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Abstract: Human Activity Recognition (HAR) is considered a challenging task in sensor-based monitoring systems. In 

ambient intelligent environments, such as smart homes, collecting data from multiple sensors is useful for recognizing 

Activities of Daily Living (ADLs), which can then be used to help provide assistance to inhabitants. ADLs are composed 

of complex time-series data that has high dimensionality, is large in size, and is updated continuously. Thus, developing 

methods for analysing these time-series data to extract meaningful features and specific characteristic would help solve 

the problem of activity recognition. Based on the noticeable success of deep learning in the time-series classification 

field, we developed a model for classifying ADLs in an ambient environment using deep neural networks. Our model, a 

Deep One-Dimensional Convolutional Neural Network (Deep 1D-CNN), contains several one-dimensional convolution 

layers coupled with a max-pooling technique to discover and extract the suitable internal structure to generate the deep 

features of the input time-series automatically. Such a model can be used as a unified framework for both feature 

extraction and classification. It performs well on high-dimensional time-series data; it does not require any expert 

knowledge in feature extraction, and it is able to find relevant and discriminative features for activity recognition. In 

order to evaluate the performance of our model, we tested it on the new real-life dataset, ContextAct@A4H, and the 

results showed that our model achieved a high F1 score (0.90). We also compared our results with baseline models for 

time series classification with deep neural networks. The comparison revealed that, our deep 1D-CNN model achieved 

the best overall performance in terms of precision, recall, and F1 score. 
 

Keywords: Deep Learning, One-Dimensional Convolutional Neural Networks, Time-series Classification, Activities of 
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I. INTRODUCTION 
 

In recent decades, we have seen a noticeable increase in the number of Internet of Things (IoT) applications, such as are 

found in smart homes. These environments rely on using sensors to generate large amounts of time-series data that can 

be analyzed for many purposes, such as the monitoring, detection, and classification of activities in order to make timely 

decisions [1]. Recognizing human activity in an automated manner has become essential in many ambient intelligence 

applications, and a smart home with Artificial Intelligence (AI) is a great step towards it [2]. 

Human Activity Recognition (HAR) at smart home can be categorised into sensor-based activity recognition and vision 

based activity recognition. Sensor based activity recognition can be done using two kind of sensors which are wearable 

sensors on a human body to recognize frequent motions like walking and standing, and ambient sensors for recognizing 

Activities of Daily Living (ADLs) to predict the complex activities of humans, such as watching TV and cooking. The 

main difference between these kinds is that sensor based ambient systems have the ability to recognize different 

behaviours and complex activities over time by monitoring the interaction between objects and people in smart 

environments while body worn sensors can only capture human physical activities [3]. Using ambient sensors for 

recognizing ADLs in smart home can provide many benefits for people who live there. One of these benefits is to predict 

which activity will be performed by inhabitant, thus, the system can automatically provide needed services [4]. Another 

one is increasing the potential of energy saving by using the sensors to monitor the energy consumption of devices at 

smart environment and reduce it either by controlling them directly or sending recommendations to users on how it is 

possible to save energy at a particular time [5]. Therefore, human activity recognition and a learning process in a smart 

home is necessary and important.  

Recently, increased attention has been given to deep learning in many fields, such as speech recognition [6] and image 

classification [7]. In activity recognition, using deep learning can have a great impact in terms of system performance 

and flexibility. Such methods can provide efficient tools for high-level feature extraction from high-dimensional time-

series data, which is useful for many tasks such as classification. Deep-learning models have demonstrated the significant 
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potential to push the state of the art in activity recognition. They overcome the need for feature engineering that refers to 

defining feature extraction procedures manually, which is usually a time-consuming task and can be error-prone or (at 

least) a poorly generalizable endeavor. Generally, deep learning refers to neural networks that utilize many layers for 

processing non-linear information organized hierarchically, where the output for each layer is the input for the next one. 

The well-known deep-learning architectures include Convolutional Neural Networks (CNNs) [8], Recurrent Neural 

Networks (RNNs) [9], and Deep Belief Networks (DBNs) [10]. 

