries and  SQL  queries, which  are  evaluated 

by  the  underlying RDBMS and  information retrieval (IR) engine.  To speed up query evaluation, the index builder 

creates an inverted index for the indexing of sentences according to words and the corresponding entity   types.   Fig.  2 

illustrate the system architecture of our approach. 

 

 
Fig.2.System architecture of the PTQL framework 

  

document collection with information drawn from   a problem-specific database. This step necessitates a method for   

precise recognition and normalization of protein mentions. From this labeled data, initial phrases referring to 

interactions are extracted. These phrases are then  refined to  compute  consensus  patterns  and   the  resulting PTQL 

queries  are  generated  by  the   query  generator.  However, training data are not always readily available for certain 

relationships due to the inherent cost of creating a training corpus. In that  regards, our approach provides the pseudo-

relevance feedback driven approach that  takes  keyword- based   queries,  and   the  PTQL  query  generator  then   

finds common grammatical patterns  among the  top-k  retrieved sentences to generate PTQL queries. We first describe 

the parse  tree database and  the syntax  of PTQL  before  we  provide details  of how  PTQL  queries are  processed. 

We describe retrieval algebra and demonstrate the effectiveness of our techniques in providing orders of magnitude 

reduction in the running time of complex retrieval tasks. 
 

3.1  Parse Tree Database and Inverted Index 
The  Text Processor parses Medline abstracts with the Link Grammar parser [3], and  identifies entities  in the sentences 

using  BANNER  [9] to recognize  gene/protein  names and MetaMap [10] to recognize other entity types that include 

disease and  drug names. Each document is represented as a hierarchical representation called the parse tree of a 

document, and   the  parse   trees   of  all  documents  in  the  document collection   constitute  the  parse  tree  database. 

A parse tree is composed of a constituent tree and a linkage.  A constituent tree is a syntactic tree of a sentence with the 

nodes represented by part-of-speech tags and leafs corresponding to words in the sentence.  A linkage, on the other 

hand, represents the syntactic dependencies (or links) between pairs of words in a sentence. Each node in the parse  tree 

has labels and attributes capturing the document structure (such as title, sections, sentences) part-of-speech tags, and  

entity types  of corresponding words. 
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Fig.  3.  An example of a  parse tree  for a  document,  which  includes  sections of  the  document, 

sentences,  and  the  corresponding parse trees. 

 

Fig. 3 shows an example of a parse tree for a Medline abstract. The parse tree contains the root node labeled as DOC 

and each node represents an element in the document which can be a section (SEC), a sentence (STN), or a parse tree 

for a sentence (PSTN). A node labeled as STN may have more than one child labeled with PSTN to allow the storage of 

multiple parse trees. The node below the PSTN node indicates the start of the parse tree, which includes the constituent 

tree and linkage of the sentence. A solid line represents a parent-child relationship between two nodes   in the 

constituent tree, whereas a dotted line represents a link between two words of the sentence. In the constituent tree, 

nodes S, NP, VP, and ADVP stand for a sentence, a noun phrase, a verb phrase, and an adverb phrase, respectively. The 

linkage  contains  three different links: the S link connects the subject-noun RAD53 to the  transitive verb  regulates,  

the  O  link  connects the transitive verb regulates to the direct object DBF4 and the E link connects the verb-modifying 

adverb positively to the  verb  regulates.  The square box on a dotted line indicates the link type between two words. 

Each leaf node in a parse   tree has value and   tag attributes.  The value attribute stores the text representation of a node, 

while the tag attribute indicates the entity type of a leaf node.  For instance, a protein is marked with a tag P, a drug 

name with a tag D, and an interaction word is marked with I..... 
 

3.2  Parse Tree Query Language 

A fundamental design criterion for the query language is the ability of expressing linguistic patterns based on 

constituent trees. Standard XML query languages such as XPath and XQuery seem to be the ideal candidates for 

querying parse trees. However, the inability of expressing immediate- following siblings and immediate-preceding 

siblings in these standard XML query languages, leads to the development of LPath as a query   language for linguistic 

queries on constituent trees. An additional design criteria   for  the  query   language is  the ability to express linguistic 

patterns based  on dependency grammar, such  as Link  Grammar [8]. Links  and link types can be useful  in linguistic 

patterns, such as the type MXsr connects a relative  pronoun to  its  corresponding noun.   However, languages such as 

XQuery and LPath can only express   ancestor- descendant and sibling relations between nodes.  One of the novel 

features of our proposed query language PTQL is the ability to express links and link types between pairs of nodes,  so 

that PTQL can be used to express  linguistic patterns based on constituent trees and links, as well as link types.   We 

propose a high level extraction query language called PTQL.   PTQL   is an   extension   of the   linguistic   query 

language LPath that allows queries to be performed not only on the constituent trees but also the syntactic links between 

words on linkages. A PTQL query is made up of four components: 

1.  tree patterns, 

2.  link conditions, 

3.  proximity conditions, and 

4.  return expression. 

