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Abstract: It is certain that optical and electronic microscopy images of steel-based specimen can be categorized into 

phases on preset ferrite/pearlite, Spheroidized, ferrite, pearlite, and martensite type microstructures with image 

processing and statistical analysis which include the machine learning techniques. Though several popular classifiers 

were get the reasonable class labelling accuracy, the random forest was virtually the best choice in terms of overall 

performance and usability. The present classifier could assist in choosing the appropriate pattern recognition method 

from various steel microstructures, which we have recently reported. This means that, the combination of the 

categorizing and pattern recognizing methods provides a total solution for automatic classification of a wide range of 

steel microstructures. In this work we present an innovative approach for metallurgical sample identification and error 

calculation based on imaging classification with machine learning algorithm. 
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I. INTRODUCTION 

 

Steel is proved to be one of the most reasonable and more used types of materials because of its mechanical properties 

while keeping costs low and it gives a huge variety of applications. The mechanical properties of steel are primarily 

determined by its microstructure, so that the performance of the material highly depends on the distribution, shape and 

size of phases in the microstructure. Thus, correct classification of these microstructures is crucial. The microstructure 

of steels is consists of various distinct phases such as austenite, bainite, martensite etc. based on a vast number of 

parameters such as base metal, alloying elements, rolling setup, cooling rate, heat treatment and further post-treatments 

such as tempering. Based on the steel manufacturing process and due to these parameters, the microstructure consists of 

different constituents such as ferrite, cementite, intermediate phases [4], austenite, pearlite, bainite and martensite [3]. 

Metal alloys, or even pure metals, present different structure, since they can have specific grain boundaries, phase 

boundaries, inclusion distribution, and so forth. Thus, during microscope observation, material engineer has to focus on 

many details to get a better identification. However, observing material structure is hard even for the most trained 

engineer, since different materials have different characteristics and specific protocol. Learning the whole set of 

protocols and procedures for all materials, is not just almost impossible, but also useless since, protocols are reviewed 

frequently. Since Metallography studies relies on imaging observation and decision making by observers, this work 

presents an approach for metallography of commercially available materials by image classification with machine 

learning algorithms. Hence we are developing a automated machine learning assisted system which will detect the 

microscopic structure of steel and classify it. There are a lot of protocols to direct recognize material structure, for 

instance ASTM E112[1], which provides directions to determine average grain size for metals. However, observing 

material structure is hard even for the most trained engineer, since different materials have different characteristics and 

specific protocol. 

 

II. OBJECTIVE 

 

• To develop a machine learning system for classification of different types of steel metal based upon their 

microscopic images. 

• To use a image processing algorithm which provides the maximum accuracy and least cases for erroneous results. 

• To detect the defects present in the microscopic structure such as pores, cavities, impurities and display the purity 

percentage of the given sample. 

• To develop a System, which processes the microscopic images of the Steel and classify them into different 

phases/types as: 

• Martensite 

• Ferrite 

• Ferrite-Pearlite 
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• Spheroidized 

• Defect, if any. 

 

III. EXISTING SYSTEM  

 

 
Fig. 1 Existing system 

 

The internal structure of a metal is called microstructure. It stores the genesis of a metal and determines all its 

mechanical, metallurgical properties. The characterization of metal microstructure is widely used and well known, the 

microstructure classification is generally done manually by human experts, which gives rise to uncertainties due to 

subjectivity and expertise of individual. As the microstructure is a combination of different phases, constituents with 

complex and intermediate substructures, intermediate phases its automatic classification is very challenging and only a 

few prior studies exist. Prior works are mainly focused on designed and engineered features by experts and classified 

microstructures separately from the feature extraction step. Lately, Deep Learning methods have shown strong 

performance in vision applications by learning the features from data together with the classification step. In existing 

system, it proposes a Deep Learning method for microstructural classification in the examples of certain 

microstructural constituents of low carbon steel. This method uses pixel-wise segmentation via Fully Convolutional 

Neural Networks (FCNN) accompanied by a max-voting scheme. Existing system achieves 93.94% classification 

accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performing 

capabilities of the method, this line of research offers a more robust and first of all objective way for the difficult task 

of steel quality appreciation. 