Since the multi-sensor data of ADLs is high-dimensional data with significant variation, applying feature selection 

methods on the data before feeding it into the deep-learning networks would solve the complexity of activity recognition 

and increase the accuracy for such a system. Indeed, feature selection is a fundamental step when dealing with high-

dimensional data, allowing for the elimination of those variables that are redundant or irrelevant for the system description 

[11]. In addition, deep-learning models (i.e., CNNs) have been shown capable and even achieve better state-of-the-art 

results for time-series classification by automatically capturing local dependencies and preserving feature scale 

invariance to catch variation in the same class throughout the feature extraction [12]. Thus, in this paper, we take 

advantage of feature importance as a feature selection technique combined with deep One-Dimensional (1D) CNNs, since 

CNNs in general are good at reducing frequency variations and capturing local dependency. We explored our model, 

which we call deep 1D-CNN, on the new large dataset ContextAct@A4H [13] that collected from an ambient 

environment to determine the capacity for such a model when dealing with long input sequences to recognize complex 

activities, such as sleeping and watching TV. 

The rest of this paper is organized as follows. In Section II, we provide a primer on the relevant background in CNNs. 

The existing works on the deep-learning-based recognition of ADLs in ambient environments are reviewed in Section 

III. A detailed description is presented in Section IV, illustrating the structure of our proposed architecture. The model 

implementation details are demonstrated in Section V with the experimental setup. Then, the results and the performance 

comparisons are presented in Section VI. Finally, the conclusion comes in Section VII. 

 

II. BACKGROUND 

 

Neural networks are suitable for time-series classification tasks, and they are the basis of deep-learning techniques. As 

mentioned previously, recognizing ADLs using deep learning has become one of the most preferred techniques, owing 

to its ability to effectively learn data representation and perform classification. One of the most recent popular deep-

learning methods for time-series classification is One-Dimensional Convolutional Neural Network (1D-CNN), which is 

the most powerful deep network for feature learning. In what follows, we briefly summarize the architecture of 

Convolutional Neural Networks (CNNs) that are the bias of our model. 
 

A. Convolutional Neural Networks (CNNs) 

CNNs are a type of deep neural network, composed of multiple hidden layers of convolution, activation, and pooling 

layers. A single layer of the CNN extracts features through convolutional operations that are applied on input sequences. 

The output of the convolutional operation is then passed through the non-linear activation function and then fed to the 

pooling layers [9]. Formally, extracting a feature map using a convolution operation is given by:  
 

𝑓𝑗 = 𝜎(𝑏𝑖 + ∑ 𝑘𝑖𝑗
𝑖 ∗  𝑥𝑖)     (1) 
 

where  𝑥𝑖 𝑎𝑛𝑑 𝑓𝑗 is the i-th and j-th input and output maps, and  𝑘𝑖𝑗  is the convolution kernel that slides from the start-time 

step to the end for completing the convolutional operations on the entire input sequence. The * is the convolution operator, 

and σ is the activation function, “which is in most cases ReLU,” and it is computed by the following equation: 
 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥({0. 𝑥})     (2) 
 

The non-linearity activation function is usually followed by pooling layers. One of the most used pooling technique is a 

max-pooling layer, which performs a maximum subsampling of the feature maps obtained in the previous layer. Max-

pooling layers are used to reduce the spatial size of the representation to minimize the amount of parameters and 

computation in the network, and hence, also control overfitting. The max-pooling can be identified as: 
 

𝑝𝑖 = 𝑚𝑎𝑥 (𝑎. 𝑐) 𝑤ℎ𝑒𝑟𝑒 𝑎. 𝑐 ∈ 𝑓𝑗      (3) 
 

where the vector 𝑝𝑖 is the i-th output of the max-pooling layer and 𝑓𝑗  is the input feature map obtained from Equation (1). 

The combination of convolutional, activation, and pooling layers allows the CNNs to learn and extract deep features that 

lead to an extremely effective system. CNN models with several layers, where the input of layer (i – 1) is the input of layer 

i, have the ability to learn data representations for faster feature extraction and classification. Such a model with deeper 

layers has an advantage over other networks in the field of time-series classification for activity recognition [12], where it 

has become the standard approach. 
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III. RELATED WORK 

 

In the field of human activity recognition, the use of sensors is extremely diverse. As a matter of fact, activity recognition 

is used in wearable devices to recognize human body movements such as walking and running [14] or in smart industrial 

fields for complex activity recognition using ambient sensors [15]. Among the various activity recognition fields, we are 

focused on reviewing recent studies on daily-activity recognition-based ambient sensors, specifically, smart homes by 

applying deep neural-network-based approaches. 

