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Abstract: Gesture language recognition is a technology that allows humans and animals to interact with computers and 

hardware without the need for any mechanical actuation between them. Gestures can include anything from facial 

expressions, head or eye movements, hand and arm motion, or other bodily movements and can therefore encompass a 

wide range of control for complicated systems. As sensor technology becomes smaller, cheaper and more readily 

available, gesture language recognition becomes a more viable solution for projects and systems to employ. This paper 

presents a prototype gesture language recognition system composed of hobby-grade electronics, compares it against 

systems using higher-grade hardware or more advanced software algorithms and extrapolates what further technological 

advancement will do for gesture language recognition systems. 
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I. INTRODUCTION 

Gestures can include anything from facial expressions, head or eye movements, hand and arm motion, or other bodily 

movements and can therefore encompass a wide range of control for complicated systems. Recent research shows that 

when humans and animals learn or communicate by watching a gesture, known as gesture language, neurons called mirror 

neurons become active in the brain of the watcher [1]. In living creatures, these mirror neurons help to establish the 

system of communication or language, but for a computerized system the needs and applications are different. One such 

application of gesture language recognition is the control of a video game using a glove controller. In 1989, Nintendo 

launched its famed but flopped “Power Glove” which allowed users to control their characters in video games using a 

gesture recognition system [2]. Although this commercially available product had failed, this motivated others to dive 

deep into the world of gesture language recognition and advance this form of technology into what we have today. 

 

Gesture language recognition can be implemented either by direct sensing or indirect sensing. Direct sensing in this case 

refers to sensors which are worn by or interacted with by the operator such as accelerometers, gyroscopes, flex sensors 

or pressure sensors. Indirect sensing refers to image processing or range-finding sensors that observe a subject without 

physically contacting them at all. Many of these systems include the use of MEMS or Micro-electromechanical Systems. 

Micro-electromechanical systems are a technology used to create tiny integrated devices or systems that combine 

mechanical and electrical components. They are fabricated using integrated circuit (IC) batch processing techniques and 

can range in size from a few micrometers to millimeters. These devices (or systems) can sense, control and actuate on 

the micro scale and generate effects on the macro scale [3].  

 

The purpose of this research is to expand on this idea of using a gesture language recognition system, in the form of a 

glove, to control the cursor of a mouse on a computer, adopting current affordable MEMS technology. This goal is 

achieved by monitoring change in analog signals produced by the bending of a flex sensor to simulate the click of a 

mouse, as well as the acceleration and gyroscopic values transmitted from a 9DOF IMU to control the movement of the 

mouse cursor. By using a flex sensor, we can set a threshold range and map this to a binary input to detect the physical 

movement of bending a finger and then produce the action of clicking a mouse in a virtual environment. From the 9DOF 

IMU, we can calculate acceleration in the x, y, and z dimensions to detect direction of the movement based on the 

initialized state of the IMU. Both sensors are connected to a Teensy 3.2 microcontroller equipped with a Bluetooth 

module, to allow remote programming of the microcontroller through an Android phone. Since the boom of gesture 

language recognition technology research, many other companies and researchers have developed similar systems for 

different applications. One such application is gesture to speech recognition, in which sign language is interpreted through 

the hand movements of someone wearing a smart glove [4]. Other applications include controlling a virtual environment 

such as in a 3D modeling software [5] or controlling the movements of a robotic arm using computer vision [6]. 
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II. PROTOTYPE HARDWARE, TECHNOLOGY AND SYSTEM INTEGRATION 

The prototype created for this project is meant to exemplify multiple ways of sensing gesture language and transmitting 

that information for use by another system. Specifically, the user’s hand motions and finger-flexing will be translated to 

mouse movement and clicking on a computer. In order to accomplish this, a breadboard was used to connect a flex sensor 

[7], an Inertial Measurement Unit or IMU [8], a microcontroller [9] and a Bluetooth communications module [10] to a 

small power supply. The flex sensor was given a length of wire such that when the breadboard was mounted on the user’s 

hand, the flex sensor could be fitted to a finger. This allows for the motion capture of the hand by the IMU and the flection 

capture of the finger to be monitored and transmitted via Bluetooth to a computer. The resulting prototype is captured in 

Figure 1 below. 

