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Abstract: In this paper, we propose two lossless crypto-compression schemes based on Elliptic Curve (EC) for the 

security of medical images. Pixels values are computed as elements of a finite field Fq. For compression, these 

elements are grouped in blocks in an appropriate manner. After transforming these blocks into points of an elliptic 

curve, two EC-based encryption schemes are applied. We obtain two crypto-compression schemes which compared to 

some existing systems, offer better performances in terms of compression rate, image quality and execution time. 
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I. INTRODUCTION 

 

Elliptic Curve Cryptography (ECC) has performed remarkably well in recent years. Indeed, operations on elliptic 

curves are faster and more efficient for the implementation of cryptosystems [1]. In addition, for an equivalent level of 

security, cryptosystems based on elliptic curves require smaller key sizes than those based on Number Theory. For 

example, a security level of 80 bits is reached with 160-bit keys with ECRSA against 1024 bits for RSA [5]. This 

makes EC an appropriate platform for developing cryptographic systems. Many cryptosystems based on EC have been 

developed. Among them we have encryption schemes such as Elliptic Curve Integrated Encryption Scheme (ECIES) 

[5][11], ElGamal’s analog [9] and Massey-Omura’s analog [9]; key agreement protocols like Elliptic Curve Diffie-

Hellman (ECDH) key exchange [5]; digital signatures protocols like Elliptic Curve Digital Signature Algorithm 

(ECDSA) and Edwards curve Digital Signature Algorithm (EdDSA) [5]; pseudo-random generators [5], etc.  

 

A crypto-compression scheme is a hybrid process that reduces the size of an image while ensuring its confidentiality. 

There are many crypto-compression schemes in the literature. In 2006, Puech and al. proposed a crypto-compression 

scheme based on AES encryption and DCT compression [15]. But the DCT compression brings remarkable losses on 

the image from a certain level of compression rate [4]. So, Benabdellah and al. proposed in 2006 and 2007 two crypto-

compression schemes based on Discrete Wavelet Transform (DWT). The first scheme uses DES [2] while the second 

uses AES [3]. These two schemes use encryption based on Number Theory (AES and DES), which is said will be made 

vulnerable by the quantum computer. Furthermore, Number Theory based cryptosystems generally need big key size to 

be secured, which is a problem in practice. The execution time needed in decompression is also a limit in schemes 

based on DWT. Another platform, chaos-based cryptography, has also been used for image crypto-compression ([8], 

[11]). However, although it is fast, it lacks robustness and good security, as mentioned in [18]. Crypto-compression 

schemes are evaluated by the image quality after reconstitution, the compression rate, the execution time and the 

security level. Having a fast cryptosystem which guarantees more security and offers better quality and better 

compression rate is still a challenge and a real need, precisely for medical images, where good security, higher image 

quality and small execution time are all required. Moreover, as we know, there is no image crypto-compression scheme 

based on EC. 

 

In this paper, we propose two lossless crypto-compression schemes based on EC. Given an image I, a finite field Fq 

and an elliptic curve E over Fq. For compression, we group I in 8×8 pixels blocks. For each row of any block B, we 

compute an element of Fq which represents that row. The next step consists of transforming the obtained elements of 

Fq into points of the elliptic curve E. Then, two EC-based encryption schemes (Massey-Omura and ElGamal) are 

applied to encrypt the points of E representing I. This provides two crypto-compression schemes. Applied to some 

medical images, the results obtained are more efficient in terms of image quality, compression rate (weight) and speed 

(execution time), compared to some existing in the literature 
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II. PRELIMINARIES 

A. EC based encryption 

 

Encryption with elliptic curves has been presented in [9]. We describe below two encryption schemes based on EC. In 

these cryptosystems, a message is seen as a point of an elliptic curve. 

 

A.1. Massey-Omura’s encryption scheme 

 

Given an information represented by a point Pm of a given elliptic curve, the encryption of Pm can be performed with 

the scheme described below. 

