Vol. 9, Issue 3, March 2020

Data Analytics and ML: Bank Transactions over a Long Period of Time

Kavya K¹, Manish Y M², Priyanka P A³, Savinay Shukla⁴

BE, Department of ISE, BNMIT, Bangalore, India^{1,2} Student, MBA, CMS Business School, Bangalore, India³ BTech, Department of IT, Manipal University, Jaipur, India⁴

Abstract: Banks have been the most important institutions of money lending and deposits. Primary functions include accepting deposits, offering loans, credit, overdraft, providing liquidity and discounting of bills. Secondary functions include providing safe custody of valuables, loans on valuables, corporate and consumer finances. Though the structure of banks has remained the same, the functionalities have been boosted. Automated tools, bots and computers have modernized the banking system. The dataset accumulated over a period of time is so huge that, automation tools and computer programs are the need of the day. In this paper we have tried to enhance the present bank credit-debit system by the use of Artificial Intelligence. Machine learning is a subset of AI and directly trains the machine by feeding the historic and runtime data collected during transactions. The machine which is trained is now capable of taking decisions, thereby making predictions. This would characterize the dataset as stored and predicted outcomes. Every business enthusiast would have keen interest to carefully study the performance of a financial institute for his/her benefit. In this assignment we have used both classification and regression algorithms to create a ML model of prediction. Linear regression model is designed from scratch using formula method. Classification algorithms like Support Vector Machine (SVM), Random Forest Classifier and KNN algorithms are effectively applied to fit to the dataset. Comparisons must be made during implementation to understand the pattern of predicted data. Regression algorithms like linear regression (developed from scratch) will be a boost to the accuracy of the assignment (categorical data excluded).

Keywords: accepting deposits, offering loans, credit, overdraft, providing liquidity and discounting of bills, Automated tools, bots and computers, Machine learning, Support Vector Machine (SVM), Random Forest Classifier and KNN algorithms, linear regression (developed from scratch), historic and runtime data collected during transactions, AI.

I.INTRODUCTION

In this information era, huge amount of data is being stored, exchanged and conditioned. The volume of data that one has to deal with has exploded to unimaginable levels. Most of the data exists in its crude form and needs to be converted to useful format before analysis. This process of converting raw data into useful format is called data preprocessing. Real world data is [1]

- Incomplete: consists of missing attribute values or consists of only aggregate data.
- Noisy: containing errors or outliers.
- Inconsistent: containing discrepancies in code.

Our assignment consists of the following attributes. Table 1 shows the attributes with their description

Sl.no	Attributes	Description
1.	ID	ID given to Borrower.
2.	loan_amnt	amount of money requested by the borrower.
3.	funded_amnt	The total amount committed to that loan at that point in time.
4.	funded_amnt_inv	The total amount committed by investors for that loan at that point in time.
5.	term_months	Time in months given to the borrower to return the loan amount.
6.	int_rate	The interest rate of the loan, as a proportion (a rate of 11% would be stored as 0.11).
7.	installment	The monthly installments owed by the borrower if the loan is funded.
8.	emp_length	Time in years where the borrower has been employed.
		(0.5 = < 1 year)
		1 = 1 year

Vol. 9, Issue 3, March 2020

		2=2 years
		3=3 years
		4=4 years
		5=5 years
		6 = 6 years
		$7 - 7 y_{00} r_{0}$
		7 - 7 years
		8 = 8 years
		9=9 years
0	1 1'	10=10+ years)
9.	home_ownership	State or fact of exclusive rights and control over borrower property.
		1= mortgage
		2 = rent
		3= own
10.	annual_inc	The annual Income of the borrower.
11.	verification_status	A Verification Stage is a three-stage indicator of the progress on the loan,
		and documentation
		0- Not Verified
		1 – Source Verified
12	issue veer	2= Verified The year in which the loan is issued
12.	loop status	0 Eully Daid (A 'fully maid' lean has been repaid in full including
15.	Ioan_status	• 0-Fully Paid (A fully paid foan has been repaid in full including all principal and interest payments.)
		• 1- Charged off(An amount of debt that is unlikely to be
		collected) or Default
14.	purpose	The main reason the borrower applies for a loan.
		1= debt_consolidation
		2= credit_card
		3 = car
		4= vacation
		5 = home improvement
		6- small husineses
		0_ shan_busheses
		/= major_purchase
15	aarliast or lina data	8= medical The month the horrower's earliest reported credit line was opened
15.	deling 2vrs	The number of times the borrower had been 30+ days past due on a
		payment in the past 2 years.
17.	inq_last_6mths	The borrower's number of inquiries by creditors in the last 6 months.
18.	open_acc	Number of open credit lines on the borrower's credit file.
		(A line of credit (LOC) is a preset borrowing limit that can be used at any
10	pub roc	time.) The horrower's number of decoratory public records/hontrupter filings
19.		tax liens, or judgments).
20.	revol bal	The borrower's revolving balance (amount unpaid at the end of the credit
		card billing cycle).
21.	revol_util	The borrower's revolving line utilization rate (the amount of the credit line
		used relative to total credit available).
22.	total_acc	Total number of historical credit lines on the borrower's file.