 
Figure 1: Completed Prototype 

 

A. Microcontroller 

The microcontroller utilized for the prototype is the Teensy 3.2 [9]. The Teensy was chosen as a low-cost solution that 

has a multitude of digital I/O pins, analog-to-digital converters and a corresponding programming extension for the 

Arduino IDE [11]. This IDE and extension were important for supporting open-source libraries and software applications 

for the Teensy that made interfacing with the other sensors and communications easier.  

 

 
Figure 2: Teensy 3.2 [9] 

 

B. Flex Sensor 

The flex sensor used in the prototype is actually the same one used in the Nintendo Power Glove [1], manufactured by 

Spectra Symbol [7]. For this project a resistive flex sensor was desired to make data processing at the microcontroller 

simpler. The resistance seen across the terminals of the flex sensor, seen below in Figure 3, increases when the sensor is 

flexed. By hooking this sensor up in a voltage divider circuit, as seen below in Figure 4, an analog voltage corresponding 

to the flection of the sensor can be set up. The equation governing this relationship is captured below in Equation 1, 

where the value of Req was selected so that the voltage sensed at the microcontroller, Vsense, is half of the supply voltage, 

Vdd, when the sensor is unflexed or neutral.  
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Figure 3: Flex Sensor [7] 

 

 
Figure 4: Flex Sensor Circuit 

 

Vsense= Vdd * (Req) / (Req + Rflex)                                                                                                                              (1) 

 

C. IMU 

For this prototype, an IMU was selected that exceeded the functionality needed for the prototype itself. The ICM-20948 

Breakout Board by Sparkfun contains a triple-axis MEMS accelerometer, triple-axis MEMS gyroscope and more, which 

can be used to theoretically compute absolute position of the IMU relative to its starting position [8]. This IMU also has 

on-board digital filtering and data processing capabilities, separate from the processing power of the microcontroller [12]. 

A programming library already existed for the ICM-20948 which allowed the Teensy to easily parse the I2C 

communications received at the microcontroller from the breakout board and access individual axes of acceleration or 

gyroscope data for further processing [13].  

 

Given that the application of this prototype is to parallel the motion of a computer mouse, only two axes are considered 

for acceleration. Also, to simplify programming, a restriction is placed on the user that their hand shall not turn or twist 

relative to the starting orientation. This allows the program to ignore gyroscope information as well and focus entirely 

on data from the two operative axes of the accelerometer. 

 
Figure 5: IMU Breakout Board [8] 
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D. Bluetooth Module 

An important part of this project is the remote transfer of sensor data from the mounted sensors to another system for 

remote use. To accomplish this, Bluetooth wireless communication was selected because the intended receiving systems, 

such as phone and computer, are usually equipped for Bluetooth. The HC05 module, seen in Figure 6 below, transmits 

UART-Serial communications over Bluetooth frequencies [10]. This is the same protocol by which market USB devices 

such as mice and keyboards communicate with computers or phones, and so testing a MEMS gesture language 

recognition system with this protocol improves its marketability. 

 

 
Figure 6: HC05 Bluetooth Module [10] 

 

E. Power Supply 

In order to support a wearable system, the power supply has to be small in size and light in weight while still meeting the 

power needs of the system. The Teensy runs at a nominal 5V but as input voltage regulation circuitry that allows for 6V 

supply voltage to be used. To meet these needs, CR2032 coin batteries were selected for their high voltage and energy 

density at their size. Two CR2032 batteries in series provide 6.0V and 220mAh or approximately 3 hours of operation 

for this prototype under constant use [14]. Putting these in a simple holder with a power switch, such as in Figure 7 below, 

allows for safe and easy use as part of the prototype [15].  

