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Abstract: Enabling CV, computer vision applications that use low levels of power on embedded devices (called as 

low-power embedded systems), also poses new sets of problems for developers of embedded applications. These 

technologies incorporate multiple functionalities, such as deep learning-based image recognition, simultaneous 

localization and mapping tasks. In order to ensure real-time behaviours and at the same time energy limitations to 

conserve battery on the mobile network, they are distinguished by rigorous efficiency constraints. While heterogeneous 

embedded boards are becoming widespread at low power costs for their high computing power, they require a time-

consuming customization of the entire application (i.e. mapping application blocks to GPU and CPU processing 

elements and their synchronization) to efficiently leverage their ability. For such an embedded SW customization, 

distinct languages and environments have been suggested. However, in complex real situations, they also find limits, 

since their implementation is mutually exclusive. This paper provides a detailed architecture focused on a 

heterogeneous parallel programming paradigm that integrates OpenMP, PThreads, OpenVX, OpenCV, and CUDA to 

better take advantage of various parallel levels while semi-automatic customization is guaranteed. The paper 

demonstrates how to interface, synchronize, and implement certain languages and API frameworks to customize an 

ORB - SLAM program for the NVIDIA Jetson TX2 board. 
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I. INTRODUCTION 

 

In current CPS, cyber-physical systems, machine vision is becoming omnipresent. Using computer imaging and 

intelligent algorithms to decode meaning from images or video streams is the main objective. In the framework of 

cyber-physical devices, computer vision implementations typically consist of many computer-intensive kernels that 

introduce multiple functionalities, ranging from image detection to mapping and localization at the same time (SLAM). 

 

It is not an immediate and easy job to create and optimize such software for an embedded device. In addition to 

functional correctness, developers have to deal with non-functional aspects, such as performance, power usage, energy 

conservation and real-time constraints. Architecture-dependent optimization encompasses two major dimensions: 

block-level and system-level. The first one is more simplistic and includes the parallelization or reimplementation of 

single kernels by particular languages or programming environments such as OpenCL, OpenMP, PThreads or 

CUDA for the target board accelerators (e.g., GPU, DSP, or multi-cores). The system-level optimization targets the 

total power usage of the system, memory space, and overhead of inter-process communication. Space discovery 

mapping involves investigating the various techniques to map each of these kernels to the board's proper processing 

components and evaluating the resulting effect on the architecture constraints. 

 

One of the fastest in gaining consensus as a programming framework and API library for system - level optimizations 

in the environment of embedded - vision is OpenVX. Such a platform is designed to optimize the portability of features 

and performance across numerous hardware systems, offering a computer vision interface that tackles various hardware 

architectures effectively with limited impact on software applications. 

 

Nonetheless, any real embedded vision program involves the incorporation of OpenVX with user-defined C or C++ 

code due to the restriction of OpenVX to model complicated functions by data - flow graphs and the incompleteness of 

the primitive OpenVX library. On the one side, multi-core parallelization strategies will support the user-defined code, 

thereby creating heterogeneous parallel environments (i.e. multi-core + GPU parallelism). In the other hand, because of 

OpenVX's private and non-user-controlled memory stack, such an aggregation leads to the sequentialization of multiple 

execution environments, with a consequent heavy effect on optimization at the device level. 

 

A paradigm for heterogeneous parallel programming of embedded vision systems is provided in this article. This allows 

numerous programming frameworks, i.e. OpenMP, PThreads, OpenVX, OpenCV, and CUDA, to be merged to better 

take advantage of varying degrees of parallelism while maintaining semi-automatic customization. 
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In order to optimize a current SLAM application for the widespread NVIDIA Jetson TX2 board, the paper provides an 

overview of the shortcomings encountered by implementing state-of-the-art parallel programming environments. 

Ultimately, it presents the outcomes of the mapping space exploration we conducted by taking into account output, 

power consumption, energy efficiency, and architecture constraints of result quality. As follows, the document is 

structured. An introduction to OpenVX in Part I and the corresponding work is provided in Part II. Part III provides, by 

a case study, an overview of parallel programming environments for embedded vision applications. The suggested 

structure is presented in Part IV. Part V discusses the experimental findings, while the closing remarks are dedicated to 

Part VI. 