In general, the input of the neural network is the original raw data; applying features extracted from these data to the 

neural network tend to improve the overall performance. Extracting useful information from the original data requires 

expert knowledge, however, convolutional neural networks have been proposed to address this problem. CNNs are one 

of the most widely used deep-learning approaches in activity recognition fields not only for extracting features but also 

for activity classification. In ambient-based environments, CNN with 1D kernal have been used to extract features from 

data obtained from multiple ambient sensors for daily activity classification. In [16], the authors proposed architecture-

based CNNs for solving the complexity of recognizing ALDs. With a one-dimensional convolution layer for feature 

extraction equipped with a fully connected layer and softmax classifier, their model achieved an accuracy of about 0.72 

on the Kasteren dataset. Another work [17] evaluated several state-of-the-art machine-learning approaches and deep 

learning models including CNN for classifying daily activities based on ambient sensors. Overall, model based CNNs 

showed the best performance in terms of the F1 score on the real-world dataset ARAS when compared to other 

classification approaches. 

Since the data of daily activities are sequences recorded by multiple sensors, recurrent-based neural networks have been 

widely proposed to solve the complexity of sequence-lapping problems in daily activity recognition. Paper [18] 

investigated three variants of recurrent neural networks (RNNs), which were vanilla RNNs (VRNN), long short-term 

memory RNNs (LSTM) and gated recurrent unit RNNs (GRU). They compared them with the state-of-the-art methods, 

such as supported vector machines (SVMs) and hidden Markov models (HMMs). They used the dataset collected by 

Kasteren to evaluate all three models. The results indicated that the models based on RNNs were competitive with the 

state-of-art methods; however, LSTM seemed to be slightly better. Another paper [19] applied LSTM-RNNs on three 

real-world smart-home datasets for recognizing daily activities. With one LSTM layer equipped with 300 hidden units, 

their model achieved an accuracy of about 79.90. The results showed that the LSTMs outperformed other state-of-the-art 

methods such as naive Bayes and HMMs. Recently, paper [20] analyzed the sequence of actions recorded in a smart 

home with ambient multiple sensors by introducing the concept of residual recurrent neural network (Residual-RNN). 

Their experiments evidence that the proposed model performed better than the base LSTMs and gated recurrent units 

(GRU) in respect to recognition accuracy. 

Some works solved the complexity of recognizing ADLs with sensor data collected in ambient-based environments by 

applying simple neural network algorithms, such are deep meta-layer networks [21] and Levenberg-Marguardt neural 

networks [22]. However, such simple networks can perform well only on small datasets due to their simple architectures. 

To sum up, it is noticeable that the common efficient deep-learning approaches used for recognizing ADLs in an ambient 

intelligent environment are both 1D-CNNs and recurrent-based networks such as LSTMs. Since we are dealing with the 

classifying time-series of sequence data collected from sensors in an ambient environment, CNNs are capable of 

discovering and extracting the suitable internal structure to generate deep features of the input sequence automatically to 

recognize ADLs. In the next section, the architecture of our proposed model (deep 1D-CNN) is described in detail. 

 

IV. METHODOLOGY 

 

A. Overview 

We propose a deep-learning model for time-series classification to recognize activities of daily living. The deep 

architecture of the proposed model contains multiple one-dimensional convolution and max-pooling layers. 

Before modelling our data, a feature selection method is applied for identifying the related features from a set of data and 

removing the less important features (see Section V-B for more detail). The input of the networks is sequences of time-

series data obtained from the multi-sensors using a segmentation-based approach. The time-series segmentation method 

we applied is a fixed-sized overlapping sliding window that divides the data into multiple sequences of discrete segments 

that share the same length and are assigned to different labels (see Section V-C for more detail). Those fixed-length 

sequences will feed the input of our model to train it for the classifying daily activities, such as cooking, eating, and 

working. 

In what follows, we will describe in detail the proposed architecture. 

 

B. Deep 1D-CNN 

Current common algorithms mainly use CNNs for feature extraction and classification, yet, these methods are often not 

popular in dealing with time-series data. We propose a deep-learning method for activity recognition that is able to handle 

input sequences of time-series data obtained from ambient intelligent environments. 
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Suppose the 𝑖𝑡ℎ input time series is: 

 

Ci = [ ci
(1)

 . ci
(2)

. … … . ci
(t)

. … … . ci
l ].  Ci ∈ ℝ d      (4) 

 

where 𝑙  is the length of the sequence, 𝑐𝑖
(𝑡)

 denotes the value of time step t, and d represents the input dimension (i.e., the 

number of input variables). 