 

 
Figure 7: CR2032 Batteries [14] and Holder [15] 

  

III. Prototype Software and Algorithms 

In this prototype system, the only software being written is for the Teensy microcontroller. This program had to receive 

the data from the flex sensor, read as a digital value from an ADC pin, and the IMU, communicated over I2C, and send 

data to the receiving system that simulates a computer mouse, through Serial and Bluetooth protocols. In order to simplify 

this process, existing libraries, extensions and coding frameworks were used. The Teensy is firmware-boot loaded for 

Arduino language and can utilize the Teensyduino application extension for access to enhanced functionality [11]. Within 

the Teensyduino framework, code was written that addressed the flex sensor, initialization of the IMU and the processing 

of the IMU data to determine mouse movements. The final operational version of this code is contained in Appendix A, 

with excerpts contained in Appendix B of attempted methods of programming that proved unsuccessful and were not 

used.   

 

A. Flex Sensing 

The ADC built onto the Teensy gives 10 bits of resolution, so the program receives a data value from the flex sensor 

between 0 and 1023. For the purposes of this project, the flex sensor is considered to be either flexed or not flexed, 

resulting in either a mouse click or no mouse click. To reduce the 1024 possible digital values to these 2 states, binary 

mapping is done about a threshold value, flexT. The value of flexT that effectively establishes binary mapping for the 

prototype was experimentally determined to be at 650. Values above 650 mean that the sensor is unflexed and therefore 

unclicked, while values under 650 imply flection and result in a mouse click. This code is captured in Appendix A at 

comment “Flex Sensing”. 
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B. IMU Initialization 

The ICM-20948 breakout board contains additional processing power and filtering options that must be configured during 

startup. The Teensy cannot directly access these but can perform configuration and initialization over I2C 

communication. A software library was written by the group that made the breakout board which contains functions and 

example configuration setups that were used in this program [13]. Specifically, the library was used to establish the 

generic initialization code which can be found in Appendix A at comment “IMU Initialization” as well as the 

configuration and initialization of the digital low-pass filter, or DLPF. The DLPF can be configured to any of eight 

different frequencies, where this low-pass frequency sets the rate at which data can safely be sampled and any higher-

frequency noise will be blocked [12].  Based on this frequency, fn, the sampling period can be set for the program, “step” 

measured in milliseconds, by Equations 2, 3 and 4 below. The code for this is captured in Appendix A at comment “DLPF 

Configuration and Initialization”.  

 

fn ≥ 2 * fs                  in Hz                                                                                                                                           (2) 

fs = 1000 / step         in Hz                                                                                                                                           (3) 

step ≥ 2000 / fn         in ms                                                                                                                                           (4) 

 

In order to model the motion of the IMU, its starting metrics must be known. What that meant for this project is that the 

operator’s hand had to be unmoving during the startup of the system so that baseline values for not moving could be 

established. In the program, this manifests as a one-time loop of 100 measurements taken over one second that were 

averaged to provide the offset values from the accelerometer that corresponded to zero acceleration, or neutral motion. 

This can be found in Appendix A at comment “Startup Neutralization”. 

 

C. Trapezoidal Integration 

In an ideal world, a mouse cursors movement’s mirror the positional movements of the mouse itself, perhaps with scaling 

factor. Since the data collected from the IMU is acceleration based, position data could theoretically be calculated through 

double integration. In practice, however, it is impossible to implement true integrals in a computer program due to the 

discrete nature of computations. Therefore, the ideal Newtonian kinematic equations captured in Equation 5 below must 

be reimagined for computation. This was attempted by three different methods in this project. 

