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Abstract: The native concept of 3D human localization, from monocular color images is an ill posed problem. 

Considering the limitations of neural networks, we compare various loss functions that are based on a variety of 

distributions. Monoloco is a 3D pedestrian localization architecture which uses a lightweight feed forward neural network 

and predicts the distance of pedestrians, from the camera and the uncertainty associated with its prediction based on 

Laplacian loss. We trained two individual models on Kitti dataset with updated unnormalization methods, changed 

dataset sizes and Losses which are Cauchy and Generalized Extreme Value (Gev) losses. These newly trained models 

using Monoloco were observed to perform better. We evaluated these trained models on Kitti dataset and found 

improvised results than existing Monoloco. 
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I. INTRODUCTION  

 

In the present era, the most commonly used ranging technologies are LIDAR and RADAR. Despite their sparsity of point 

clouds over long ranges [1,2,3], these technologies are extremely costly to set up and maintain. Adoption of stereo/multiple 

cameras has been proposed to tackle the drawbacks of the above-mentioned technologies [4,5]. There are many researches 

going on to push the limits of monocular perceptions by contributing to multi-sensor fusion [6]. While there is a huge 

progress in the field of estimating 3D positions of the vehicles from monocular data [7,8,9], the pedestrians received low 

attention due to lack of good performance. In reality, detection of 3D positions of humans from a single 2D image is very 

uncertain due to the diversity their heights and shapes. The works of Kendall and Gal [10] showed us the real time 

uncertainty estimation in deep learning for perception tasks, and difference between the aleatoric and epistemic 

uncertainties [11]. The comparison of the measure of proposed and known uncertainty is shown as task error. Based on 

the classification of human heights within the adult population, the task error and the upper bound status of the model were 

set and shown accurate results in the localization without overcoming the limitations [12]. A pose estimator [35] gives the 

information on the dimensional representation of human 2-D joint. These detected joints and the 3D position (ground truth) 

of each detected instance are given as inputs to train the light-weight-feed forward network proposed in Monoloco[12]. 

 

 
Fig1: Output of the model with changed sizes of training and validation datasets with Cauchy loss. The color of the dot 

represents the predicted distance from the camera. To the left is the bird’s eye view of the image. 

 

At inference time, a 2D image is given as input to the trained network and it predicts the 3D location of pedestrians along 

with confidence about its prediction [12]. In this work, we study that uncertainty in locating humans in the scene and 

overlook learning ability on this data. From the perception task, we aim to provide more data to this problem in 

uncertainty estimation through deep learning. We develop the existing model with the recently developed loss functions 

based on Cauchy and Generalized extreme value distributions [13,14]. The new unnormalized spread of data shows better 

performance in the aspects of uncertainty and predicts the positions better, and the compared results are shown below. 

The code is publicly available online1 
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II. RELATED WORK 

 

Monocular 3D Object detection: 

Most of the monocular detection methods have been found to be center their focus on vehicles and other objects with 

fixed shapes. The evaluation of pedestrians from monocular images has been considered insignificant in previous works. 

The work of Kundegorski and Breckon [36] which combined infrared imagery and real time photogrammetry achieved 

sensible results. In the method of Mono3D, deep learning was used to create 3D object proposals for car, cyclists and 

pedestrian categories. Their proposals assumed fixed ground plane and were scored based on scene priors like shape, 

semantic and instance segmentations. Methods like [8,16,15] used geometrical reasoning to regress 3D pose parameters 

from 2D detections. 

 
Fig 2:   The above images show the comparison between ALE (Average Localization Error) vs GT (Ground Truth) for 

Monoloco model with changed training and validation dataset sizes with different loss functions. These graphs are 

obtained when the loss functions used are is Laplace, Cauchy and Gev losses respectively (from left to right) 

[17] and [18] used a module for depth estimation. [9] used a bird's eye view to map image-based features instead of image 

domain using integral images. Most of these methods only achieved reasonable performances for vehicles. Monocular 

method to address categories like pedestrians and cyclists in the case of autonomous driving has been addressed by 

Monoloco. 