 

   

Figure 1. Encryption/decryption by Massey-Omura’s scheme [9] 

 

This scheme is built on the difficulty to solve the Discrete Logarithm Problem [9]. If one can solve this problem, then 

he can compute eA and eB and then recover the message. 
 

 

A.2. ElGamal’s encryption scheme 
 

A message seen as point of an elliptic curve can also be encrypted by the ElGamal’s analog presented here. 

 

 
Figure 2. Encryption/decryption by ElGamal’s scheme [9] 

 

Once again, the Discrete Logarithm Problem is the base of the security of the scheme. By solving it, one can compute a 

and recover the message. 

 

For these cryptosystems to be applied on images, a transformation of image into points of elliptic curve is needed. This 

transformation is described in the next section. 

 

B. EC transformation of images 
 

Let I be an image. In this section, a process to transform I into a sequence of points of an elliptic curve is presented. 

Each pixel will be seen as a point of a given elliptic curve. Any pixel Pm can then be encrypted by the encryption 

schemes presented previously. 
 

B.1. Transforming a character to a point of an elliptic curve 
 

For ECC to be applied directly on any data, these data have to be transformed into points on elliptic curve. In [9], 

Koblitz described a process to transform a character into a point of an elliptic curve. A character is seen as an integer m, 

such that 0 ≤ m ≤ M ∈ N. For example, letters (A to Z) are numbers between 0 and 25. For a given character m, 
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Algorithm 1 below computes a pair (x, y) which is a point of an elliptic curve, representing the given character. Assume 

that we have a finite field Fq such that q is on the form q = p
r
, p prime, r > 0; and q ≥ Mk + 1, where k is generally set 

to 30 or 50. Given the curve y
2
 = x

3
 + ax + b over the finite field Fq and given a character represented by an integer m. 

 

Compute for each j = 1,..., k, 

 

mk + j 

 

Let x be the corresponding element of mk +j in Fq. 

For such x, we compute y
2
 = f(x) = x

3
 +ax + b and find a square-root for f(x). If there exists a y such that y

2
 = f(x), 

the point of the elliptic curve representing m is Pm = (x, y). If there is no square-root for f(x) for the current j, we jump 

to the next j. With k = 30 or k = 50 the algorithm always returns a good result [9]. This process is detailed in Algorithm 

1. 

 

 
 

From Algorithm 1, given a point (x, y) representing a character, this initial character m can be recovered by 

computing  
(𝑥 −1)

𝑘
  , where  𝑣  represents the integer part of v and 𝑥  is the integer which corresponds to x in the 

equivalence between the integers and the elements of Fq. 

 

B.2. Transforming image to points of an elliptic curve 

 

Algorithm 1 above describes how to transform a character into a point of an elliptic curve. An image is a sequence of 

integer values between 0 and 255. We present below how to generate the sequence of points of an elliptic curve 

representing a given image. Algorithm 2 shows how the integer values between 0 and 255 are represented as points of a 

given elliptic curve. 

 

 
 

 

 

Using algorithm 2, it is shown below (Algorithm 3) how to obtain a sequence of points of an elliptic curve, representing 

a given image. 
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By using Algorithm 3, an image can be viewed as points of an elliptic curve, fixed in advance. 

 

 

Consequently, what is done on images can be done on points of an elliptic curve and what is done on elliptic curves can 

be applied on images. 

 

C. Image crypto-compression 

 

In medical applications, the size of scanned images is usually very big. Compression is therefore used to improve 

storage capacity and reduce the transmission time of medical images across networks. Some known compression 

approaches are the Discrete Cosine Transform (DCT) based compression and the Discrete Wavelet Transform (DWT) 

based compression. So, to secure images, encryption is generally joined to compression to obtain a hybrid process 

called crypto-compression, which produces a compressed and encrypted image, as described in Figure 3 below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Classical approach to crypto-compression 

 
 

The scheme takes an image, compresses it and then encrypts certain compression parameters so that the crypto-

compressed image is not decipherable. When the encrypted parameters are decrypted and decompression applied, we 

obtain the reconstituted image [4]. 
 