 

v(t) = v0 + ∫
𝑡

0
a(t) dt                            x(t) = x0 + ∫

𝑡

0
v(t) dt                                                       (5) 

 

Trapezoidal integration is one such method. Similar to classical Riemann sums, trapezoidal integration takes discrete 

averages of acceleration values over a period of time and summarizes them in accordance with Equation 6 below. The 

same method can then be applied to the integration of velocity for position. For this project, trapezoidal integration was 

only taken for the velocity and the code for this can be found in Appendix B. Trapezoidal integration was not attempted 

for position because there is no opportunity in the system for error to occur between the velocity and position, so if the 

technique works to collect velocity data then the position should follow directly. The program implements trapezoidal 

integration over N steps, as in Equation 6, each step of time “step”. While this method does come the closest to true 

integration to position, it also suffers most severely from error in the acceleration data. Since the IMU did suffer from 

substantial error and inconsistency in acceleration data.  

 

v = v0 + ∑𝑛 (an + an-1) / 2 * (tn – tn-1)                                                                                                                       (6) 

 

D. Trinary Accumulation 

On close examination of the acceleration data coming in, statistical outliers were very common even when the sensor 

was held neutral. The extreme magnitude of these outliers would have a large effect on the velocity and larger impact on 

the position. This manifests as an instantaneous jump of the position to a very large number, sometimes too large to 

reasonably neutralize with normal movement. In order to eliminate this aspect of error, the magnitude factor was removed 

by the trinary accumulation method. The method is illustrated in Figure 8 below.  
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Figure 8: Trinary Accumulation Methodology 

 

The trinary accumulation method is not a mathematical function but rather a three-state machine model, whereby the 

measured acceleration is categorized either as “positive”, “negative” or “neutral” based on experimentally determined 

thresholds. Acceleration data points were still taken by extensive average, just like in the trapezoidal method, but the 

state of each accelerometer data point had a set effect on a counter variable without regard for magnitude. After each 

point is counted, the sum value of the counter variable would correspond to the mouse velocity. However, with this 

method implemented as in Appendix B, error would still accumulate to a critical point where normal operation would 

become insignificant.  

 

E. Trinary Logic 

To further safeguard the mouse motion from the accumulation of error in the accelerometer data, a third method known 

as trinary logic was attempted. Trinary logic is a state system based around the same three state interpretation of 

accelerometer data points as trinary accumulation, but makes a logical decision based on the most recent data points 

instead of accumulating these conditions in a counter variable. In order to determine how the mouse should be moving 

at any given time, the state of acceleration at that time and the most recent previous time are considered. As seen in Figure 

9 below, these result combinations result in either a positive, neutral or negative statement about motion in each direction, 

and that decision sets the velocity of the mouse cursor. This was the method ultimately settled on for the prototype, and 

so the code for its implementation can be found in Appendix A at comments “Managing current state and prev state” and 

“Setting motion commands”.  
 

 
Figure 9: Trinary Logic Table 

 

IV. RESULTS 

The trapezoidal integration model was the closest model for the kinematics at play that was also computable, but because 

it used the raw numerical data from the accelerometer, it was also vulnerable to the imperfections of that hardware. When 

bad accelerometer data was interpreted by this method, the velocity and furthermore position gave this data equal weight 

to the actual motion of the system. Due to the summary nature of this model, bad data accumulates into either extremely 

negative or extremely positive values after each integration level, and the normal operation of the system loses the ability 

to return to neutral. In quantifiable terms, this would happen within thirty seconds with this model as composed of the 

code from Appendices A and B. This quantity will be used purely for comparing methods, since its specific value may 

vary with hardware and environment.  

 

The trinary accumulation method allowed for more time before critical error accumulated, approximately two minutes. 