II. HISTORY AND ASSOCIATED WORKS 

 

A platform is needed for the development and enhancement of embedded vision systems, taking into account numerous 

architecture limitations (i.e., performance, power consumption) and OpenVX is such a framework (i.e., performance, 

power consumption). To describe a high level and architecture-independent representation of the program, it relies on a 

graph - based model. Through the use of a series of primitives, that are provided by the framework and reflect the most 

widely used features and functionalities and data objects in computer vision algorithms, such as scalars, arrays, 

matrices and images, as well as high-level data objects such as histograms, image pyramids, and look-up tables, such a 

representation is modularly created by the user. 

 

Through the use of the libraries of architecture-oriented application of primitives and data-structures offered by the 

board provider, the high-level representation (i.e. the graph) is then automatically optimized and embedded. 

 

A computer vision algorithm is specified by the creator by defining kernels as nodes and data objects as parameters (see 

the example in Fig. 1). Each graph node is known as a function kernel that can operate on any of the heterogeneous 

target board processing units. Indeed, the application graph reflects the division into blocks of the whole application, 

which can be performed through multiple hardware accelerators (e.g., CPU cores, GPUs, DSPs). 

 

The flow of programming begins with the development of a context for OpenVX to handle references to all objects 

used. The code creates the graph on the basis of this context and produces all the data objects needed. Then as graph 

nodes, it instantiates the kernel and produces their relations. The layout first tests the consistency and validity of the 

graph (e.g., checking the coherence of the data type across nodes and the lack of cycles) and, eventually, processes the 

graph. It releases all the generated data objects, the graph, and the context at the end of the code execution. 

 

                                              
Fig. 1  A graphical representation of a sample OpenVX application 

 

In Fig 1, input is taken from a blurred input file and the application computes the gradient magnitude and gradient 

phase. The nodes of magnitude and step are computed separately, so that one does not depend on the other's output. 

OpenVX does not enable them to be executed concurrently or in parallel, so it requires the board vendor's runtime 

manager to settle on the mapping and execution plan. 
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OpenVX allows various mapping techniques between nodes and processing elements of the heterogeneous board to be 

implemented by implementing any vendor library that implements the graph nodes as primitives of Computer Vision, 

by targeting different de-sign restrictions (e.g., performance, power, energy efficiency). 

 

In order to analyse the use of OpenVX for embedded vision numerous studies have been presented. The authors 

present a new version of OpenVX targeting CPUs and GPU-based devices by exploiting numerous techniques for 

analytical optimization. By evaluating three different OpenVX optimizations, the authors investigate how OpenVX 

responds to different data access patterns: kernel merging, data tiling, and parallelization through OpenMP. The authors 

implement ADRENALINE in, a novel method for rapid prototyping and optimization of OpenVX frameworks for 

multi-core accelerator heterogeneous SoCs. We suggested a methodology for incorporating a model-based design 

environment with OpenVX. For model-based architecture, parametrization, and validation of computer vision systems, 

the technique enables the use of MATLAB or Simulink. Then for hardware and constraints-aware device tuning, it 

facilitates the automatic synthesis of the application model into an OpenVX definition. 

III. STUDY OF PARALLEL PROGRAMMING FOR EMBEDDED VISION VIA THE ORB-SLAM CASE STUDY 

 

To explain the constraints of the state - of - the - art environments for embedded vision implementations for parallel 

programming and the contribution of the proposed framework, we first present the case study, which will be included 

in the following sections as a model. The case study, ORB-SLAM [1], is a standard genuine embedded application that 

is used in numerous ways, from automobile to robotic systems. The target platform is the NVIDIA Jetson TX2, which 

is a generalized and low-cost embedded module. 

 

When RGB camera sensors are adopted, ORB-SLAM solves the simultaneous localization and map-ping problem. In a 

wide range of settings, it computes, in real-time, the camera trajectory and a sparse 3D recreation of the scene, ranging 

from brief hand-held sequences of a desk to a vehicle driven through multiple blocks of the area. This generates a 3D 

map from an input stream and/or performs localization. By considering the actual map. Three key blocks comprise the 

application as shown in Fig 2 below: 

 

 
                                              (a)                                                                                   (b) 

Fig. 2. Overview of program and execution templates for ORB - SLAM: (a) the initial code (parallelized for multicore), 

(b) the state-of-the-art implementation of OpenVX. 