 

Uncertainty in Computer Vision: 

In Autonomous driving framework, where safety is very crucial, the DNN's used should not only provide correct outputs 

but also a measure of uncertainty. Bayesian Neural Networks (BNNs) [19,20] were usually used to model epistemic 

uncertainty through probability distribution over the weights and biases of the models. But these distributions were found 

hard to be dealt with. Some intriguing solutions to perform Bayesian inference to measure uncertainty were provided by 

researchers which include [21,22,23]. [24,25] showed that applying dropout during inference will result in a form of 

variational inference where parameters of the network are modelled as a mixture of multivariate Gaussian distributions 

with small variances. This technique, which is quite popular, is called Monte Carlo (MC) dropout, because of its 

flexibility to non-probabilistic deep learning frameworks. This has been used in [10,26,27]. 

 

Human Pose Estimation: 

Recognising humans from images and evaluate their skeletons is a broadly examined issue. There are two groups of state-

of-the-art methods namely Top-down [28,29,30] and bottom-up [31], which are based on CNN's. [32] showed the efficacy 

of concealed information in 2D joints stimuli. They used a fully connected network with light weights to predict 3D joints 

form 2D poses and achieved state of the art results. Similar work was done by [33] without providing the 3D location of 

the person in the image. 

 

MonoLoco: 

Monoloco is a 3D pedestrian localization method which outputs the predicted distance of a person from the camera, in 

2D images along with some uncertainty. It uses PifPaf as a standard decoder for pose estimation and calculates the 

distance based on the output of the pose estimator. [12] 

 

III. PROPOSED MODEL 

 

Convolutional Neural Networks are widely used in the field of deep learning and pattern recognition. The key parameters 

of neural network are weights, biases, and activation functions. The pattern in the data is to be recognised as it can be 

used to predict the output for a random input. The weights and the biases are the variables which are responsible to 

recognise the inherent pattern in the data. These parameters result in the linear polynomial which is the predicted 

relationship between input and output data. While training the neural network, a special function called loss function or 
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cost function is used to evaluate the prediction and quantify its error in prediction (if any). Loss function plays a crucial 

role in calculating the weights and biases. Loss function inputs predicted and true value and outputs the error in prediction. 

Different losses can be calculated from several probability distributions such that the distribution fits the data. 

 

MonoLoco: 

The input to Monoloco is a set of 2D joints extracted from a raw image and the output is the 3D location of a pedestrian 

µ and the spread b which represents the associated aleatoric uncertainty. µ±b is the confidence interval for the prediction. 

Epistemic is obtained through stochastic forward passes applying MC dropout is applied to calculate the Epistemic 

Uncertainty in a stochastic forward pass [24]. 

 

The dashed ellipse represents the two combined uncertainties are represented using dashed ellipse. Every fully connected 

layer output 256 features. It is followed by a Batch Normalization layer [34] and a ReLU activation function.          

MonoLoco v4.0 uses a Laplacian loss to calculate and alter the parameters of the network so that loss is minimized. There 

are several other distributions that can be used to derive a loss function for the model. The Monoloco model outputs the 

predicted distance (𝜇) and the spread (b). These two values are to be used along with the ground true distance (x) and the 

constructed loss function should be able to change the network’s parameters so that it matches the inherent pattern in the 

data. L1 loss is the absolute difference between the predicted and true distances. Using this difference as the error in 

prediction, the weights and biases are modified. Laplacian loss is one of the few losses which are based on L1 loss. 

Firstly, we changed the sizes of training and validation datasets. The number of images used for training were increased 

by a factor of 1.2. Two models are generated using (i) Cauchy and (ii) Generalized extreme value losses based on Cauchy 

and Generalized extreme value distributions respectively by using Monoloco to enhance the performance. 

  

Cauchy Loss: 

The original distribution:  

𝑓(𝑥|𝑥0, 𝛾) =
1

𝜋𝛾[1+(
𝑥−𝑥0
𝛾

)2]
    

where 𝑥0 is location parameter and 𝛾 is spread [13]. 

 

     The Cauchy loss is derived using negative log likelihood of the Cauchy distribution. The loss function is as follows: 
 

log(𝜋𝛾) + log⁡(1 + (
𝑥 − 𝑥0
𝛾

)2) 
 

The error is taken relative to ground truth distance. The light tails of Cauchy distribution results in the finer performance 

in certain distance intervals. 

 

Gev Loss: 

The original distribution:  

𝑓(𝑥|𝜇, 𝜎, 𝜉) =
1

𝜎
𝑡(𝑥)𝜉+1𝑒−𝑡(𝑥)⁡⁡; ⁡𝜉 ∈ 𝑅 

where 𝜇 is location parameter, 𝜎 is the spread and 𝜉 is the shape parameter [14]. 