 

IV. PROPOSED SYSTEM  

 

 
Fig. 2 System architecture 
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1. Eigenvalue and Eigenvector: 

To understand significance of eigenvalues and eigenvectors everywhere, one should  first understand reason behind  

encounter of  matrices and vectors everywhere. 

In a various situations, the objects we study and the thing we can do with them link to vectors and linear 

transformations, which are represented as matrices. 

So, in many interesting situations, important relations are expressed as, y =Mx 

Where y and  x  are vectors and M  is a matrix. This ranges from systems of linear equations you have to solve (which 

occur virtually everywhere in science and engineering) to more sophisticated engineering problems (finite element 

simulations). It also is the foundation for (a lot of) quantum mechanics. It is also used to describe the basic geometric 

transformations we can do with vector graphics and 3D graphics in computer games. 

Currently, it is generally not straightforward to look at some matrix M and immediately decide what it is resultant when 

we multiply it with some vector x. In addition, in the study of iterative algorithms we should know about higher powers 

of the matrix M, i.e. Mk=M⋅M⋅...M k=M⋅M⋅...M, k k times. This is a bit awkward and costly to compute in a naive 

fashion. This observation is summarized by the theory of eigenvectors. An eigenvector of a matrix M is any 

vector x→ that only gets scaled (i.e. just multiplied by a number) when multiplied with M. Formally, Mx =λx so, if your 

matrix M describes a system of some sort, the eigenvectors are those vectors that, when they go through the system, are 

changed in a very easy way. If M, consider, describes geometric operations, then M could, in principle, stretch and 

rotate the vectors. But eigenvectors only get stretched, not rotated. 

The eigenbasis also plays an important role. By selection of a different basis for vector space, we can alter the aspect of 

the matrix M in that basis. In other words, the i-th column of M tells you what the i-th basis vector multiplied 

with M would look like. If all our basis vectors are also eigenvectors, then it is clear that the matrix M is diagonal. 

Diagonal matrices are a welcome sight, because they are really easy to deal with: Matrix-vector and Matrix-matrix 

multiplication becomes very efficient, and computing the k-th power of a diagonal matrix is also trivial. 

 

2. KAZE: 

Multiscale image processing is a very important tool in computer vision applications. We can abstract an image by 

automatically detecting features of interest at different scale levels. For each of the detected features an invariant local 

description of the image can be obtained. These multiscale feature algorithms are a key component in modern computer 

vision frameworks, such as scene understanding [1], visual categorization [2] and large scale 3D Structure from Motion 

(SfM) [3]. The main idea of multiscale methods is quite simple: Create the scale space of an image by filtering the 

original image with an appropriate function over increasing time or scale. In the case of the Gaussian scale space, this is 

done by convolving the original image with a Gaussian kernel of increasing standard deviation. For larger kernel values 

we obtain simpler image representations. With a multiscale image representation, we can detect and describe image 

features at different scale levels or resolutions. Several authors [4, 5] have shown that under some general assumptions, 

the Gaussian kernel and its set of partial derivatives are possible smoothing kernels for scale space analysis. 

However, it is important to note here that the Gaussian scale space is just one instance of linear diffusion, since other 

linear scale spaces are also possible [6]. Multiscale image processing is a very important tool in computer vision 

applications. We can abstract an image by automatically detecting features of interest at different scale levels. For each 

of the detected features an invariant local description of the image can be obtained. These multiscale feature algorithms 

are a key component in modern computer vision frameworks, such as scene understanding [1], visual categorization [2] 

and large scale 3D Structure from Motion (SfM) [3]. 

The main idea of multiscale methods is quite simple: Create the scale space of an image by filtering the original image 

with an appropriate function over increasing time or scale. In the case of the Gaussian scale space, this is done by 

convolving the original image with a Gaussian kernel of increasing standard deviation. For larger kernel values we 

obtain simpler image representations. With a multiscale image representation, we can detect and describe image 

features at different scale levels or resolutions. Several authors [4, 5] have shown that under some general assumptions, 

the Gaussian kernel and its set of partial derivatives are possible smoothing kernels for scale space analysis. 