 

• The monitoring and localization block computes the visual attributes, locates the agent in the environment, and 

communicates the map update information to the mapping block in the event of major inconsistencies with the map 

already saved and the input stream. This block efficiency greatly depends on the processing rate i.e., the supported 

frame rate per second) and the key power usage of the entire program. 

• Using information (detected map changes) submitted by the localization block, the mapping block updates the 

world map. In the case of a well-consolidated map, you should shut down this module to conserve machine energy. 

• The loop closing block attempts to change the error of scale drift accumulated during the input analysis, which is 

necessary when a monocular vision system is implemented (i.e., RGB camera). 
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This block updates the mapped information when a loop is found in the agent pathway via a large latency heavy 

computation, in which the first two blocks must be halted. This will cause the agent to lose tracking and localization 

data and as a result, to briefly lose the agent. As a consequence, this block's calculation efficiency (run on demand) is 

critical for the accuracy of the results of the whole application. 

 

Due to their simultaneous execution model, the three blocks are implemented in the best ORB - SLAM implementation 

at the state of the art to be executed in parallel by PThreads on shared-memory multiprocessors. Moreover, since the 

task of package modification, both local in the mapping block and global in the closing loop block, may have long 

latencies, it is a primary parallelization goal. For directive-based automated parallelization, its nested and data-

independent loops apply well. Therefore, for concurrent execution on multi-core, the state – of – the – art code is 

available with OpenMP directives. For parallel execution on the GPU, no block is initially considered (see Figure 2(a)). 

 

The manual execution of every GPU sub - block is beyond the scope of this job. Instead, we consider the semi - 

automatic embedding of the application through OpenVX due to the difficulty of such a parallelization task for this 

application class, but considering different architecture constraints (power consumption and energy efficiency besides 

performance). 

 

On the contrary, the OpenVX program must also be merged into standard C or C++ code because of the constraint of 

OpenVX to model complex systems by data-flow graphs and the incompleteness of the vendor repository. In the ORB-

SLAM case study, a data-flow graph will model only the monitoring sub-block and is worth optimizing for CPU/GPU 

execution. Although the majority of the code will also run on multicores, the execution of the two environments 

(OpenVX + CUDA and the rest) is then sequenced, as stated in Part IV, to allow coordination and synchronization. The 

purpose of the proposed approach is to incorporate the two environments. There are some benefits of such an 

integration, such as multi-level parallel deployment of the program and improved mapping space between tasks and 

elements of processing to be explored. 

 

We depend on common libraries of computer vision functions offered by vendors of the target board (i.e., Vision-

Works for NVIDIA boards). The library can be expanded through user-defined or third-party CUDA kernels, which are 

embedded as custom nodes in the OpenVX implementation. 

 

IV.  ENHANCEMENTS USING HETEROGENEOUS PARALLEL PROGRAMMING 

 

The overview of the proposed structure is illustrated in Figure 3. Six languages and parallel programming environments 

(in the following environments) are considered: C or C++, OpenCV, OpenVX, OpenMP PThreads and CUDA. The 

heterogeneity of the environment makes it possible to implement various ap-plication blocks in the most suitable style, 

such as C/C++ for control pieces, PThreads for concurrent CPU execution functions, OpenMP for directive-based 

automated code chunk parallelization, CUDA for any GPU kernel (if available) amplification, and OpenVX for 

primitive data flow routine parallelization. OpenCV was selected to introduce modern I/O communication protocols via 

standard data structures and APIs for computer vision applications. This makes it possible for embedded vision systems 

to be compact and integrated effectively with some other standard-compliant device. 

 

We consider the ubiquitous and most common NVIDIA Jetson TX2 as the target platform as a running example for the 

sake of consistency and without lack of generality. Such an embedded board relies on a shared memory architecture in 

which the unified memory space is shared by two separate CPU clusters (four Cortex-A57 CPU cores and two Denver 

CPU cores) and a GPU with two symmetric multiprocessors. 