III.  PROPOSED IMAGE CRYPTO-COMPRESSION SCHEMES 

 

A. Image crypto-compression  

 

A.1 General description 

 

Let I be an L×l image. Assume I is a colour image. Then, I is initially represented by a L×(l×3) byte matrix. The 

proposed crypto-compression schemes have three main phases: 
 
1. Block compression and decompression presented in section III.A.1.1, 

2. EC transformation and inverse transformation (section III.A.1.2), 

3. Encryption and Decryption (section III.A.1.3). 
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A.1.1. Block compression/decompression 

 
Let I be a colour image of L lines and l columns. Each pixel is coded by 3 values from 0 to 255. Let M be the L × (l 

× 3) bytes matrix representing I. For all i and j such that 0 ≤ i < L and 0 ≤ j < l × 3, we have 0 ≤ M(i, j) = xi,j ≤ 255. 

The block compression reduces every 8 × (8 × 3) pixels block of the image to a 8× 3 block of element of Fp as 

described below. 
Let divide M into 8 × 8 blocks of pixels. Let B = (xi,j )0≤i<8,0≤j<8×3 be the 8×(8×3) bytes matrix representing a 8 × 8 
pixels block of M. 

For every row i in B, compute 

 
elti = (elti,1; elti,2; elti,3), 

 
where 

 
We obtain 

 

 
 

 
and 

 
 

 

The values of B are computed as elements of a finite field Fp. Let Fp be a finite field such that p is prime and p ≥ (12
24

) 

× k + 1, where k is set to 50 or 30; let E be an elliptic curve over Fp. Since the xi,j are from 0 et 255 and p ≥ (10
24

) × k 

+ 1, then elti = (elti,1; elti,2; elti,3) ∈ 𝐹𝑝
3. So, elti is a triple of elements of Fp representing line i of B. By this operation, 

we move from a matrix B of size 8 × 3 × 8 to a matrix B’ of size 8 × 3. The obtained block B’ are merged to form a 

matrix M’ of size 𝐿 ×  
𝑙

8
 , where  𝑥  is the first integer greater or equal to x. The block compression is performed by 

Algorithm 4. 

 

 
 

By Algorithm 4, a compression ratio of 1 −
1

8
= 87.5% is performed. 
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A.1.2. Elliptic Curve Transformation/Elliptic Curve Inverse Transformation 

 

At this step, we are transforming a matrix M’ of elements of a finite field Fp, representing a compressed image, into a 

matrix of points of an elliptic curve. Assume that we have a finite field Fp such that p is prime and p ≥ (1025) × k + 1, 

where k is generally set to 30 or 50. Given the curve y
2
 = x

3
 + ax + b over the finite field Fp and given an image I 

represented by a matrix M’ of elements of Fp. For every value m in M’, Algorithm 1 is used to compute the point of E 

representing m. Every point of M’, which is a block of 8 pixels, is then replaced by a point of E. This process is 

described in Algorithm 5 below. 

 

 
 

A.1.3. Encryption/Decryption 
 

The encryption schemes used in this step are those presented in sections II.A.1 and II.A.2. The application of these two 

encryption schemes on compressed images seen as points of an elliptic curve leads us to the two crypto-compression 

scheme presented in the next sections. 

 

B. The Massey-Omura type scheme 

 

Here, the points representing the compressed image are encrypted by the Massey-Omura encryption scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Crypto-compression scheme based on Massey-Omura encryption 

 

C. The ElGamal type scheme 

 

Here, the ElGamal encryption scheme is used to encrypt the points representing the compressed image. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Crypto-compression scheme based on ElGamal encryption 
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IV.  IMPLEMENTATION, RESULTS AND DISCUSSION 

 

In this section, the Massey-Omura and ElGamal based schemes are applied on the image ”lena”. We illustrate the 

implementation. From the recovered images after implementation, we compute the image quality and the compression 

rate. The results are compared to some existing crypto-compression schemes: JPEG-AES, FMT-AES and JPEG-LFSR. 

 

A. Illustrations 

 

Let I be the image presented in figure 6. 

 

 
 

Figure 6. Sample image ”lena” 

 

 

Let B be the 8 × (8 × 3) pixels block below, extracted from I (Figure 7). 

