
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 8, Issue 11, November 2019

Copyright to IJARCCE DOI 10.17148/IJARCCE.2019.81111 53

A Software Based Mathematical Approach for the

Selection of IT Industries to the Geographical Map

Sahidul Haque1 and Sahida Sultana2

Geographical Scientist Section, University Kolkata, Scientist of Geographical Map and Technology,

 Jamia Millia Islamia (A Central University), New Delhi, India
1

M. Tech Scholar, Department of Computer Science and Engineering, Faculty of Engineering and Technology,

AL-Falah University, Dhuj, Faridabad, Haryana, India
2

Abstract: Geographical science survey says as lots of countries (Bihar & Patna, Jammu Kashmir etc) unable to bulid

software industries to the geographical map due to governmental scarcity of management ability to the technical education,

governmental scarcity of technical ability to the technical education . to overcome the above problems , we have selected

some talented brain from the listed countries “Kolkata, English Bazar and Delhi” and approved green color mark countries

for IT industries to the geographical map due outstanding performance to the technical background. The success rate of

software system depends upon the following: requirements elicitation technique, modeling, analysis, verification, validation

&testing. In literature, we have identified different types of Software Testing Techniques like, black box techniques, white

box techniques, and gray box techniques; and choosing one of them is not an easy task according to need/criteria of the

software projects. Therefore, in order to address this issue, we present a fuzzy based approach for the selection of Software

Testing Techniques. Finally, the utilization of the proposed approach is demonstrated with the help of an example.

Keywords: Requirement Prioritization, Fuzzy Set theory, Decision Making Process, S/W Testing Technique

I. INTRODUCTION

Software testing identifies defect, flows or errors in the software. In literature, we have identified various definitions of

software testing. Few of them are given below: (i) testing is the process of demonstrating that errors are not present (ii) The

purpose of testing is to show that a program performs its intended functions correctly. The three most important techniques

that are used for finding errors are functional testing, structural testing and gray box testing [6,7]. Functional testing is also

referred to as black box testing in which contents of the black box are not known. Functionality of the black box is

understood on the basis of the inputs and outputs in software. There are different methods which are used in black box

testing methods like boundary value analysis, robustness testing, equivalence class partitioning, and decision table testing.

White box testing or structural testing is the complementary approach of functional testing or black box testing. White box

testing permits us to examine the internal structure of the program. In functional testing all specifications are checked

against the implementation. This type of testing includes path testing, data flow testing, and mutation testing. In white box

testing there are various applications of graph theory which is used to identify the independent path in a program or

software like decision to decision (DD) flow graph, Cyclomatic complexity [6] etc.

Gray box testing is the testing of software application using effective combination of white box testing, black box testing,

mutation, and regression testing [2]. This testing provides a method of testing software that will be both easy to implement

and understand using commercial of the shelf (COTS) software [1]. In the Gray box testing, tester is usually has knowledge

of limited access of code and based on this knowledge the test cases are designed; and the software application under test

treat as a black box & tester test the application from outside. Gray box software testing methodology is a ten steps process

for testing computer software. The methodology starts by identifying all the inputs and output requirements to computers

systems. This information is captured in the software requirements documentation. The steps are given as follows: (i)

Identify inputs (ii) Identify outputs (iii) Identify major paths (iv) Identify sub-function (SF) X (v) Develop inputs for SF X

(vi) Develop outputs for SF X (vii) Execute test cases for SF X (viii) Verify correct results for SF X (ix) Repeat steps from

4 to 8 for other SF X and (x) Repeat steps 7 to 8 for regression [1].

http://www.softwaretestingclass.com/white-box-testing/
http://www.softwaretestingclass.com/what-is-black-box-testing/

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 8, Issue 11, November 2019

Copyright to IJARCCE DOI 10.17148/IJARCCE.2019.81111 54

II. LITERATURE REVIEW

 Most of the work in literature is based on either black box testing or white box testing for example, in 2012; Khan,