 

The stack layer involved in the parallel execution of each environment is illustrated at the top of Figure 3. It depends on 

two key sections: 

 

• A user - controlled stack that allows memory-based communication between processes running on various CPUs 

to be shared. They include OpenMP-generated C/C++ processes, OpenCV APIs, PThreads, and processes. 

 

• A private (not user - controlled) stack that allows communication between OpenVX graph nodes running on 

separate CPUs or on the GPU and is generated and maintained by OpenVX. The operating system maps the functions 

relevant to the user-controlled stack to the CPU cores (i.e., Linux Ubuntu for the NVIDIA Jetson). OpenVX functions 

are mapped by the OpenVX runtime framework to the CPU cores or GPU multiprocessors. 

 

https://ijarcce.com/


IJARCCE 
              ISSN (Online) 2278-1021 

ISSN (Print) 2319-5940 

 

              International Journal of Advanced Research in Computer and Communication Engineering 
 

Vol. 9, Issue 10, October 2020 
 

DOI  10.17148/IJARCCE.2020.91024 
 

Copyright to IJARCCE                                                                      IJARCCE                                                                                                        28 
   

This work is licensed under a Creative Commons Attribution 4.0 International License 

 

Fig. 3. An overview of Framework: an embedded vision application's task mapping, memory stack and task scheduling 

layers built on the NVIDIA Jetson TX2 board with the proposed process.  

 

We connect the two parts to a single unified scheduling engine in order to allow the total unification of the two parts, to 

avoid the sequentialization of the two sets of tasks, and to avoid the consequent overhead synchronization. This helps 

the operating system to plan all the tasks mapped to the Processor cores (of both stack parts), whereas the OpenVX 

runtime system manages the GPU work scheduling, CPU - to - GPU connectivity and synchronization (i.e., GPU 

stream and kernel engine). To do this we are proposing a C or C++ & OpenVX template - based communication 

wrapper that provides memory access to the OpenVX data structures on the private stack and complete control of the C 

or C++ environment's OpenVX context execution. 

 

 

Fig. 4. Integration of the communication wrapper in the system  
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An overview of the wrapper and its integration within the device is shown in Figure 4. The initialization stage of 

OpenVX creates the background of the graph and allocates the private data structures. This allocation returns invisible 

pointers to the assigned segments of memory i.e. pointers to private memory areas where the programmer does not 

know about the structure. 

 

In order to access the private data structures via the opaque pointers, OpenVX read and write primitives (Write - Read - 

on - vx - Datastructure() in the figure) were specified. The primitives are invoked from the C/C++ context and set up a 

mutex framework for security access to the OpenVX data structures via the contact wrapper APIs. The same mutex is 

shared with the overall graph processing OpenVX runtime system (in the figure, vxProcessGraph()). As a result, the 

protocol maintains compatibility between the OpenVX and C/C++ contexts while operating simultaneously on 

multicores during access to the shared data structures. 

 

It is worth remembering that the execution of the data-flow driven OpenVX code begins with the invocation of the 

overall graph processing, which is done in the C/C++ environment. As seen in Figure 4, separate C/C++ threads will 

simultaneously execute such an invocation, and each invocation requires the mapping and scheduling of the 

corresponding instance of the graph. Synchronization between the various concurrent OpenVX graph executions and 

the C/C++ calling environments is facilitated by the proposed contact wrapper and mutex scheme. 

 

When accessing shared data structures, standard mutex frameworks are followed to synchronize all other C/C++-based 

contexts belonging to the user-controlled stack. The coordination wrapper based on mutex permits multi-level parallel 

execution of the program. Using the ORB-SLAM case study as an example, the first degree of parallelism is introduced 

by the PThreads, which run the application's three key modules on separate CPU cores. 

 

Then, the tracking block of the first module is implemented in OpenVX and run on a CPU core and on the GPU. The 

parallel implementation of the graph nodes offloaded on the GPU is provided by the OpenVX library vendor (i.e., 

NVIDIA VisionWorks for our case study) and are optimized for the specific GPU architecture. In case two nodes of the 

OpenVX graph are independent (see the example of Fig. 1), they are executed concurrently. 

