

Vol. 9, Issue 1, January 2020

Analysis of Digital Signal Features Extraction Based on LBP Operator

Dr. Ghazi M. Qaryouti¹, Prof. Mohammad Abuzalata², Prof. Yousf Eltous³, Prof. Ziad Alqadi⁴

Albalqa Applied University, Faculty of Engineering Technology, Jordan, Amman^{1,2,3,4}

Abstract: Digital voice signal is one of the most widely used type of digital data, it is an important and applicable type of data, & it is used in various applications such human identification systems. Digital voice file usually has a big Size, which means increasing the complexity of the recognition system and decreasing the identification system efficiency. To simplify the recognition system and to increase the system efficiency and accuracy we will introduce a method based on LBP to create a unique voiceprint for each wave file, these voiceprints can be used in a recognition system to identify the person and the spoken voice, we will also discuss how the wave file parameters such as amplitude and sampling rate affect the voiceprint.

Keywords: Digital signal, LBP, CSLBP, MLBP, voiceprint, throughput, efficiency, unique features

I. INTRODUCTION

Biometric identification, or biometrics, refers to the process of identifying an individual based on his/her distinguishing characteristics or extracted features, which are a set of values, this set must be unique for each person. It comprises methods for uniquely recognizing humans based on one or more intrinsic physical or behavioural traits [1], [2], and [3]. Identity authentication becomes a challenging procedure when it has to be automated with high accuracy and hence with low probability of break-ins and reliable non-repudiation. The user should not be able to deny having carried out the transaction and should be inconvenienced as little as possible, which only makes the task more difficult [1], [3]. In biometrics, there are two distinct authentication methods and they are:

1. Verification: It is based on a unique identifier which singles out a particular person (e.g. an ID number) and that individual's biometrics. It is based on a combination of authentication modes.

2. Identification: It is based only on biometric measurements. It compares these measurements to the entire database of enrolled individuals instead of just a single record selected by some identifier.

This paper seeks to analyse biometric technology for speaker recognition (voice signal), its advantages and disadvantages. Speech signal is a continuous, non-stationary signal, it can be assumed stationary on short segments of time, and Perception of speech signal is influenced by three factors: volume, pitch and timbre. Volume is a measure of sound intensity and corresponds with the amplitude of the signal. Pitch is given by the fundamental frequency of the speech signal and represents a measure of how a specific subject perceives the sound. Timbre is determined by the harmonics of the sound and corresponds with frequency components of the signal spectrum.

Figure 1: Voice parameters

Vol. 9, Issue 1, January 2020

In this paper we will focus on voice signal features analysis, and we will select the local binary pattern (LBP)[4], [5], [6] which is widely used for digital image processing and features extraction, we will adopt this method to create a unique features for each wave signal, we will study how each of the following parameters affect the features: voice amplitude, frequency, phase shifting and sampling rate (frequency), figure 1 and 2 show these parameters[7-12]:

II. LOCAL BINARY PATTERN METHOD OF FEATURES EXTRACTION

Digital images and digital voices are digital signals which are presented by matrices (2D matrix for gray image, 3D matrix for color image, 1-column matrix for mono voice signals, 2-column matrix for stereo voice signals). Many methods were proposed to create features for various digital signals [10], 13]. [32], [33].

Various authors proposed LBP and CSLBP (center symmetric LBP) methods [14-31], these methods were directed for image manipulation, and sometimes they were used to extract features for both gray and digital images [20] [21], Figure 3, 4, and 5 show how these method work.

