SQL Query Optimization Techniques

Bhagyashri S. Bharambe¹, Priyanka R. Munot², Dipali R. Patil³, Kajal P. Pathak⁴
Department of Computer Engineering, SSBT College of Engineering, Jalgoan, India ¹,²,³,⁴

Abstract: Query optimization is the overall process of choosing the most efficient means of executing a SQL statement. The optimizer attempts to generate the best execution plan for a SQL statement. The best execution plan is defined as the plan with the lowest cost among all considered candidate plans. SQL is a nonprocedural language, so the optimizer is free to merge, reorganize, and process in any order. The cost is a number that represents the estimated resource usage for an execution plan. The cost computation accounts for factors of query execution such as I/O, CPU, and communication. To implement query optimization methods such as Heuristic Greedy Based Optimization, Iterative Improvement Based Cost Optimization and Ant Colony Optimization algorithms. Show Comparison of cost, execution time and response time between Heuristic Greedy Based Optimization; Ant Colony Optimization and Iterative Improvement Based Cost Optimization Algorithms

Keywords: Optimization, Genetic, Ant colony algorithm, Heuristic

I. INTRODUCTION

The query optimization is a process of finding the most effective execution plan for the given user submitted query. Query optimization has been found very useful in increasing the database systems’ performance in terms of time. A query written in a high level language needs to convert into a form that system can understand and perform further processing. In its internal form, the relational algebra expression, there are number of variations available for representation. Also the various query optimization strategies and algorithms are available to compute the answer. Researchers have worked with various operations of the query to find out the most efficient query execution plan, various techniques to choose the optimal solution among the various methods, etc. Different query optimization techniques have been applied like rule based optimization, cost-based query optimization, deterministic optimization, randomized optimization and their variations. Results of query optimization can be used by different emerging database management systems. The database users can get benefits of the optimization by getting the results to the query in a timely and predictable manner. Database vendors can use them to improve the efficiency of their DBMS which will provide support to the upcoming huge amount of data.

II. LITERATURE SURVEY

'N. Satyanarayana ': proposed a new dynamic query optimization algorithm based on the greedy algorithm that uses the randomized strategies. The execution cost of queries and system resources requirements were reduced significantly and applicable to both distributed and centralized database systems.

'Pravin Chandra, Anurag Jain ': The general query optimization techniques like CBO, RBO. Also presented the techniques used by the Oracle. Surajit Chaudhuri and Kyuseok Shim [11] proposed greedy conservative heuristic as a technique to optimize single block of SQL with group-by. The implementation was with a System-R style optimizer. This approach extended the traditional optimization algorithms for Multi-block queries using pull-up as well as pull-down transformations. The paper also discussed the join-aggregate class of nested queries and queries containing views with aggregates.

'Michael C. Ferris and Yannis E': University of Wisconsin and obtained significant computational savings over the randomized methods by parallel implementation. A set of different queries, with size of each query consisting up to 16 joins, was tested on System-R algorithm and GA. The experiment found that GA works relatively better than System-R optimizer.

III. ALGORITHMS

A. Genetic Algorithm: The genetic algorithm is a method for solving both constrained and unconstrained optimization problems that is based on natural selection, the process that drives biological evolution. The genetic algorithm repeatedly modifies a population of individual solutions. At each step, the genetic algorithm selects individuals at random from the current population to be parents and uses them to produce the children for the next
generation. Over successive generations, the population "evolves" toward an optimal solution. You can apply the
genetic algorithm to solve a variety of optimization problems that are not well suited for standard optimization
algorithms, including problems in which the objective function is discontinuous, non differentiable, stochastic, or
highly nonlinear. The genetic algorithm can address problems of mixed integer programming, where some components
are restricted to be integer-valued.

B. Heuristic Algorithm A heuristic algorithm is one that is designed to solve a problem in a faster and more
efficient fashion than traditional methods by sacrificing optimality, accuracy, precision, or completeness for speed.
Heuristic algorithms often times used to solve NP-complete problems, a class of decision problems. In these problems,
there is no known efficient way to find a solution quickly and accurately although solutions can be verified when given.
Heuristics can produce a solution individually or be used to provide a good baseline and are supplemented with
opimization algorithms. Heuristic algorithms are most often employed when approximate solutions are sufficient and
exact solutions are necessarily computationally expensive.

C. Ant Colony Algorithm: In computer science & operations research, the Ant Colony
Optimization Algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced
to finding good paths through graphs. Artificial Ants stand for multi-agent methods inspired by the behavior of real
ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations
of Artificial Ants and local search algorithms have become a method of choice for numerous optimization tasks
involving some sort of graph, e.g., vehicle routing and internet routing. The burgeoning activity in this field has led to
conferences dedicated solely to Artificial Ants, and to numerous commercial applications by specialized companies
such as AntOptima.

IV. PROPOSED SYSTEM

Query optimization is the part of the query process in which the database system compares different query strategies
and chooses the one with the least expected cost. The query optimizer, which carries out this function, is a key part of
the relational database and determines the most efficient way to access data. It makes it possible for the user to request
the data without specifying how these data should be retrieved. The cost of accessing a query is a weighted combination
of the I/O and processing costs. The I/O cost is the cost of accessing index and data pages from disk. Processing cost is
estimated by assigning an instruction count to each step in computing the result of the query.

Figure 2. SQL query processing
V. RESULT

This is the homepage, in that the name of tables are included and the columns are also displayed. We want to give some SQL query and then the result in different ways:

![Diagram of query optimization](image1)

Figure 5. Ways of query

![Diagram of query optimization](image2)

Figure 6. Table of output
VI. CONCLUSION

In this, we got the Optimized query by using algorithm like Genetic, Heuristic and Ant colony. We have also calculated the CPU load and Execution time.

REFERENCES

[5]. Michael Stillger and Myra Spiiliopoulou, “Genetic Programming in Database Query Optimization”.
[6]. Dr. P.K. Butey, Prof. Shweta Meshram and Dr. R.L. Sonolikar, “Query Optimization by Genetic Algorithm”, Journal of Information Technology And Engineering Vol.3 No.1 Jan-June 2012 pp. 44-51 ISSN: 2229-7421