Bhatia, and Sadiq [8] develop a BBTool to generate the tests cases using black box testing. In a similar study, in 2011,

Khan and Sadiq [7] analyze the various black box testing techniques. In literature, authors are trying to integrate the

concepts of genetic algorithms with testing, for example, In 2011 Sabharwal et al. [9] proposed a technique for optimizing

static testing efficiency by identifying the critical path clusters using genetic algorithm. The testing efficiency is optimized

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 8, Issue 11, November 2019

Copyright to IJARCCE DOI 10.17148/IJARCCE.2019.81111 55

by applying the genetic algorithm on the test data. The test case scenarios are derived from the source code. The

information flow metric is adopted in this work for calculating the information flow complexity associated with each node

of the control flow graph generated from the source code. In 2009, Mohapatra et al. [5] used genetic algorithm to optimize

the test cases that are generated using the category-partition and test harness patterns. In a similar study, Vieira et al. [11]

proposed a GUI Testing Using a Model-driven Approach. The authors demonstrated and evaluated their method based on

use cases that was developed for testing a graphical user interface (GUI).

 Huang et al. [3] proposed repairing GUI test suites using a genetic algorithm. In this paper they develop a method to

automatically repair GUI test suites, generating new test cases that are feasible. They use a genetic algorithm to evolve new

test cases that increase our test suite’s coverage while avoiding infeasible sequences. In 2007, Memon et al. [4] proposed an

event flow model of GUI-based applications for testing. This paper consolidates all of the models into one scalable event-

flow model and outlines algorithms to semi-automatically reverse-engineer the model from an implementation. Earlier

work on model-based test-case generation, test-oracle creation, coverage evaluation, and regression testing is recast in

terms of this model by defining event-space exploration strategies (ESESs) and creating an end-to-end GUI testing process.

Three such ESESs are described: for checking the event-flow model, test-case generation, and test- oracle creation.

III. FUZZY SET THEORY

 In this section, we briefly review the basic concepts of fuzzy sets, linguistic variable, fuzzy triangular numbers, and

fuzzy preference relation. The fuzzy set, originally proposed by Zadeh in 1965 [31], is defined as follows: In a universe of

discourse Ux, a fuzzy subset A of Ux is characterized by a membership function ƒ A(x), where ƒA : Ux  [0, 1] and the

membership function associates with each member of x of Ux a number of ƒ A(x) in the interval [0,1], representing the
grade of membership of x in A. Linguistic variables are variables whose values are words or sentences in a natural or

artificial language [31, 32]. For example, poor is a linguistic variable if its values are assumed to be the fuzzy variables

labelled very poor, poor, fair, good, and very good; rather than the numbers 0,1,2,3 etc.

 There are several formats of fuzzy numbers, such as Triangular, Trapezoidal, Gaussian, or Sigmoid that can be used

in decision making processes. In practical applications, triangular fuzzy numbers (TFNs) are widely used to represent the

approximate value range of linguistic variables [26]. In the proposed method we adopt TFNs because of their simplicity in

both concepts and computation [19, 26, 27]. TFNs can be defined as follows:

 Let R is the real line, which is viewed as a universal set of all fuzzy sub-sets. A triangular fuzzy number A is

normal, convex fuzzy subset of R, with a piece wise linear relationship function μA, defined by:

μA(x) = {
 (𝑥−𝑎)(𝑏−𝑎) , 𝑎 ≤ 𝑥 ≤ 𝑏,(𝑐−𝑥)(𝑐−𝑏) 𝑏 ≤ 𝑥 ≤ 𝑐,0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }

 (1)

 The TFNs can be denoted by A = (a, b, c) as depicted in Fig. 1. The parameters a, b, and c respectively, indicate the

smallest possible value, the most promising value, and the largest possible value that describe a fuzzy event. There are

several operations that can be performed on triangular fuzzy numbers (TFN) like addition, subtraction, inverse etc.