 

Finally, OpenMP provides another level of parallelism when a block is enriched with parallel directives (e.g., Mapping 

and Loop closing blocks in the example). Each of these blocks is executed in parallel by the threads generated 

automatically by the compiler, which run on the available CPU cores. 

 

V. RESULTS OF THE EXPERIMENT 

 

The system has been added to eventually embed the ORB-SLAM application on the Jetson TX2. We began with the 

most successful state-of-the-art parallel implementation. We then modularly implemented the various parallel worlds 

provided by the structure as follows: 

 

 

• Version 2 (PThreads + OpenMP): Version 1 is extended by allowing parallelism with OpenMP. It explicitly 

parallelizes the role of package change, both local in the mapping block and global in the closing block of the loop. 

 

• Version 3 (PThreads + OpenVX): Expands version 1 by adding the monitoring sub-block in OpenVX (i.e. with 

PThreads, without OpenMP parallelism). 

 

• Version 4 (PThreads + OpenMP + OpenVX): Expands version 3 by making OpenMP as well. 

 

• Version 5 (PThreads + OpenVX + CUDA): we have reused a CUDA kernel starting with version 3 that 

implements the ORB primitive in the tracking sub-block. The related OpenVX VisionWork primitive was modularly 

replaced with such a more streamlined kernel. 

 

• Version 6 (PThreads + OpenMP + OpenVX + CUDA): Version 5 is extended by supporting OpenMP too. 

 

By using an open-source dataset called KITTI dataset, which is a common and popular benchmark for vision 

applications, we validated and tested all models. The dataset consists of video streams recorded by traveling in the mid-

sized city of Karlsruhe, in rural areas and on highways around a vehicle fitted with an RGB camera. We present the 

results obtained on sequence number 13 for the sake of space, as it is most important to illustrate the variation of 

workload in all three ORB-SLAM blocks and the resulting impact on the geometry constraints. 
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We have designed the Jetson TX2 board with two separate settings for the evaluation: low frequency (75 percent) and 

high frequency (100 percent). They reflect the frequency setting of the four components of the board i.e. the four cores 

of the Cortex - A57 cluster (mean and maximum frequency 1.42 GHz and 2.035 GHz respectively), the two cores of the 

Denver cluster (1.42 GHz and 2.035 GHz), the GPU (1.032 GHz and 1.3 GHz), and the memory (1.062 GHz and 1.866 

GHz). 

 

Version 6 is a case where converting to the parallelism of OpenMP does not have improved performance than the 

version of Pthread + OpenVX + CUDA thus increasing peak power consumption. In the highest frequency setting, 

version 6, on the other hand gives improved QoS. This is due to the fact that OpenMP is exclusively concerned with the 

phases of bundle change, which affect the missed frame while not impacting the assisted FPS. In the medium frequency 

setting, this does not happen since the CPU frequency at which such a kernel is run does not allow the monitoring block 

to conform with the real time constraints. We find that version 3 is the most energy efficient for the medium frequency 

setup and offers the best results for QoS. The best output is given by version 5 and does not require the worst power 

consumption. Version 6 promises the best output, and with the highest power consumption, it pays almost the best QoS 

(99.8 percent). Version 5 provides the best trade-off in terms of output and power usage for the highest frequency 

setting, while version 6 provides the best trade-off in terms of performance, energy efficiency, and QoS. 

 

Finally, the experimental findings demonstrate how the various models and the frequency setup of the single processing 

modules for each of them provide a very broad mapping area to be explored (which is out of the scope of this work). 

Such a room will provide the best option for any of the design constraints considered, such as performance, power 

usage, energy efficiency, and service quality. 

 

The results for average and maximum frequency settings are displayed in Tables I and II, respectively. The best 

performances are listed in bold. The mapping columns list the number of computing elements used during calculation 

by the various models. The PThreads, by having one core per block, ensure the minimum degree of parallelism. 

OpenMP was set to use the highest number of CPU cores available (6). Just OpenVX/CUDA activates the GPU. 

The FPS and Time per Frame columns report device output information and in fact, FPS is the maximum number of 

frames per second allowed by the embedded system. The columns emphasize how the ultimate output is affected by 

each degree of parallelism. The tables detail the overall energy consumed for the measurement of the entire stream, the 

average and peak capacity, and the average energy per frame, to explain the impact of the various versions on power 

and energy efficiency. 