Vol. 9, Issue 3, March 2020

23.	out_prncp	Remaining outstanding principal for total amount funded.					
24.	out_prncp_inv	Remaining outstanding principal for portion of total amount funded by					
		investors					
25.	total_pymnt	Payments received to date for total amount funded.					
26.	total_pymnt_inv	Payments received to date for portion of total amount funded by investors.					
27.	last_pymnt_d	Last month payment was received.					
28.	total_rec_late_fee	Late fees received to date.					
29.	last_pymnt_amnt	Last total payment amount received.					
30.	application type	Indicates whether the loan is an individual application or a joint					
		application with two co-borrowers.					
		1= individual					
		2 - ioint con					
21	tot coll amt	Z= Joint app					
31.	tot_cur_bal	Total current balance of all accounts					
32.	open act il	Number of currently active installment trades					
24	open_act_n	Number of installment accounts opened in past 24 months					
34. 25	open_n_24m	Number of instantinent accounts opened in past 24 months.					
<u> </u>	inuis_since_rent_ii	Patie of total summent halonge to high gradit/gradit limit on all install east					
<u> </u>	II_util	Number of trades energed in post 24 months					
37.	acc_open_past_24mtns	Number of trades opened in past 24 months.					
<u> </u>	avg_cur_bai	Total area to huw on revoluing honkoords					
<u> </u>	bc_open_to_buy	Patie of total surrant halance to high gradit/ and it limit for all hanksond					
40.	bc_utii	Ratio of total current balance to high credit/ credit limit for all balkcard					
<u></u>	chargeoff within 12 mths	Number of charge-offs within 12 Months					
41.	deling ampt	The past due amount owed for the accounts on which the borrower is now					
42.	dennq_annit	delinquent					
43	mths since recent be	Months since most recent bankcard account opened					
44	mths_since_recent_ing	Months since most recent junited a desant opened.					
45	num accts ever 120 pd	Number of accounts ever 120 or more days past due					
46	num_actv_bc_tl	Number of currently active bankcard accounts					
47	num_acty_cc_ti	Number of currently active revolving trades					
48	num_detv_rev_d	Number of satisfactory bankcard accounts					
49	num_bc_fl	Number of bankcard accounts					
50	num_cc_u	Number of Installment accounts					
51.	num op rev tl	Number of open revolving accounts.					
52.	num rev accts	Number of revolving accounts.					
53.	num rev tl bal øt 0	Number of revolving trades with balance >0					
54.	num sats	Number of satisfactory accounts.					
55.	num tl op past 12m	Number of accounts opened in the last 12 Months.					
56.	pct tl nyr dla	Percent of trades never deliguent					
57.	percent bc gt 75	Percentage of all bankcard accounts>75% of limit.					
58.	pub rec bankruptcies	Number of public record bankruptcies.					
59.	tot hi cred lim	Total high credit /credit limit.					
60.	total bal ex mort	Total credit balance excluding mortgage.					
61.	total be limit	Total bankcard high credit /credit limit					

Table 1

II.PROBLEM STATEMENT

In a bank huge dataset is produced with everyday transaction and with ever increasing deposits, loans, insurance policies, over drafts and other services. A bank with huge customers is considered and transaction data of 20 years has been recorded. The identity of the customer is morphed. Unique IDs to be presented to the same. Data needs to be examined for pattern recognition and data pre-processing needs to be carried out to -

- Fill the missing values or null values
- Remove redundant entries.
- Treat NaN values.