 Let A1 = (a1, b1, c1) and A2 = (a2, b2, c2) then:

Addition: A1 ⊕ A2 = (a1+a2, b1+b2, c1+c2) (2)

 Subtraction: A1 Ө A2 = (a1-c2, b1-b2, c1-a2) (3)

Multiplication: A1 ⊙ A2 = (a1.a2, b1.b2, c1.c2) (4)

Inverse: (A1)
-1

 = (1/c1, 1/b1, 1/a1) (5)

Negation of A1 = (-c1, -b1, -a1) (6)

Division: A1 / A2 = (a1/c2, b1/b2, c1/a2) (7)

 Preference relation is a useful tool for representation of information used in decision making problems. It is used when we

want to aggregate expert’s preferences into group preferences. A fuzzy preference relation P on R is a fuzzy subset of R x

R with membership function ƒ P (A, B),∀ A, B ⊆ 𝑅, where ƒ P (A, B) represents the degree of preference of A over B [12]:

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 8, Issue 11, November 2019

Copyright to IJARCCE DOI 10.17148/IJARCCE.2019.81111 56

1. P is reciprocal iff ƒ P (A, B) = 1- ƒ P (B, A), A, B ⊆ 𝑅.

2. P is transitive iff ƒ P (A, B) ≥ 1/2 and ƒ P (B, C) ≥1/2  ƒ P (A, C) ≥1/2, ∀ A, B, C ⊆ 𝑅.

3. P is a fuzzy total ordering iff P is reciprocal, transitive, and comparable.

Fig. 1. The membership function of a TFN A = (a, b, c)

IV. PROPOSED METHOD

 This Section presents fuzzy based approach for selection of software testing technique using fuzzy set. The proposed

method is presented in the following:

1. Identify the criteria

2. Identify functional and non functional requirements.

3. Selection of a Software Testing Techniques

4. Collect Decision making fuzzy assessment to establish the relationship between FR and NFR.

5. Construct comprehensive performance and weight matrix and then apply the following step: (3.1) aggregate fuzzy

performance rating with fuzzy weights (3.2) define each sub-goal/requirements as a fuzzy number (3.3) define

extended average(EA) (3.4) define the extended difference (3.5) calculate the ranking values (rv) for each requirements

6. Apply Binary tree sort method on rv of the requirements to get the prioritized list of requirements.

Step1 Identify the criteria
 Before the selection of any Software Testing Techniques, tester should identify the criteria’s the selection of an

Software Testing Techniques. On the basis of our literature review, we have identified the following factors which

influence the decision of choosing a software testing methodology:

 (a) New or existing software

 (b) Cost of requirements

 (c) Independent path

Step2 Collect decision maker’s fuzzy assessment
 In this step, expert’s opinions regarding the importance of each requirement are obtained in the form of linguistic

variable such as, very good, good, medium etc.In this step ,we collect the experts’ fuzzy assessments and express their

opinions on the importance of each requirement.

Step3 Compute fuzzy group preference from the fuzzy individual preferences
For the prioritization of requirements on the basis of various criteria’s, we aggregate fuzzy performance rating through all

decision maker by means of extended addition and scalar multiplication to form a comprehensive performance matrix P, in

which performance rating:

Pij= (1/n) ʘ (𝑃𝑖𝑗1⊕𝑃𝑖𝑗2 +⋯…………………… ,⊕ 𝑃𝑖𝑗𝑛

Is a triangular fuzzy number of the form:

(P1ij,P2ij,P3ij) = (1/𝑛∑ 𝑝1𝑖𝑗𝑘𝑛𝑘=1 , 1/𝑛∑ 𝑝2𝑖𝑗𝑘𝑛𝑘=1 , 1/𝑛∑ 𝑝3𝑖𝑗𝑘𝑛𝑘=1)

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 8, Issue 11, November 2019

Copyright to IJARCCE DOI 10.17148/IJARCCE.2019.81111 57

Now Calculate the fuzzy weight through all DM by means of extended addition and scalar multiplication to form a

comprehensive WV. Once we have obtained the comprehensive performance and weight matrix the apply the following

steps(Li 1999):