Figure 3: Calculating LBP for a pixel

Figure 4: Calculating CSLBP for a pixel

Vol. 9, Issue 1, January 2020

Figure 5: CSLBP calculation example

Based on LBP [20-30] we introduce a modified LBP (MLBP) method to create a voiceprint for a digital voice signal, these voiceprint can be used in a recognition system to find a classifier that can identify the voice signal, MLBP can be implemented applying the following steps:

- 1. Get the wave file.
- 2. If the wave file is a stereo file then convert it to one column matrix.
- 3. Initialize the voiceprint (features) array to zeros (8 elements array).
- 4. For each sample in the wave file do the following (as shown in figure 6):
 - a) Select a window of 9 samples with the selected sample in the centre.
 - b) Compare each sample in the upper half of the window with the associated sample in the window lower half (see figure 6).
 - c) Based on the comparison set the bit to 0 or 1.
 - d) Convert the 4 bits binary number to decimal.
 - e) Use the decimal number as an index of the voiceprint array.
 - f) Add one to index of voiceprint array.
- 5. Save voiceprint array.

Figure 6: MLBP calculation

The generated voiceprint looks like a histogram with 8 element, each element points to the repetition of the histogram [21], [23], [24], [27] index, figure 7 shows a implementation example of MLBP method.

Figure 7: Voice signal example and voiceprint

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 9, Issue 1, January 2020

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The proposed MLBP method was implemented using various wave file, several experiments using matlab were implemented as follows:

Experiment 1: using the same spoken word for various persons: 6 persons were taken, one spoken word was selected, and table 1 shows the results of this experiment:

Table 1: Experiment 1 results							
Voice	Bye-bye-1	Bye-bye-2	Bye-bye-3	Bye-bye-4	Bye-bye-5	Bye-bye-6	
	14792	13690	83288	16855	23748	11450	
	706	1126	8354	1367	2797	1809	
	1470	1614	9609	1389	2197	4891	
Features	776	1161	7437	1216	2554	523	
	648	944	6540	1033	2343	454	
	1587	1741	9925	1528	2396	4959	
	728	1143	7862	1417	2790	1883	
	16074	15362	90586	19334	25914	13755	
Size(samples)	36787	36787	223607	44145	64745	39730	
Extraction time(s)	0.002000	0.001900	0.019000	0.002300	0.002600	0.002100	
Average samples		74300					
Average time		0.0050					
Throughput(sample:	s/second)	14860000					

Experiment 2: 5 spoken words for the first person: Table 2 shows the results of this experiment:

Table 2: Experiment 2 results							
Voice	Bye-bye-1	Okay-1	Yes-1	No-1	Zero-1		
	14792	11927	6643	7971	3262		
	706	1209	2448	864	722		
	1470	1955	2067	2817	255		
Features	776	488	4647	390	785		
	648	522	4601	388	405		
	1587	2138	2341	2996	535		
	728	1305	2561	991	751		
	16074	12823	8530	8593	5823		

Experiment 3: 5 spoken words for the second person: Table 3 shows the results of this experiment:

Table 3: Experiment 3 results

Voice	Bye-bye-2	Okay-2	Yes-2	No-2	Zero-2		
	13690	31497	7169	11742	3668		
Features	1126	5527	2228	889	688		
	1614	1732	1300	2578	276		
	1161	2999	3788	425	818		
	944	2861	3738	353	404		
	1741	2018	1551	2623	625		
	1143	5645	2421	877	712		
	15362	32600	8700	12880	6883		

Experiment 4: 5 spoken words for the third person: Table 4 shows the results of this experiment:

Table 4: Experiment 4 results

Voice	Bye-bye-3	Okay-3	Yes-3	No-3	Zero-3
	83288	59829	8709	16627	4642
	8354	8477	2520	1995	1119
	9609	11116	3626	5538	609

Features	7437	5438	4116	730	1269
	6540	5600	4065	737	752
	9925	11291	3989	5687	927
	7862	8626	2733	2131	1161
	90586	61780	11438	19522	8459

Vol. 9, Issue 1, January 2020

Experiment 5: 5 spoken words for the fourth person: Table 4 shows the results of this experiment:

Table 5: Experiment 5 results						
Voice	Bye-bye-4	Okay-4	Yes-4	No-4	Zero-4	
	16855	11624	19929	13137	3753	
	1367	1218	4685	1874	894	
	1389	3632	5823	5826	485	
Fea-	1216	586	3419	430	1094	
tures	1033	522	3401	349	797	
	1528	3813	6159	6247	798	
	1417	1330	4828	2357	1087	
	19334	12585	23853	15390	6958	

Experiment 6: 5 spoken words for the fifth person: Table 6 shows the results of this experiment:

Table 6: Experiment 6 results							
Voice	Bye-bye-5	Okay-5	Yes-5	No-5	Zero-5		
	23748	12761	6114	12690	3922		
	2797	1550	3615	1287	642		
	2197	4625	1068	2748	288		
Features	2554	692	2770	566	1061		
	2343	589	2700	546	515		
	2396	5107	1900	2830	676		
	2790	1961	4530	1357	860		
	25914	15382	9330	13286	8414		

Experiment 7: 5 spoken words for the sixth person: Table 7 shows the results of this experiment:

Table 7: Experiment 7 results							
Voice	Bye-bye-6	Okay-6	Yes-6	No-6	Zero-6		
Features	11450	20259	18930	35338	2470		
	1809	3787	1833	4041	920		
	4891	10957	6052	7314	1042		
	523	1250	1123	579	1450		
	454	1213	1042	409	620		
	4959	11253	6180	8081	1783		
	1883	4115	1946	5157	1435		
	13755	23677	20276	46493	7170		

Experiment 8: Varying sampling rate for word 1 for person 1: Table 8 shows the results of this experiment:

Table 8: Experiment 8 results: Bye-bye-1							
Sampling rate	44100	22050	20000	15000	10000		
	14792	14792	14792	14792	14792		
	706	706	706	706	706		
	1470	1470	1470	1470	1470		
Features	776	776	776	776	776		
	648	648	648	648	648		
	1587	1587	1587	1587	1587		
	728	728	728	728	728		
	16074	16074	16074	16074	16074		

Vol. 9, Issue 1, January 2020

Experiment 9: Varying amplitude for word 1 for person 1: Table 9 shows the results of this experiment:

Amplitude	Original amplitude	Amplitude multiplied by 2	multiplied by 3	Divided by 2	Divided by 3
	14792	14792	14792	14792	14792
	706	706	706	706	706
	1470	1470	1470	1470	1470
Features	776	776	776	776	776
	648	648	648	648	648
	1587	1587	1587	1587	1587
	728	728	728	728	728
	16074	16074	16074	16074	16074

Table 9: Experiment 9 results: Bye-bye-1

From the obtained results shown in tables 1 thru 9 we can see the following:

- Using the voiceprints obtained by MLBP method we can classify the person and the spoken word.
- ✓ Each voice print for each person word is a unique.
- ✓ ✓ ✓ ✓ Using the voice prints we can identify a person.
- Using the voiceprints we can identify the spoken word (voice).
- Adjusting the voice sampling rate does not affect the signal voiceprint.
- Adjusting the voice amplitude does not affect the signal voiceprint.
- MLBP method provides a high efficiency, it provide a throughput with average 14860000 samples per second.

IV. CONCLUSION

MLBP method of voice signal features extraction was proposed, and implemented. It was shown that this method is accurate and highly efficient. The generated voiceprint for each file is a unique and it can be used in a recognition system to identify the human and to identify a spoken words.