Vol. 9, Issue 3, March 2020

- Replace string values with their numerical counterparts.
- Create a sketch of post-assigned categorical values in each column defining a particular attribute.

The pre-processed data needs to be fed to the machine for training. The patterns would train the machine to make predictions in all possible situations. Classification algorithms like SVM, Random forest classifier, KNN and logistic regression need to be applied. Linear regression is modelled from scratch without using libraries for more accuracy and F1 score.

III.METHODOLOGY

- i.Data acquisition Data acquisition is carried out. Everyday transactions are recorded and stored in the database. Figure 1 shows the process of data acquisition. 20 years data transaction consists of about 1.5 million unique transaction IDs. About 140 parameters or attributes are part of this dataset. Few of them have been tabulated above. [1] [2]
- ii.Data Inspection The acquired data is inspected before data pre-processing. The data needs to be preprocessed before analytics or training. Figure 2 shows the process of data inspection. [3]
- iii.Data Visualization Graphical analysis of the dataset which is huge in nature is essential. Figure 3 shows a bar graph of verification_status v/s count. Figure 4 shows a count plot of loan purpose. Figure 5 shows a hue plot of home_ownership against loan_status. [4]
- iv.Correlation is carried out and heat map plotted as shown in figure 6. Regions of strong and weak correlation is described by the color bar. Neutral values are ignored.
- v.Linear regression is used to create a ML model for columns with non-categorical behavior. Figure 7 shows the code bit of the same using formula method (no libraries used). [5]
- vi.Classification algorithms like SVM, KNN and Random forest classifier are applied to the model.
- vii. The predicted values are well tabulated, accuracy measured and compared. [6]
- viii. The predictions are sent back to be stored in the database for a closed loop execution in the coming years and will be continuously compared with the then run time values or transactions.
- ix. The master table or the data table with raw or crude data is updated each time a new transaction takes place and the manipulated dataset is treated with time before execution.

In [1]:	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split</pre>												
In [2]:	df= pd.read_csv(r'C:\Users\nups0\Desktop\dataset.csv')												
In [3]:	df												
Out[3]:		id	loan_amnt	funded_amnt	funded_amnt_inv	term_months	int_rate	installment	emp_length	home_ownership	annual_inc	1	1um_tl_90g_dpd_
	0	1474286	30000	30000	30000	36	22.35	1151.16	5.0	1	100000.0		
	1	1474287	40000	40000	40000	60	16.14	975.71	0.5	1	45000.0		
	2	1474288	20000	20000	20000	36	7.56	622.68	10.0	1	100000.0		

Figure 1 shows the process of data acquisition.

Vol. 9, Issue 3, March 2020

In [6]:	df.size									
Out[6]:	614481									
In [7]:	df.shape									
Out[7]:	(7063, 87)									
In [8]:	df.dtypes									
Out[8]:	id loan_amnt funded_amnt funded_amnt_inv term_months	int64 int64 int64 int64 int64								
	<pre>tot_hi_cred_lim total_bal_ex_mort total_bc_limit total_il_high_credit_limit disbursement_method Length: 87, dtype: object</pre>	int64 int64 int64 int64 int64								

Out[14]: Text(0.5, 1.0, 'Verification status graph')

Figure 4 shows a count plot of loan purpose.

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 9, Issue 3, March 2020

Figure 5 shows a hue plot of home_ownership against loan_status.