Step 3.1 Aggregate fuzzy ratings with fuzzy weights by means of extended multiplication to form a weighted,

comprehensive decision matrix D, in which

dij = pij ʘ wj

is a fuzzy number with parabolic membership functions in the form of:

(∂1ij, ∂2ij, ∂3ij|dij|∆1ij, ∆2ij, ∆3ij)
 ∂1ij=(w2j-w1j)(p2j-p1j)

 ∂2ij=w1j(p2ij-p1ij)+p1ij(w2ij-w1ij)

 ∂3ij=WijPij
 ∆ij=(W3j-W2j)(P3j-P2j)

 ∆2j=W3j=(P3ij-P2ij)+P3ij(W3j-W2j)

 ∆3j=W3jP3j

 and

 dj=W2jP2ij

Step 3.2 Define each sub-goal/requirement as a fuzzy number Ai, i=1,2,………. M by means of extended addition and
scalar multiplication through the following criteria:

 Ā=1/m ʘ (A1⊕A2⊕A3+……………………………⊕Am)

With probalitic membership function in the form of

(∂1, ∂2, ∂3| Ā|∆1, ∆2, ∆3) where

∂1=1/m∑ ∂1i , i = 1,2,3𝑚i=1

∆1=1/m∑ ∆1i , i = 1,2,3𝑚i=1

∆=1/m ∑ Āi , i = 1,2,3𝑚i=1

And

EAi=1/m(∑ Aijmj=1

Step 3.3 Define EA means of extended addition and scalar multiplication through all alternatives (sub-goals/requirements).

EA=1/n ʘ (g1⊕g2⊕,………………⊕gh)

With probalitic membership function in the form of

(∂1, ∂2, ∂3| Sum_EA|∆1, ∆2, ∆3) where

∂1=1/m∑ ∂1i , i = 1,2,3𝑚i=1

∆1=1/m∑ ∆1i , i = 1,2,3𝑚i=1

∆=1/m ∑ Āi , i = 1,2,3𝑚i=1

And

Sum_EA=1/n(∑ EAinj=1

Step 3.4 Define the extended difference, EAi ʘ Sum_EA, for each Ai ∈ 𝑅, with parabolic membership function in the form

of :

 (𝛿1𝑖 − ∆1) , (𝛿2𝑖 + ∆2) , (𝛿3𝑖 − ∆3)|𝐸𝐴𝑖 − 𝑆𝑢𝑚_𝐸𝐴|(∆1𝑖 − 𝛿1) , (−∆2𝑖 − 𝛿2) , (∆3𝑖 − 𝛿3)

Step 3.5 Calculate rv of each requirements

In this step, we calculate the ranking values (rvi) for each requirements Ai by means of F-preference relation R:

 if (∆3𝑖 − 𝛿3) < 0, (∆3𝑖 − 𝛿3) ≥ 0, 𝐸𝐴𝑖 ≥ 𝑆𝑢𝑚𝐸𝐴𝑖 ; then

Rvi= µR(Ai ʘ EA,0)= 𝛽+/ 𝛽+ + 𝛽−

Else if (∆3𝑖 − 𝛿3) ≤ 0, (∆3𝑖 − 𝛿3) > 0, 𝐸𝐴𝑖 ≤ 𝑆𝑢𝑚𝐸𝐴𝑖 then

Rvi= µR(Ai ʘ EA,0)= 𝛾+/𝛾+ + 𝛾+

Else if (∆3𝑖 − 𝛿3) = 0, (∆3𝑖 − 𝛿3) = 0, 𝐸𝐴𝑖 = 𝑆𝑢𝑚𝐸𝐴𝑖 then

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 8, Issue 11, November 2019

Copyright to IJARCCE DOI 10.17148/IJARCCE.2019.81111 58

Rvi= µR(Ai ʘ EA,0)=0.5;

Else if (∆3𝑖 − 𝛿3) ≥ 0, (∆3𝑖 − 𝛿3) > 0, 𝐸𝐴𝑖 ≥ 𝑆𝑢𝑚𝐸𝐴𝑖
Rvi= µR(Ai ʘ EA,0)=1;