REFERENCES

- [1]. Ruud M. Bolle, Jonathan H. Connell, Sharath Pankanti, Nalini K. Ratha, and Andrew W. Senior, Guide to Biometrics. Springer Science + Business Media, Inc, NY 10013, USA, 2004, pp 3-6, 31-45, 146-148.
- [2]. (2010, August 10). Biometrics Wikipedia, the free encyclopaedia [Online]. Available: http://en.wikipedia.org/wiki/Biometrics
- [3]. Tiwalade O. Majekodunmi, Francis E. Idachaba, A Review of the Fingerprint, Speaker Recognition, Face Recognition and Iris Recog-nition Based Biometric Identification Technologies, Proceedings of the World Congress on Engineering 2011 Vol II WCE 2011, July 6 - 8, 2011.
- [4]. R. Szabo, A. Gontean, I. Lie, "Sound Based Coin Recognition and Clapper", 16th International Conference on Soft Computing (MENDEL), pp. 509-516, June 23-25, 2010.
- [5]. A. K. Paul, D. Das, M. M. Kamal, "Bangla Speech Recognition System Using LPC and ANN", Seventh International Conference on Advances in Pattern Recognition (ICAPR), Kolkata, India, pp. 171-174, February 4-9, 2009.
- [6]. R.Szabo, A.Gontean, "Human Voice Signal Synthesis & Coding", IFAC Proceedings Volumes, Vol.46, No.28, pp.336-341, 2013
- [7]. K. M. Matrouk, A. Alhasanat, H. Alasha'ary, Z. Alqadi, H. M. AlShalabi, "Speech Fingerprint to Identify Isolated Word-Person", World Applied Sciences Journal, Vol. 31, No. 10, pp. 1767-1771, 2014.
- [8]. Jihad Nader Ismail Shayeb, Ziad Alqadi, Analysis of digital voice features extraction methods, International Journal of Educational Research and Development, v. 1, issue 4, pp. 49-55, 2019.
- [9]. Majed O. Al-Dwairi, Amjad Y. Hendi, Mohamed S. Soliman, Ziad A.A. Alqadi, A new method for voice signal features creation, International Journal of Electrical and Computer Engineering (IJECE), v. 9, issue 5, pp. 4092-4098, 2019.
- [10]. Ziad A. AlQadi Amjad Y. Hindi, Majed O. Dwairi, A Novel Technique for Data Steganography, Engineering, Technology & Applied Science Research, v. 9, issue 6, pp. 4942-4945, 2019.
- [11]. Aws Al-Qaisi, Saleh A Khawatreh, Ahmad A Sharadqah, Ziad A Alqadi, Wave File Features Extraction Using Reduced LBP, Interna-tional Journal of Electrical and Computer Engineering, v. 8, issue 5, pp. 2780, 2018.
- [12]. Ayman Al-Rawashdeh, Ziad Al-Qadi, Using wave equation to extract digital signal features, Engineering, Technology & Applied Science Research, v. 8, issue 4, pp. 1356-1359, 2018.
- [13]. Saleh Khawatreh, Belal Ayyoub, Ashraf Abu-Ein, Ziad Alqadi, A Novel Methodology to Extract Voice Signal Features, International Journal of Computer Applications, v. 975, pp. 8887, 2018.
- [14]. Ziad Alqadi, Bilal Zahran, Jihad Nader, Estimation and Tuning of FIR Low pass Digital Filter Parameters, international Journal of Advanced Research in Computer Science and Software Engineering, v. 7, issue 2, pp. 18-23, 2017.
- [15]. Jihad Nader Ahmad Sharadqh, Ziad Al-Qadi, Bilal Zahran, Experimental Investigation of Wave File Compression-Decompression, International Journal of Computer Science and Information Security, v. 14, issue 10, pp. 774-780, 2016.
- [16]. Ashraf Abu-Ein, Ziad AA Alqadi, Jihad Nader, A TECHNIQUE OF HIDING SECRETE TEXT IN WAVE FILE, International Jour-nal of Computer Applications, 2016.