The main component of the proposed model is the one-dimensional CNNs. Their purpose is to automatically extract deep 

and short-term features from the multivariable time-series input. We built our model by stacking multiple convolutional, 

batch normalization, max-pooling, and dropout layers. At first, the convolution operations are applied on the sequence 

input to obtain the feature mapping, which was formalized in Equation (1). Before the activation function and right after 

the convolutional layer, Batch Normalization (BN) [23] is implemented to accelerate the training process and improve the 

efficiency. Then, the rectified linear unit (ReLU) activation function is employed to insure the non-linear behavior of the 

network. Max-pooling layers are used to subsample the extracted feature mapping, which helps eliminate non-maximal 

values and extract the local dependency within different regions to keep the most salient information. After the max-

pooling layers, dropout is applied to avoid overfitting and decrease training time. After the layers have extracted relevant 

features from all the input sequence data, the results will be flattened into a vector. The final obtained feature mapping is 

then fed to a softmax layer (i.e., a dense layer with a softmax activation function) to obtain the output by yielding a class 

probability distribution for every single time step t. By stacking several convolutional operators with the max-pooling 

technique, the proposed model has the ability to extract the deep features from the input sequence to create a hierarchy of 

progressively abstract features that are more robust to noise in order to classify each activity successfully. Both a batch 

normalization and dropout are applied to each 1D-CNN layer to improve the overall performance. The proposed approach 

is defined according to the network structure depicted in Fig. 1. 

 

 
Fig. 1 The architecture of deep 1D-CNN framework for daily activity recognition. 

 

V. IMPLEMENTATION 

 

This section extensively discusses the dataset and the pre-processing steps we applied to prepare it for further analysis. 

It also provides an overview of the experimental environment, followed by the parameters set for our model.  

 

A. Dataset 

We evaluated our deep 1D-CNN model on the new real-world dataset ContextAct@A4H. This is a publicly available 

rich dataset collected from multiple ambient sensors that reflect the context of the environment as well as annotated 

standard daily living activities. It is a real-life dataset that was gathered at the Amiqual4Home apartment, using a large 

variety of sensors to improve the potential using the data. Ambient sensors were used to allow observation of both object 

usage and context conditions for all rooms and the exterior. The following context variables were measured in each room: 

temperature, carbon dioxide (CO2), noise, humidity, presence, and music information. Weather information was 

measured for the exterior. Appliance and object usage were measured through electric/water consumption sensors, 

contact sensors, and state change sensors. Other sensors were indirect measures of object usage (e.g., pressure sensor in 

the couch).  

The dataset consisted of one week of captured data during the summer and three weeks in the fall. It contains ten daily 

activities were annotated by self-reporting in place at the moment of starting and ending each activity using three different 

annotating methods. The activities and their annotated names with the assigned labels and number of examples per each 

are listed in Table I 
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Table I Annotated Activities in Contextact@A4h 

Activity Annotated as… Labelled as.. # of Examples 

Working Travail 0 38,369 

Cooking Cuisine 1 50,969 

Relaxing Loisir 2 4536 

Using the Toilet Toilettes 3 8569 

Watching TV TV 4 22,085 

Washing Dishes Vaisselle 5 16,045 

Leaving Home Sortir 6 213,665 

Taking a Shower Douche 7 35,993 

Eating Manger 8 41,195 

Sleeping Dormir 9 210,566 

This dataset contains about 389 features, some of them are not used in the case of recognizing ADLs (e.g., music features). 

Thus, in the pre-processing phase, we assigned all the values for those unneeded features to zero. In addition, we 

converted all needed contextual features to numerical information. For example, binary sensors such as contact sensors 

give two values, such as ‘open’ or ‘closed’ to determine if a door has been opened or has not. In those cases, we converted 

the measured unit from contextual information to be either 1 or 0. Moreover. We had to clean corrupted and repeated 

data that could have been caused by possible hardware failures or problems in data transfer. As with any data pre-

processing, we applied data normalization, which is the process of rescaling all the feature values to be in a given range 

on the dataset. In particular, we used a min-max scaler, which changed all the features to be between 0 and 1. After the 

data normalization, we split the data randomly into 70% for training and 30% as the test set. After making the dataset 

suitable for further analysis, we applied a feature selection method that is explained in the next subsection. 

 

B. Feature Selection 

In many practical applications of machine-learning algorithms, the data that has been pre-processed can result in a large 

number of features, and it is often desirable to reduce this number to enable the effective classification beyond the training 

stage. Furthermore, supervised learning models that have been trained on data incorporating many features may suffer 

from overfitting the model to the training data. As we mentioned previously, the dataset had about 389 features of sensor 

readings that ranged between 0 to 1. Our purpose was to reduce the number of features and choose only those which 

contributed the most in increasing the overall performance of our classification models. For such an aim, we applied a 

common feature selection technique that extracted a feature importance rank using different classifiers such as adaptive 

boosting (AdaBoost) [24] as shown in Fig. 2. 