	id	loan_amnt	funded_amnt	funded_amnt_inv	term_months	int_rate	installment	emp_length	home_ownership	annual_inc	
id	1.000000	0.027341	0.027341	0.027288	0.041211	0.130415	0.044465	-0.035195	0.057782	-0.055215	
loan_amnt	0.027341	1.000000	1.000000	0.999995	0.390274	0.106911	0.951471	0.082418	-0.089565	0.324420	
funded_amnt	0.027341	1.000000	1.000000	0.999995	0.390274	0.106911	0.951471	0.082418	-0.089565	0.324420	
funded_amnt_inv	0.027288	0.999995	0.999995	1.000000	0.390464	0.107005	0.951404	0.082396	-0.089583	0.324391	
term_months	0.041211	0.390274	0.390274	0.390464	1.000000	0.383300	0.167894	0.041518	-0.065941	0.041844	
tot_hi_cred_lim	-0.098492	0.279343	0.279343	0.279400	0.079582	-0.112946	0.250768	0.139870	-0.368591	0.557846	
total_bal_ex_mort	-0.032480	0.217649	0.217649	0.217665	0.084091	0.058044	0.213551	0.046978	-0.127184	0.399346	
total_bc_limit	-0.109086	0.311789	0.311789	0.311762	0.045502	-0.234596	0.277310	0.066914	-0.062696	0.348812	
total_il_high_credit_limit	-0.039759	0.159554	0.159554	0.159590	0.064376	0.032922	0.155136	0.048567	-0.113876	0.360716	
disbursement_method	0.127683	-0.033662	-0.033662	-0.033713	-0.014596	0.116828	-0.011868	0.002189	0.013929	-0.005046	

Figure 6 shows the heatmap coefficients.

```
In [12]:
         #mean of X and Y
         mean x = np.mean(X)
         mean_y = np.mean(Y)
         #total number of values
         m = len(X)
         #formula to calculate b1 and b0
         numer= 0
         denom= 0
         for i in range(m):
             numer+= (X[i] - mean_x) * (Y[i] - mean_y)
             denom+= (X[i] - mean_x) ** 2
         b1 = numer/denom
         b0 = mean_y - (b1 * mean_x)
         #b1 and b0 are m and c respectively in y=mx+c
         print(b1,b0)
         0.08346747763810816 12009.934165736577
```

Figure 7 shows the code bit of the same using formula method (no libraries used).

IV.RESULTS

• Figure 8 shows the accuracy comparison of the classification algorithms. Random Forest Classifier model has an accuracy of 99.9%, Logistic regression model has an accuracy of 99.75%, KNN model has an accuracy of 80.89% at K=3 and 5 and SVM model has an accuracy of 75.87%. So, we Random Forest and Logistic Regression method show very good accuracies and are a very good fit to this assignment.

• Linear Regression model shows an accuracy of 91.155%. Figure 9 shows the r^2 value of the linear regression model.

• Figure 10 shows the predictions or the X_test values after linear regression.

Vol. 9, Issue 3, March 2020


```
In [14]: ss_t = 0
ss_r = 0
for i in range(m):
    y_pred = b0 + b1 * X[i]
    ss_t += (Y[i] - mean_y) ** 2
    ss_r += (Y[i] - y_pred) ** 2
r2 = 1 - (ss_r/ss_t)
R2=r2*10
print(R2*100)
```

```
91.15564927258013
```