         

The shape parameter is considered zero and distribution is as follows: 
 

𝑡(𝑥) = 𝑒−(𝑥−𝜇)/𝜎⁡; ⁡𝜉 = 0 
 

The Gev loss is derived using negative log likelihood of the Gev distribution. The loss function is as follows: 

 

log(𝜎) −
(𝑥 − 𝜇)

𝜎
− 𝑒−

(𝑥−𝜇)
𝜎  

 

The error is taken relative to ground truth distance. The outliers in the errors are not amplified here which results in same 

error in outlier conditions. 

 

Unnormalization: 

The unnormalization is the process which sets the spread (b) in the valid range of the predicted distances. The method 

for unnormalization is changed from the exponential function to the square root function. 

 

(𝜇, 𝑏) → (𝜇, 𝜇𝑒𝑏)⁡⁡⁡⁡𝑈𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛⁡𝑖𝑛⁡𝑀𝑜𝑛𝑜𝑙𝑜𝑐𝑜⁡𝑉4.0 

 

(𝜇, 𝑏) → (𝜇, 𝜇√𝑏)⁡⁡𝑈𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛⁡𝑖𝑛⁡𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑⁡𝑀𝑜𝑛𝑜𝑙𝑜𝑐𝑜 
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IV. EXPERIMENTAL RESULTS 

 

After changing the sizes of training and validation datasets and the loss functions, the following results were obtained. 

 

Pose based Accuracy: 

The accuracy of the estimation ultimately depends upon the pose of the person. High uncertainty has been associated 

with the person who is not in general human pose as it is considered as an outlier case. 

 

 
Fig 3: Outlier cases are shown in the image. In the top image, the predicted locations are almost similar to the real 

locations and the associated uncertainty is small. In the middle and the bottom images, the changes in the prediction & 

the increase in the uncertainty can be observed with different human poses which can be considered as outlier cases. 

 

Model output with Cauchy Loss: 

 

 

 
Fig 4: The top image shows the predicted location of the pedestrians and the bird’s eye view with associated aleatoric 

and total uncertainty. The bottom image shows the average aleatoric uncertainty in different clusters with certain 

confidence intervals. 
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The below result was obtained when the model was trained with Cauchy loss and changed unnormalization method using 

Monoloco. It performed better than Monoloco trained with Laplacian loss and old unnormalization technique in certain 

distance clusters. 

 

Model output with Gev Loss: 

The below result was obtained when the model was trained with Gev (Generalized extreme value) loss and changed 

unnormalization method using Monoloco. 

 

 
Fig 5: The top image shows the predicted location of the pedestrians and the bird’s eye view with associated aleatoric 

and total uncertainty. The bottom image shows the average aleatoric uncertainty in different clusters with certain 

confidence intervals. 

 

Comparison between models trained with different losses: 

When three models were generated using Monoloco with changed training and validation dataset sizes, unnormalization 

method and different losses, the following results were obtained. It should be noted that the original ground truth distance 

of the person in the below images is 4.5 meters from the camera. 

 

 
Fig 6: The results when models were generated using Laplacian, Cauchy and Gev losses (top to bottom) are shown in 

the above image. The changes in the aleatoric uncertainty with change in the loss function can be observed. 
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TABLE I: IMPACT OF DIFFERENT LOSS FUNTCIONS ON THE MODEL.  

Losses ALP [%] <0.5m    <1m     <2m ALE [m] Easy    Moderate    Hard 

Laplace 

Cauchy 

Gev 

22.97      40.3      57.5 

22.92     38.99    56.62 

23.48     39.91    56.86 

1.25        1.25          1.95 

1.26        1.27          1.97 

1.24        1.28          1.84 

 

Table 1 shows the influence of using different loss function on the same model. Cauchy and Gev are one of the many 

possible loss functions that can be used. After inspect, these found to be effective in predicting the 3D distance from 2D 

images. 

 

V. CONCLUSION 

 

We have proposed a new model with updated loss functions such that the prediction is better in certain intervals. These 

models can be used in autonomous driving vehicles along with other stereo cameras and models. When combined with 

other technologies, these models can work in tandem with other systems. 
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