 

TABLE 1.   KITTI - FPS AND TIME PER FRAME VALUES, SEQUENCE 13, 75 % OF THE FREQUENCIES 

 
Version Mapping 

FPS 

Time per 

frame (ms) 

Energy 

(J) 

Avg Power 

(W) 

Peak 

Power (W) 

% frame  

processed 

Energy per 

frame (J) A57 Denver 

GPU 

SM 

Version 1 3 - - 13.2 13.1 1,203 3.34 4.05 

3,097/3,281 

(94.4%) 0.357 

Version 2 4 2 - 13.9 12.4 1,123 3.44 5.24 
3,022/3,281 

(92.1%) 0.373 

Version 3 3 - 2 19.3 18.3 1,034 3.73 5.82 

3,280/3,281 

(99.9%) 0.378 

Version 4 4 2 2 19.3 19.6 1,252 5.75 7.85 
3,261/3,281 

(99.4%) 0.383 

Version 5 3 - 2 23.4 23.2 1,185 3.67 5.66 

3,269/3,281 

(99.0%) 0.363 

Version 6 4 2 2 23.4 23.2 1,197 5.75 7.92 
3,272/3,281 

(99.8%) 0.367 

 

TABLE 2.   KITTI - FPS AND TIME PER FRAME VALUES, SEQUENCE 13, 100 % OF THE FREQUENCIES 
 

Version Mapping 

FPS 
Time per 

frame (ms) 
Energy 

(J) 
Avg Power 

(W) 
Peak Power 

(W) 
% frame  

processed 
Energy per 

frame (J) A57 Denver 
GPU 

SM 

Version 1 3 - - 16.8 59.1 1,917 5.85 8.55 3,264/3,281 (99.5%) 0.586 

Version 2 4 2 - 17.2 57.8 1,968 6.01 9.62 3,268/3,281 (99.6%) 0.602 

Version 3 3 - 2 21.3 46.2 1,956 5.96 9.53 3,274/3,281 (99.8%) 0.595 

Version 4 4 2 2 21.2 46.1 1,943 7.99 11.02 3,281/3,281 (100%) 0.592 

Version 5 3 - 2 29.4 34.2 1,897 5.94 9.66 3,275/3,281 (99.0%) 0.580 

Version 6 4 2 2 29.3 34.4 1,843 7.69 11.70 3,280/3,281 (99.9%) 0.563 
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The tables stress that the output (FPS) given by the various versions is as predicted, strictly associated with power 

consumption. Via the various degrees of parallelism, allowing all the processing elements contributes to the maximum 

output at the expense of higher peak capacity. We find, however that OpenMP does not make performance 

improvements in the overall heterogeneous sense in all situations. 

 

Finally, information about quality of service (QoS) outcomes is recorded in the tables. It contains the number of frames 

correctly processed for the overloading of the processing elements against those missed. Frame skipping is triggered by 

the mapping and loop closing blocks that operate the calculation of the package change and their delay stops the 

monitoring block from evaluating new frames due to job overload. A specification restriction is the highest number of 

frames missed tolerated as it requires the application's QoS such as the number of times the device is missing (see Part 

III). 

 

VI.  CONCLUSION 

 

A paradigm for heterogeneous parallel programming of embedded vision systems was introduced in this article. The 

paper first provided an overview of the actual shortcomings of the most important and used environments as applied 

singularly for parallel computing embedded vision implementations at the state of the art. The paper then explained 

how the framework enables certain environments, i.e. OpenCV, OpenMP, OpenVX, PThreads and CUDA, to be 

combined to better leverage various degrees of parallelism while semi-automatic customization is assured. Via a real 

case study, i.e., an ORB - SLAM program, which was adapted for an embedded NVIDIA Jetson TX2 surface, the paper 

introduced the review and structure. Eventually, the paper showed that we achieved substantially better results over 

various design constraints, i.e. output, power consumption, energy usage, and result quality thanks to the greater 

mapping space produced and the multi-level parallelism offered by such heterogeneous parallel programming. 
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