A tree pattern describes the hierarchical structure and the horizontal order between the nodes of the parse tree. A link 

condition describes the linking requirements between nodes, while a proximity condition is to find words that are within 

a specified number of words. A return expression defines what to return. The EBNF grammar for PTQL. 
 

3.3  Query Evaluation 

Our approach for the evaluation of PTQL queries involves the use of IR engine as well as RDBMS. The role of the  IR 

engine  in query  is to select  sentences  based  on  the  lexical features defined in  PTQL  queries,  and  only  the  subset  
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of sentences retrieved by the IR engine  are considered for the evaluation of the conditions specified in the  PTQL 

queries by  RDBMS. Our approach does not discard sentences that should otherwise be included for extraction. Using  

sample query  Q1 as an example, the lexical features defined in the query  imply   that   only  sentences with  at  least  

one  gene  name together with  the  keyword  “regulates” should be  considered   for  extraction.  We   summarize the   

process of the evaluation of PTQL queries as follows. 

1. Translate the PTQL query into a filtering query. 

2. Use the filtering   query   to retrieve relevant documents D and the corresponding sentences S from the inverted 

index. 

3. Translate the  PTQL  query   into  an  SQL query  and instantiate the  query  with  document id  d 2 D  and sentence 

id s 2 S. 

4. Query PTDB using the SQL query generated in Step 3. 

5. Return the results of the SQL query as the results of the PTQL query. 

In step 2, the process of finding relevant sentences with respect to the given PTQL query requires the translation of the 

PTQL query   into the corresponding filtering   query. Query q is translated into a keyword-based filtering query using 

the following steps: 

1.  Generate query terms for each of the node expressions that are in the tree pattern of q. 

2.  Form phrases if consecutive node   expressions are connected by “immediate following” horizontal axes (i.e., 

“->”). 

3.  Form phrases followed by the proximity operator if the corresponding nodes are defined in the proximity 

condition of q. 

 

4.   EXPERIMENTAL EVALUATION 

 

We first illustrate the performance of our approach in terms of query evaluation and the time savings achieved through 

incremental extraction. Then we evaluate the extraction performance for our two approaches in query generation. 

 

4.1  Time Performance for PTQL 

We performed experiments in finding the time performance of the evaluation of PTQL queries, as well as experiments 

to illustrate the amount of time saved in the event of change of an extraction goal and deployment of an improved 

module. All  experiments  were   performed  using   a  2.2-GHz  Intel Xeon  QuadCore CPU  running in  Red  Hat  

Linux.  Only a single process was used to perform the experiments. The parse   tree   database is stored   as   a   

relational database managed by MySQL. 

 

4.1.1 Query Evaluation 

A set of 25 PTQL queries that involves in the extraction of drug-gene metabolic relations was applied to a large corpus 

of 17 million abstracts to measure the time performance for PTQL evaluation. Specifically,  given  a  drug, the  goal  is 

to find  which  genes  are  involved in  the  metabolic relations with  the  drug. In our experiments, we specified a single 

drug (“1-drug”), a set of 5 drugs (“5-drugs”) and a set of 10 drugs (“10-drugs”) in each of the 25 PTQL queries. The 

keyword “metabolized” is involved in queries Q1-Q7, while the keywords “metabolism” and “substrate” are involved 

in queries Q8-Q20 and Q21-Q25. In   the experiments, each query was evaluated with five different sets   of drugs   and   

repeated for   five   runs.   The   time performance   indicates that   our   proposed framework is acceptable   for   real-

time IR.  We observed that queries specified with a larger set of drugs require a longer time to complete the evaluation. 

In addition, the evaluation on the set of queries with the keyword “metabolism” (Q8-Q20) generally takes   longer   than   

the other   sets of queries to complete. This  is due  to the  fact  that  a  higher number of sentences matches with   the  

keyword  “metabolism.” The complexity of the This experiment showed a tremendous decrease of 89.64 percent when 

a new module is deployed for text processing as compared to the pipeline approach. Such significant reduction of time  

is largely due  to the fact that  the Link Grammar parser is not utilized in the  reprocessing, which  can  take  an  PTQL 

queries also plays a role in the amount of time it takes for evaluation.  