 

 
Fig. 2 The x-axis is the 389 features, and the y-axis is the importance rank assigned to each of them 

 

After determining the importance of each feature toward the activities, we chose the ones with a rank higher than 0.004, 

which were a total of 35 features, to contribute to our classification model. 

 

C. Data Segmentation 

Data segmentation takes place in activity recognition after the pre-processing step and the feature selection mechanism. 

In order for an on-line deep-learning system to effectively classify a particular feature vector representation of the sensor 
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data, the system must include a mechanism for selecting those sensor events from an incoming stream of sensor data. 

This process is known as segmentation and aims to select the sensor data that lies between activity boundaries. It identifies 

segments that contain information about the activities to be recognized. Many segmentation methods based on the 

windowing of streaming data have been used in studies on activity classification, such as time- and sensor-based 

windowing [25]. In our work, we applied time-based windowing with fixed-sized and overlapping windows to take the 

values of sensors observed in the previous window. This is because it is generally assumed that due to the higher number 

of data points, overlapping sliding windows increase the performance of the HAR classifiers when compared to non-

overlapping ones [26]. In the experiment, we evaluated the effect of varied window sizes and different overlapping sizes 

on the recognition results of the proposed system. We got the best results when we set the time period of the window to 

be 80 with overlapping started after a 5-step distance. This led to 89885 and 38484 samples for the training and testing 

sets, respectively. Each sample usually contained data associated with multiple labels. We chose for majority labelling, 

where the label of each segment was specified as the most frequent label in those of the timestamps. 

 

D. Experimental Environment 

We implemented our deep-learning model with Google Colaboratory (also known as Colab), which is a cloud service 

based on Jupyter Notebooks. We used Python runtimes pre-configured with the essential libraries, such as TensorFlow 

and Keras to build and train our neural networks. The model training and classification were run on an Nvidia Tesla K80 

GPU with 2496 CUDA cores and 12 GB RAM. The neural networks were trained in a supervised way by backpropagating 

the gradients from the softmax layer through to the convolutional layers. The categorical cross-entropy used was the loss 

function. For optimization, we used Adam [27] with a learning rate of 0.0001. The training was done in 89894k samples 

and the testing on 38475k samples with a batch size equal to 1024. The hyper-parameters of our proposed deep-learning 

model for the ContextAct@A4H dataset are provided in Table II. 

 

Table II Relevant Parameters of Each Layer in the Deep 1D-CNN Architecture 

Assigned Parameters  Components Num. 

64*2 1dConv   

Layer 1  - Batch Normalization 

ReLU Activation 

0.2 Dropout 

64*2 1dConv   

  

Layer 2 to Layer 7 

  

  

- Batch Normalization 

ReLU Activation  

2 MaxPool 

0.2 Dropout 

- Flatten Layer Layer 8 

10 neurons (# of classes) Softmax Layer Layer 9 

 

VI.RESULTS 

 

The results of the performance of our model are presented in this section. In addition, to show the precious of our proposed 

model, we compared it with baseline results obtained from two deep models.  
 

A. Performance Measurement 

Classification accuracy is not an appropriate measure of performance, since activity datasets collected in natural scenes 

are often imbalanced between classes. In ContextAct@A4H, some classes (e.g., those for sleeping and leaving home) 

contained a large number of examples while other classes had only a few. Therefore, we evaluated the models using other 

metrics that were suitable for evaluating class-imbalanced problems. Those metrics were precision, recall, and F1 score, 

which already have been used in previous works such as [17]. The precision determines the ratio of the relevant points 

that have been chosen by the model to the total selected points, as shown in the following, where TP is the number of 

true positives, and FP is the number of false positives: 
 

precision =  TP

TP+FP
      (5) 

 

The recall is the ratio of relevant points that have been selected by the model to the overall total of the relevant points, as 

show in the following, where TP is the number of true positives, and FN is the number of false negatives: 
 

recall =  TP

TP+FN 
      (6) 

 

The F1 score is defined in terms of both precision and recall as follows: 
 

 

F1 =  2 × (precision × recall) 

(precision + recall)
       (7) 
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B. Experimental Results 

The classification results of the proposed method on theContextAct@A4H dataset are presented in this section. We 

calculated the metrics described previously, which are precision, recall, and F1 score. We also plotted the accuracy and 

loss curves during the training process for deep 1D-CNN. When observing Table III, the results of precision, recall and 

F1 score indicate that applying 1D-CNNs for the time-series classification was effective due to their ability to extract 

very informative deep features from each sequence input to detect the ADLs. 