 

 
 

Figure 7. An 8 × (8 × 3) pixels bloc extracted from I 

 

The elliptic curve defined by 

 

y
2
 = x

3
 + 8607703086069211603740389∗x + 3944753409163852864976165 over the finite field of size 

p = 9194940935662755805691087 
has been generated. 
 
The block compression of B gives B’, the 8×3 matrix presented in figure 8. The elements of this matrix are all 

in Fp. The first element, compute from the first 8 pixel values of B is  
elt0,1 = 181085089194098102210114. 

 

 
 

Figure 8. The 8×3 matrix obtained after row compression 
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The sequence of points of E representing B’ is shown on figure 9. 

 

 
 

Figure 9. Sequence of points representing the bloc 

 

 

Figure 9 presents points as triples (XP :YP :ZP ), which are their projective coordinates, according to the affine 

coordinates (XP/ZP , YP/ZP ) if ZP is non-zero, and O (the point at infinity) if ZP is zero. 

 

For the first point for example, Pm = (5432552675822943066303421 : 2181074533967633087284250 : 1), if we 

compute 
5432552675822943066303421 −  1 

𝑘
 

 

for k = 30, we obtain 181085089194098102210114 which is the first element of the compressed block. So, the inverse 

transformation is assured. 

This matrix representing the compressed block is a 8 × 3 matrix of points instead of 8 × 8 × 3. This constitutes a 

compression rate of 1/8. When the above sequence of points is encrypted with the Massey-Omura (MO) encryption 

scheme described in section II.A.1, we obtain the following sequence of points (Figure 10). 

 

 
 

Figure 10. Sequence of points representing the block encrypted with Massey-Omura encryption 
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When the block is encrypted with the ElGamal encryption scheme described in II.A.2, the sequence of points shown on 

Figure 11 is obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11. Sequence of points representing the block encrypted with ElGamal encryption 

 

The decryption of the two encrypted blocks returns the initial values, as we can see on figure 12. 

 

 
 

Figure 12. The decrypted sequence of points 

 
 

So, when an image is so encrypted, the original image can be reconstituted. The encrypted points can be decrypted as 

presented in II.A.1 and II.A.2. Then, by applying the inverse operations described in III.B and III.C, the matrix 

containing the initial pixel values is recovered. Finally, the reconstituted image is obtained by repeating the same 

process for all the blocks of the image. 

 

B. Discussions 
 

Table 1 below presents a comparison between the crypto-compression schemes implemented here and some known 

schemes (JPEG-AES [15], FMT-AES [4] and JPEG-EC-LFSR [6]). To compute the execution time, we used the 

SageMath function cputime() [17]. For the compression rate, the below formula has been used [4]: 
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𝑡 = 1 −
𝑆𝑖𝑧𝑒𝑓𝑖𝑛𝑎𝑙

𝑆𝑖𝑧𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 

 

For image quality, we considered the percentage of pixels not modified during the process [4]. In Table 1, ”with losses” 

refers to an image quality less than 100% after reconstitution, while ”lossless” indicates a 100% image quality. 

 

Table 1. Comparison with some encryption- description systems 
 

 

 

 

 

 

 

 

 

 

From table 1, it appears clearly that ElGamal based crypto-compression is better than the others. Indeed, it offers the 

smallest execution time for a better compression rate and an optimal quality. The great execution time taken by the 

Massey-Omura encryption is explained by the fact that in each step of the encryption, a multiplication of a point of E 

by an integer is performed instead of a simple addition for ElGamal. 
 

 

V. CONCLUSION AND PERSPECTIVES 

 

Two crypto-compression schemes based on elliptic curves have been presented. Compared to others crypto-

compression schemes, the results obtained here offer a better quality since the process is lossless, and a greater 

compression gain. The execution time is also clearly better with the ElGamal based encryption-compression. So, 

processing images as points of an elliptic curve improves their crypto-compression. Others operations on images 

(segmentation, watermarking, etc.) may also be improved by seeing images as points on elliptic curves. 
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