Else if (∆3𝑖 − 𝛿3) < 0, (∆3𝑖 − 𝛿3) ≤ 0, 𝐸𝐴𝑖 ≤ 𝑆𝑢𝑚𝐸𝐴𝑖 then

Rvi= µR(Ai ʘ EA,0)=0.

where

 𝛽+ =
[

14 (∆1𝑖 − 𝛿1) − 13 (−∆2𝑖 − 𝛿2) + 12 (∆3𝑖 − 𝛿3)+ 14 (𝛿1𝑖 − ∆1)(1 − 𝜇34) + 13 (𝛿2𝑖 + ∆2)(1 − 𝜇33)+12 (𝛿3𝑖 − ∆3)(1 − 𝜇32)]

 𝛽−= [14 (𝛿1𝑖 − ∆1)𝜇34 + 13 (𝛿2𝑖 + ∆2)𝜇33 + 12 (𝛿3𝑖 − ∆3)𝜇32]

 𝜇1 = −(𝛿2𝑖 + ∆2) + √(𝛿2𝑖 + ∆2)2 − 4 (𝛿1𝑖 − ∆1) (𝛿3𝑖 − ∆3)2(𝛿1𝑖 − ∆1)

 𝛾+ = [14 (∆1𝑖 − 𝛿1)𝜇24 + 13 (−∆2𝑖 − 𝛿2)𝜇23 + 12 (∆3𝑖 − 𝛿3)𝜇22]

𝛾− = −
[

14 (𝛿1𝑖 − ∆1) + 13 (𝛿2𝑖 + ∆2) + 12 (𝛿3𝑖 − ∆3)−14 (∆1𝑖 − 𝛿1)(1 − 𝜇24) − 13 (∆2𝑖 + 𝛿2)(1 − 𝜇23)+12 (∆3𝑖 − 𝛿3)(1 − 𝜇22)]

 𝜇2 = (∆2𝑖 + 𝛿2) − √(−∆2𝑖 − 𝛿2)2 − 4 (∆1𝑖 − 𝛿1) (∆3𝑖 − 𝛿3)2(∆1𝑖 − 𝛿1)

Step 4: Binary tree sort method
In this step, we create the BST of the rv that we have obtained in previous step and then the tree is traversed in IN-ORDER

the IN-ORDER traversal of BST lists the elements in ascending order.the algorithm to traverse a non empty binary tree in

IN-ORDER is given below (Aho et al. 1983)

(a) Traverse the left sub-tree in IN-ORDER.

(b) Visit the root node.

(c) Traverse the right sub-tree in IN-ORDER.

V. IMPLEMENTATION

This Section Presents a Case Study for the Selection of the software technique using fuzzy based approach.

Table1 Comprehensive performance matrix

Model 𝑪𝟏 𝑪𝟐 𝑪𝟑

BB (5.2,7.2,8.8) (6.8,8.8,10) (4.8,6.4,8)

GB (5.2,7.2,8.8) (4.4,6,7.6) (4.8,6.4,8)

WB (4.8,6.4,7.6) (4.4,6,7.6) (5.2,6.8,8.4)

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 8, Issue 11, November 2019

Copyright to IJARCCE DOI 10.17148/IJARCCE.2019.81111 59

Table 2: Triangular Fuzzy numbers of Linguistics values for each goal of Software Testing Techniques.

S. No. Linguistics value Triangular fuzzy number

1 VL (Very Low) (0,0,0.25)

2 L (Low) (0,0.25,0.5)

3 M (Middle) (0.25,0.5,0.75)

4 H (High) (0.5,0.75,1)

5 VH (Very high) (0.75,1,1)

Table 3: Triangular fuzzy numbers of linguistics values for the relationship between goals and criteria.