 

Table III Classification Results of Our Proposed Model (Deep 1D-CNN) 

Results of deep 1D-CNN 

Precision 0.92 

Recall 0.89 

F1 score 0.90 

Time Per Epoch 4 sec 

 

On the other hand, according to Fig. 3, the training and testing loss of our model kept decreasing until the last epoch, 

where both remained in the same range (with a slight decrease in the training loss) when we stopped the training process 

(training loss = 0.21, validation loss = 0.28). Moreover, the testing accuracy improved until it reached 0.90, while the 

training accuracy was 0.92. Both then stayed in the same range with no more increases or decreases.  

 

 
Fig. 3 The left side shows the loss curves while the accuracy curves are at the right side. 

 
The two graphs demonstrate that our model did not suffer from an overfitting problem due to add dropout layers in each 

convolutional layer which provide regularization and hence prevent overfitting. To support our observation, we trained 

the model without the dropout layers to see how the training process would progress. We observed that the model without 

the dropout layers started overfitting the data from the beginning, and we had to stop the training at Epoch 30 where the 

loss function values for the training and testing data were 0.02 and 0.82, respectively. In addition, the gap between the 

training and testing accuracy got bigger which also indicates that the model overfitted the data. Finally, the results of 

training our model with BN provided a lower loss function value than the model without BN for both the training and 

testing data and also resulted in a higher model accuracy rate. 
 

C. Comparative Results on Deep 1D-CNN with Baseline Models 

Table IV represents the results of our model obtained on the ContextAct@A4H dataset when compared to the baseline 

models using the early mentioned metrics. As mentioned previously, ContextAct@A4H is a newly collected dataset, we 

could not find any work for activity recognition based deep learning on this dataset to compare our results with. Thus, we 

compare our network with two baseline models for time series classification in order to illustrate the advantages of our 

proposed deep 1d-CNN. Those two models are FCN [28] and lstm_128_128_dence [29]. 

 

Table IV Performance Comparison with Baseline Models 

Model Precision Recall F1 Time per/epoch 

FCN [28] 0.83 0.81 0.82 1:56m 

Lstm_128_128_dence [29] 0.81 0.81 0.81 5:48m 

deep 1D-CNN (Our Model) 0.92 0.89 0.90 4s 

 

From Table IV, we can see that our model on the ContextAct@A4H dataset achieved the best overall performance in terms 

of all the metrics compared to the baseline models where both achieved similar performance with slightly better 

performance for FCN. The results show that our 1dCNN is superior to the baseline models due to the very deep architecture 

that utilized one-dimensional convolutions followed by pooling size technique which can automatically and effectively 
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derive relevant and discriminative features from a fixed-length segment of the overall dataset to detect ADLs. Even though 

the recurrent-neural-network-based models (i.e., LSTM) were great techniques for time-series data, since they can find 

dynamic temporal dependency in a time sequence, in this work, we showed that 1D-CNN can perform better in learning 

how to classify time series data and successfully recognizing ADLs. In general, recurrent networks usually are preferred 

in predicting what comes next in a sequence, while CNNs are good at classifying a sequence by extracting very deep 

features. The results also indicate that our proposed model is faster in learning speeds due to the max-pooling technique, 

that minimizes the amount of output parameters in each layer which then minimize the computation in the network. 

 

VII. CONCLUSION 

 

In this work, one-dimensional deep convolutional layers equipped with max pooling technique were proposed to deal with 

time-series data to detect ADLs in ambient intelligent environments. Deep 1D-CNN unifies feature extraction and 

classification; it can automatically discover and extract the internal structure of the input time-series data and learn deep 

features to classify ADLs. We evaluated our proposed method on a new real-world dataset, ContextAct@A4H. The results 

demonstrated that 1D-CNN is one of the most competitive candidates for time-series classification, owing to its ability for 

learning more robust deep features. Our deep 1D-CNNs outperform other deep-learning-based models (e.g., LSTM) for 

recognizing ADLs in ambient intelligent environments. In the future, we aim to study the performance of our deep leaning 

network on other public dataset for ADLs. We also intend to study the effectiveness of recognition ADLs for energy-

saving potential in smart homes. 
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