 

4.1.2 Change of Modules 

We performed experiments to show the time savings for our incremental extraction approach. The scenario behind our   

experiment is that   the   initial   goal   is to   perform extraction for drug information from a text collection.  The 

extraction goal is then changed into the extraction of drug- protein relations that requires the deployment of a gene 

named entity recognizing to identify gene mentions in the text collection. To illustrate the amount of time savings, a 

collection of 13 K Medline abstracts was initially processed with the Link Grammar parser and   a dictionary-based 

tagger for drug names.   This process   took about   62.38 hours.  We then deployed a statistical-based tagger for gene 

names to process the corpus. With the pipeline approach, the whole process had to be started from scratch by running 

the Link Grammar parser, the drug name tagger and the newly deployed gene name tagger. This took another 64.8 

hours to complete. With our approach, the intermediate processing data produced by the Link Grammar parser and the 

drug name tagger were populated into the parse tree database. The gene name tagger  was  then  deployed to  process  
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the  corpus  and  SQL insert  statements were  issued to update the  parse  tree  database. This process took only 6.71 

hours to complete. Average  of 7.6 seconds to parse a sentence when the timeout limit was set as 15 seconds for the 

parser. The reduction of time comes at the expense of disk space.  The processed data   for the 13 K Medline abstracts 

results in a disk usage of about 110 MB. 
 

4.2 Data and Execution Model 

Since our algebra is designed to extract annotations from a single document at a time, we define its semantics in terms 

of the current document being analyzed. The current document is modeled as a string called doctext .Our algebra 

operates over a simple relational data model with three data types: span, tuple, and relation. A span is an ordered pair 

(begin, end) that denotes the region of doctext from position begin to position end. A tuple is a finite sequence of w 

spans (s1, ..., sw); we call w the width of the tuple. A relation is a multiset of tuples with the constraint that every tuple 

must be of the same width. Each operator in our algebra takes zero or more relations as input and produces a single 

relation as output. 
 

4.3 Algebra Operators 

Based on their functionality, the set of  operators in our algebra fall into the following two categories  

Relational Operators: Since our data model is a minimal extension to the relational model, all of the standard 

relational operators (select, project, join, etc.) apply without any change. The main addition is that we use a few new 

selection predicates applicable only to spans. 

Span Extraction Operators: A span extraction operator identifies segments of text that match a particular input 

pattern and produces spans corresponding to each such text segment.  

 

5.              DISCUSSION AND FUTURE WORK 

 

In  this  section,  we  discuss the  main  contributions  of  our work  as well as their  limitations. Existing  retrieval 

frameworks do  not  provide the  capabilities  of  managing inter- mediate  processed  data   such  as  parse   trees   and 

semantic  information.  This   leads   to the   need   of reprocessing of the entire text collection, which can be 

computationally expensive. On the other hand, by storing the  intermediate  processed data  as  in  our novel  

framework, introducing new  knowledge can be issued with  simple  SQL insert  statements on top of the  processed 

data.  With the use of parse trees, our   framework is most   suitable   for   performing extraction on text corpus written 

in natural sentences such as the biomedical literature. As indicated in our experiments,  our   increment  extraction   

approach saves   much   more   time   compared  to  performing extraction by first processing each sentence one-at-a- 

time  with  linguistic parsers and  then  other  components.  This  comes  at the  cost  of overheads such  as the   storage  

of  the   parse   trees   and   the  semantic information,  which   takes   up   1.5  TB  of  space   for 17 million abstracts 

for the parse  tree database. In the case when the parser fails to generate parse tree for a sentence, our system generates 

a “replacement parse  tree”  that  has  the  node  STN  as  the  root  with  the words in  the  sentence as  the  children of  

the  root node.   This  allows  PTQL  queries to  be  applied to sentences  that  are  incomplete or  casually   written, 

which   can  appear  frequently in  web   documents. Features   such   as   horizontal axis   and   proximity conditions 

can   be   most   useful   for   performing extraction on replacement parse trees. For future work, we will extend the 

support of other parsers by providing wrappers of other dependency parsers and scheme, such as Pro3Gres and the 

Stanford Dependency scheme, so that they can be stored in PTDB and queried using PTQL. We will expand the 

capabilities of PTQL, such as the support of regular expression and the utilization of redundancy to compute confidence 

of the extracted information. 
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