S. No. Linguistics value Triangular fuzzy number

1 VW (Very Weak) (2, 2, 4)

2 W(Weak) (2, 4, 6)

3 M (Medium) (4, 6, 8)

4 S (Strong) (6, 8, 10)

5 VS (Very Strong) (8, 10, 10)

Table 4: Relationship between Software Testing Techniques and Criteria evaluated by five DM.

DM Models Criteria’s

 𝐶1 𝐶2 𝐶3 DM1 𝐵𝐵 W M W DM2 M W W DM3 M W W DM4 W W W DM5 M M W DM1 𝐺𝐵 M M S DM2 M S S DM3 M M M DM4 M M M DM5 M M M DM1 𝑊𝐵 S M S DM2 S S S DM3 S S S DM4 M S S DM5 M S S

4.176QF=0.46,1.896,1.82|4.176|0.32,4.24,6.864

4.84QF=0.44,2.156,2.244|4.84|0.24,2.9,7.5
3.84QF=0.352,1.661,1.824|3.84|0.288,2.6
4.29QF=0.417,1.905,1.963|4.29|0.283,2.865,6.8
4.176QF=0.46,1.896,1.52|4.176|0.32,3.008,6.864
3.3QF=0.352,1.496,1.452|3.3|0.32,2.92,5.7
3.84QF=0.352,1.664,1.824|3.84|0.288,0.5228,0.69
3.772QF=0.388,1.685,1.699|3.772|0.309,2.806,6.24,6.268
3.712QF=0.368,1.664,1.68|3.712|0.24,2.46,5.93
3.3QF=0.352,1.496,1.452|3.3|0.32,2.72,5.7
4.08QF=0.352,1.752,1.98|4.08|0.288,2.76,6.55
3.697QF=0.357,1.637,1.704|3.697|0.283,2.647, 6.06

After applying the steps 3.3 & 3.4, the EA of all FR by means of extended addition and scalar multiplication in the form of: 𝑅1⊖ 𝑅̅ = 𝟎. 𝟏𝟐𝟔, 𝟒. 𝟔𝟕𝟕,−𝟒. 𝟒𝟐𝟕|𝟏. 𝟎𝟏| − 𝟎. 𝟏𝟎𝟒,−𝟒. 𝟔𝟎𝟕, 𝟓. 𝟎𝟕𝟐 𝑅2⊖ 𝑅̅ = 𝟎. 𝟎𝟗𝟕, 𝟒. 𝟒𝟓𝟕,−𝟒. 𝟔𝟗𝟏| − 𝟎. 𝟏𝟑𝟖| − 𝟎. 𝟎𝟕𝟖, 𝟏. 𝟎𝟔𝟒, 𝟒. 𝟒𝟖 𝑅3⊖ 𝑅̅ = 𝟎. 𝟎𝟔𝟔, 𝟒. 𝟒𝟎𝟗,−𝟒. 𝟔𝟖𝟔| − 𝟎. 𝟐𝟐𝟐| − 𝟎. 𝟏𝟎𝟒,−𝟒. 𝟑𝟖𝟗, 𝟒. 𝟐𝟕𝟐

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 8, Issue 11, November 2019

Copyright to IJARCCE DOI 10.17148/IJARCCE.2019.81111 60

After executing steps 3.5 , we get the following rv of FR: 𝑟1 = 1.22183375, 𝑟2 = 1.80234639, 𝑟3 = 1.31728872.
 Now we construct the BST of the given models on the basis of the rv that we have obtained in the previous step (see

Fig). Then we traverse the BST in IN-ORDER to get the following order: 𝑟2 > 𝑟3 > 𝑟1 𝑖. 𝑒 𝐺𝐵 > 𝑊𝐵 > 𝐵𝐵

VI. CONCLUSION

 This paper presents a method for the selection of Software Testing Techniques using Fuzzy Set Theory. Proposed

method is a four step process, namely, (i) identify the criteria, (ii) construct the hierarchical structure of Software Testing

Techniques, (iii) construct the decision matrix, and (iv) the selection of a technique. Proposed method selects the agile

methods for the testing of the project. On the basis of our analysis, we identify that there is a need to improve the agile

methods by intertwining of decision making approaches for the selection and prioritization of requirements. Future research

agenda includes the following:

1. To improve the analysis phase of adaptive process model for agile development by applying TOPSIS method.

2. To propose a fuzzy decision making approach or the selection of Software Testing Techniques.

3. To propose a hybrid approach of Software Testing Techniques.

4. To propose a method for the selection of Software Testing Techniques using hybrid techniques like fuzzy Set Theory

and fuzzy ANP.