Vol. 9, Issue 1, January 2020

- [17]. Jihad Nadir, Ashraf Abu Ein, Ziad Alqadi, A Technique to Encrypt-decrypt Stereo Wave File, International Journal of Computer and Information Technology, v. 5, issue 5, pp. 465-470, 2016.
- [18]. A Waheeb, Ziad AlQadi, Gray image reconstruction, Eur. J. Sci. Res, v. 27, pp. 167-173, 2007.
- [19]. Jamil Azzeh, Bilal Zahran, Ziad Alqadi, Salt and Pepper Noise: Effects and Removal, International Journal on Informatics Visualiza-tion, v. 2, issue 4, pp. 252-256, 2018.
- [20]. Jamil Al Azzeh, Hussein Alhatamleh, Ziad A Alqadi, Mohammad Khalil Abuzalata, Creating a Color Map to be used to Convert a Gray Image to Color Image, International Journal of Computer Applications, v. 975, pp. 8887, 2016.
- [21]. Qazem Jaber Ziad Alqadi, Jamil azza, Statistical analysis of methods used to enhance color image histogram, XX International scien-tific and technical conference, 2017.
- [22]. Jihad Nader, Ziad A. A. Alqadi, Bilal Zahran, Analysis of Color Image Filtering Methods, International Journal of Computer Appli-cations, v. 174, issue 8, pp. 12-17, 2017.
- [23]. J Al-Azzeh M Abuzalata, Ziad Alqadi, Modified Inverse LSB Method for Highly Secure Message Hiding, International Journal of Computer Science and Mobile Computing, v. 8, issue 2, pp. 93-103, 2019.
- [24]. Majed O Al-Dwairi, Ziad A Alqadi, Amjad A Abujazar, Rushdi Abu Zneit, Optimized true-color image processing, World Applied Sciences Journal, v. 8, issue 10, pp. 1175-1182, 2010.
- [25]. Jamil Al-Azzeh, Bilal Zahran, Ziad Alqadi, Belal Ayyoub, Muhammed Mesleh, A Novel Based On Image Blocking Method To En-crypt-Decrypt Color, International Journal on Informatics Visualization, v. 3, issue 1, pp. 86-93, 2019.
- [26]. ZIAD ALQADI, A MODIFIED LBP METHOD TO EXTRACT FEATURES FROM COLOR IMAGES, Journal of Theoretical and Applied Information Technology, v. 96, issue 10, pp. 3014-3024, 2018.
- [27]. Bilal Zahran Belal Ayyoub, Jihad Nader, Ziad Al-Qadi, Suggested Method to Create Color Image Features Victor`, Journal of Engi-neering and Applied Sciences, v. 14, issue 1, pp. 2203-2207, 2019.
- [28]. Dr. Ziad Alqadi, Akram Mustafa, Majed Alduari, Rushdi Abu Zneit, True color image enhancement using morphological operations, International review on computer and software, v. 4, issue 5, pp. 557-562, 2009.
- [29]. Ziad AlQadi, Hussein M Elsayyed, Window Averaging Method to Create a Feature Victor for RGB Color Image, International Jour-nal of Computer Science and Mobile Computing, v. 6, issue 2, pp. 60-66, 2017.
- [30]. R Abu Zneit, Ziad AlQadi, M Abu Zalata, A Methodology to Create a Fingerprint for RGB Color Image, International Journal of Computer Science and Mobile Computing, v. 16, issue 1, pp. 205-212, 2017.
- [31]. Mohammed Ashraf Al Zudool, Saleh Khawatreh, Ziad A. Alqadi, Efficient Methods used to Extract Color Image Features, IJCSMC, v. 6, issue 12, pp. 7-14, 2017.
- [32]. Ahmad Sharadqh Naseem Asad, Ismail Shayeb, Qazem Jaber, Belal Ayyoub, Ziad Alqadi, Creating a Stable and Fixed Features Array for Digital Color Image, IJCSMC, v. 8, issue 8, pp. 50-56, 2019.
- [33]. Ahmad Sharadqh Jamil Al-Azzeh , Rashad Rasras , Ziad Alqadi , Belal Ayyoub, Adaptation of matlab K-means clustering function to create Color Image Features, International Journal of Research in Advanced Engineering and Technology, v. 5, iss 2, pp. 10-18, 2019.