However, it is important to note here that the Gaussian scale space is just one instance of linear diffusion, since other 

linear scale spaces are also possible [6]. 

Multiscale image processing is a very important tool in computer vision applications. We can abstract an image by 

automatically detecting features of interest at different scale levels. For each of the detected features an invariant local 

description of the image can be obtained. These multiscale feature algorithms are a key component in modern computer 

vision frameworks, such as scene understanding [1], visual categorization [2] and large scale 3D Structure from Motion 

(SfM) [3]. 

The main idea of multiscale methods is quite simple: Create the scale space of an image by filtering the original image 

with an appropriate function over increasing time or scale. In the case of the Gaussian scale space, this is done by 

convolving the original image with a Gaussian kernel of increasing standard deviation. For larger kernel values we 

obtain simpler image representations. With a multiscale image representation, we can detect and describe image 
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features at different scale levels or resolutions. Several authors [4, 5] have shown that under some general assumptions, 

the Gaussian kernel and its set of partial derivatives are possible smoothing kernels for scale space analysis. 

However, it is important to note here that the Gaussian scale space is just one instance of linear diffusion, since other 

linear scale spaces are also possible [6]. 

Multiscale image processing is a very important tool in computer vision applications. One can extract an image by 

automatically detecting features of interest at different levels. Each of the detected features is associated with an 

invariant local description of the image. These multiscale feature algorithms are a key component in modern computer 

vision frameworks, such as scene understanding, visual categorization and large scale 3D Structure from Motion (SfM). 

The main idea of multiscale methods is quite simple: Create the scale space of an image by filtering the original image 

with an appropriate function over increasing time or scale. In the case of the Gaussian scale space, this is done by 

convolving the original image with a Gaussian kernel of increasing standard deviation. For larger kernel values we 

obtain simpler image representations. While representing a multiscale image, we can detect and describe image features 

at different scale levels or resolutions. Several authors have shown that under some general assumptions, the Gaussian 

kernel and its set of partial derivatives are possible smoothing kernels for scale space analysis. However, it is important 

to note here that the Gaussian scale space is just one instance of linear diffusion, since other linear scale spaces are also 

possible.  

 

3. Algorithm:  

Step 1: Read the training data (images). 

Step 2: Apply KAZE Algorithm to extract feature of training image 

Step 3: Store the feature of all training images in .pck file. 

Step 4: Give an input to system, new image 

Step 5: Apply KAZE algorithm to new image and extract the feature 

Step 6: Now compare the training Image and new input image using EIGENVALUE algorithm 

Step 7: Find the microstructure and defect of metal 

Step 8: As result get the microstructure and defect of metal. 

 

V. RESULT AND DISCUSSION 

 

The system demonstrates the feasibility of an effective steel microstructural classification using Machine Learning 

methods without a need of separate segmentation and feature extraction.  Following table demonstrates the sample 

results of microstructure recognition of steel: 

 

Table 1: Field image classification result 

Original Identified Defect Defect % 

Ferrite Ferrite Yes 8 

F-Pearlite Ferrite Yes 15 

Car Micro not found None None 

Martensite Martensite No 0 

Spheroidized Spheroidized Yes 3 

 

Above table indicates that system is capable of identification fixed set of microstructures under specific conditions. In 

case of improper surface preparation[2], system may not be able to identify the microstructure. System is able to 

distinguish between microstructural classes. 

 

VI. CONCLUSION 

 

This work demonstrates the feasibility of an effective steel microstructural classification using Machine Learning 

methods without a need of separate segmentation and feature extraction. The present approach can, in principle, be 

transferred to similar image-based challenges in other complex microstructures at all scales. In the context of dual 

phase steels, a meaningful comparison of the manifold of microstructures subsumed under each industrial grade would 

be an exceedingly fruitful next step that now appears within reach. If successful, it would truly bring together the 

insights into the materials physics of deformation-induced damage[3], currently scattered across laboratories worldwide 

to enable more powerful knowledge-driven microstructure and process design for this important material class. 
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