REFERENCES

[1]. Coulter A, “Gray Box Software Testing Methodology”, White paper, Version 0.8.

[2]. Coulter Andre, “Gray box Software testing Methodology-Embedded software testing technique”, 18th IEEE Digital Avionics Systems Conference

Proceedings, pp. 10.A.5-2, 1999.

[3]. Huang et al, “Repairing GUI test Suites using Genetic Algorithms”.

[4]. Memon A, “An Event Flow Model of GUI based Applications for Testing”, Software Testing Verification, and Reliability, Wiley Inter Science, pp.

137-157, 2007.

[5]. Mohapatra, Bhuyan, and Mohapatra, “Automated Test Cases Generation and Its Optimization using Genetic Algorithm and Sampling”, IEEE

International Conference on Information Engineering, 2009.

[6]. Mohd. Sadiq, “Application of Graph Theory to Software Engineering”, South East Asian Journal of Mathematics and Mathematical Sciences, India,

Vol.3, No.3, pp 53-57, 2005.

[7]. Mumtaz Ahmad Khan and Mohd. Sadiq, “Analysis of Black Box Software Testing Techniques: A Case Study”, IEEE International Conference and

Workshop on Current Trends in Information Technology, pp.1-5, December, 2011, Dubai, UAE.

[8]. Mumtaz Ahmad Khan, Preeti Bhatia, and Mohd. Sadiq, “BBTool: A Tool to Generate the Test Cases”, International Journal of Recent Technology

and Engineering, Vol. 1, Issue 2, pp. 192- 197, June 2012.

[9]. Sabharwal, Sibal, and Sharma, “A Genetic Algorithm based Approach for Prioritization of Test Cases Scenarios in Static Testing”, IEEE

International Conference of Communication and Technology, 2011.

[10]. Sharma, Sabharwal, and Sibal, “ A Survey on Software Testing Techniques using Genetic Algorithms”, IJCSI International Journal of Computer

Science Issues, Vol. 10, Issue 1, No.1, 2013.

[11]. Viera et al., “Automation of GUI testing Using Model –Driven Approach”, ACM- AST, China, 2006.

[12]. Li RJ(1999) Fuzzy method in group decision making. Comput Math Appl-Elsevier 38:91-101.

[13]. Aho AV, Hopcroft JE,Uliman JD (1983) Data structures and algorithms. Addison-Wesley, Amsterdam.

[14]. American Society of Heating Refrigerating and Air-Conditioning Engineers, 2009 ASHRAE Handbook - Fundamentals (I-P Edition) .: American

Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2009.

[15]. Fariborz Haghighat, Edward Morofsky, Edward Kutrowski Brian Coffey, "A Software framework for model predictive control with GenOpt,"

Elsevier , vol. 42, pp. 1084-1092, January 2010.

[16]. Svend Svendsen Steffen Petersen, "Method for simulating predictive control of building systems operation in early stages of building design,"

ELSEVIER , pp. 4597- 4606, May 2011.

[17]. A. Abdurazik and J. Offutt, “Using uml collaboration diagrams for static checking and test generation,” in Proceedings of the third International

Conference on the UML. York, UK: Lecture Notes in Computer Science, Springer-Verlag GmbH, 2000, pp. 383 – 395.

[18]. C. Mingsong, Q. Xiaokang, and L. Xuandong, “Automatic test case generation for uml activity diagrams,” in Proceedings of the 2006 international

workshop on Automation of software test, Shanghai, China, 2006, pp. 2 – 8.

 GB

 WB BB