Figure 9 shows the r² value of the linear regression model.

```
In [25]: Y[250:500]
Out[25]: array([10000,
                         5000, 10000, 10000, 20000,
                                                      3500.
                                                             9500, 30000, 15000,
                 15000,
                         5000, 25000, 10800, 40000,
                                                      5500, 10000, 10000, 16800,
                  3000, 10000,
                                7000,
                                        6000,
                                               8000, 30000, 12000,
                                                                    15500, 25000,
                  1300,
                        25000,
                                5000, 10000,
                                               6400, 11000,
                                                            28000,
                                                                    12000,
                                                                           12350,
                 35000, 30000, 30000, 1000, 10000, 11000, 35000,
                                                                    7000, 31400,
                 16000,
                         3000, 10000,
                                        1600, 17000,
                                                      5500,
                                                             8000,
                                                                     2500, 15000,
                 18000, 35000, 15000, 10000,
                                               6500, 15000, 24000, 10000, 25000,
                 29700,
                        37000, 16000,
                                      19050,
                                               9000, 24000, 35000,
                                                                    10000, 10000,
                                               3200, 40000, 40000,
                 40000, 18000, 16000, 15000,
                                                                    1000,
                                                                           2500,
                  8000,
                        19000.
                                9000,
                                      12000, 30000, 10000, 25000,
                                                                    16000.
                                                                            6000
                                6500, 27650, 24000, 20000, 25000, 25000, 10000,
                 12000, 30000,
                                                     20000, 14500,
                 35500,
                        20000.
                                3000,
                                        6000, 28000,
                                                                    25000, 10000.
                                        2000, 28000, 24000, 40000,
                  7500.
                        30000.
                                2850,
                                                                    10000.
                                                                            8800.
                                      40000, 19975, 21000, 23500,
                 19000,
                         6125,
                               20000,
                                                                     3900, 16500,
                 15000,
                         8500,
                               32425,
                                      30000,
                                               4000,
                                                      8000,
                                                            30000,
                                                                    15000, 15000,
                  7200,
                         4800, 20000,
                                      18000,
                                               5000, 27000, 10000,
                                                                     5000, 10000,
                  9500,
                        28800,
                               31200,
                                        5000,
                                               1400, 12000,
                                                             5000,
                                                                     9000,
                                                                           20550,
                  7000,
                         2000, 15600,
                                        4500, 40000, 21000, 16000, 10000, 20000,
                  8000, 10000,
                                1500, 40000,
                                               6600, 17000, 11000,
                                                                     4800, 28000,
                 12000,
                        4500,
                                2600,
                                        5000,
                                               6475, 4000,
                                                             2000,
                                                                     3600, 10000,
                 18000,
                         4000, 10000,
                                        2000, 10000,
                                                      3000,
                                                              2000,
                                                                    10000, 15000,
                         4500,
                                        7500, 35000, 10400,
                                                                    8000, 34000,
                 30000.
                                3200,
                                                             6300,
                 30000,
                        20000,
                               30000, 15000, 19200,
                                                      8000, 40000, 11200, 10000,
                  5500, 12000, 21000,
                                        6000.
                                                      2000, 40000, 12000, 25000,
                                              8500,
                 13500,
                        10000.
                               40000,
                                        3000.
                                             12000.
                                                     23500, 10000,
                                                                    11000, 22000,
                                      38000, 40000,
                                                     30000.
                 11775,
                        17000.
                                6000.
                                                             7200.
                                                                     9600, 15000.
                                       9500,
                 10000,
                         5000,
                                6025,
                                               9000,
                                                      8000,
                                                            15000.
                                                                     3000,
                                                                            5000.
                  3000,
                         8000, 12000, 16000, 14000,
                                                      4000,
                                                             4800], dtype=int64)
```

Figure 10 shows the predictions or the X_test values after linear regression.

Vol. 9, Issue 3, March 2020

V.CONCLUSIONS

A Bank proactive in business in this 21st century world has many day to day transactions. Data analytics had to be carried out on the data –both historical and present trend to draw inference. The goal was to create or improve the ML model and carry out accuracy check comparison. A python code was written and executed in the Jupyter platform to analyse and draw conclusions. Classification algorithms like Support Vector Machine (SVM), Random Forest Classifier and KNN algorithms are effectively applied to fit to the dataset. Comparisons must be made during implementation to understand the pattern of predicted data. Random Forest Classifier model has an accuracy of 99.9%, Logistic regression model has an accuracy of 99.75%, KNN model has an accuracy of 80.89% at K=3 and 5 and SVM model has an accuracy of 75.87%. We can conclude that Random Forest Classifier and Logistic Regression models are the best fit to this dataset. Since this data also behaves well for Linear regression algorithm, Linear regression is modelled from scratch without using libraries for more accuracy (91.155%) and F1 score.

REFERENCES

[1]. Principles of data mining- DJ Hand - Drug safety, 2007 - Springer

[2]. The Python Standard Library — Python 3.7.1rc2 documentation-https://docs.python.org/3/library/

[3]. Research on Data Preprocess in Data Mining and Its Application- J Zhi-gang, JIN Xu - Application Research of Computers, 2004 - en.cnki.com.cn

[4]. Data Mining and Analytics: A Proactive Model - http://www.ijarcce.com/upload/2017/february-17/IJARCCE%20117.pdf

[5]. A comparative analysis on linear regression and support vector regression- DOI: 10.1109/GET.2016.7916627

[6]. Data Warehousing Architecture and Pre-Processing- Vishesh S, Manu Srinath, Akshatha C Kumar, Nandan A.S.- IJARCCE, vol 6, issue 5, May 2017.