The trinary logic method, since no accumulation or summation occurs, does not grow unstable in this way. But while 

trinary state handling reduces the significance of bad accelerometer data on the system, it also reduces the sensitivity of 

the system to true and accurate accelerometer data. Additionally, an assumption was made in the trinary logic table seen 

in Figure 9 that when acceleration states reversed it meant that the system was slowing down or stopping motion instead 

of completely reversing direction of motion. Both patterns of motion would result in these changes in acceleration, but it 

is impossible to tell which pattern is present without integrating the acceleration data into a concise velocity tracker. By 

deciding that both patterns should result in stopping the mouse from moving, the full pattern of motion where the 
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operator’s hand slows down, stops and then reverses is very uneven. The resulting movement is jerky and imprecise but 

has the advantage of never losing stability.  

 

Ultimately, this tradeoff is only necessary because of the limitations on accuracy with the IMU’s accelerometer. This 

IMU is not alone in its inability to handle live position-processing, nor is this deficiency lost on the industry. In 2012 an 

article was written by CHRobotics/Redshift Labs where they attempted to implement position tracking using their UM-

7 3-axis accelerometer with a direct-integration algorithm. They put an emphasis on knowing the precise orientation of 

the sensor as error can be caused by the presence of external forces such as gravity or normal force on multiple axes [16]. 

This is handled by the individual axes’ startup neutralization in this project as well as the project operation guidelines, 

but in open practice these guidelines cannot be guaranteed. Ultimately, they were seeing meaningful position error at 10 

seconds of operation and massive error after a minute. They concluded that “it is possible to use the accelerometers to 

estimate velocity and position, but the accuracy will be very poor so that in most cases, the estimates are not useful” [16].  

 

V. FUTURE RESEARCH 

The focus of this research was to create a glove controller to control the movement and input of a mouse using current 

low-cost MEMS technology. Although the desired results were acquired, many improvements upon this system could be 

made. One such improvement could be the use of a ‘Microcontroller Based Potentiometric Indicator System for 

Piezoresistive MEMS Sensor’ over a basic flex sensor. The system mentioned has two hardware subsystems, the first 

consisting of a sensor element and signal conditioning and the second being a liquid crystal display [17]. The software 

acquires analog data detected by a piezoresistive MEMS sensor and converts the data form with ADC, computes the 

digital data conversion into desired reading by using fuzzy logic controller [17]. By using these advanced computing 

techniques, the detectable ranges for differing ‘bent’ positions could be more accurately represented allowing for more 

robust gesture commands. Currently our system only utilizes the 3-axis accelerometer, which is used to detect the 

acceleration of the IMU in a certain direction to determine the direction and speed of the mouse movement. This method 

does not currently consider hand orientation and rotation, which could be improved upon for a more robust system. 

Another group of researchers designed a ‘Microcontroller-Based MEMS Rate Integrating Gyroscope Module with 

Automatic Asymmetry Calibration’.  This system was designed to automatically calibrate the module on initialization, 

to accurately predict future movement based on the starting position of the hand [18]. The addition of this automatic 

calibration, along with the use of a gyroscope, to our design would greatly increase the accuracy of our detected 

movements based on the initialized values from the IMU from a resting state. Another improvement which could be 

made, would be the active filtering of accelerometer data processed from the IMU. As mentioned before, in the 

Trapezoidal integration method, erroneous data is compounded which can exponentially affect the calculated positioning 

of the accelerometer. By introducing a finite impulse response (FIR) filter [19], the noise obtained from the IMU can be 

greatly reduced, resulting in a smoother signal and minimizing the error detected when using the Trapezoidal integration 

method.  
 

VI. CONCLUSION 

At the time of this writing, gesture language technology development and research are both commonplace at a variety of 

modern tech companies and are implemented in many consumer products today as well. This paper presents the idea of 

utilizing cost-efficient MEMS technology to recognize the motion of a human hand to control a computer mouse and the 

bending of a finger to simulate the click of a mouse. Although the desired results of this project were obtained, many 

improvements could also be made. The Trapezoidal integration method which was used results in exponential errors due 

to the estimations during its calculations, which could possibly be reduced by the application of active filtering methods. 

The trinary accumulation method, used to determine the state of the flex sensor, is limited in its ability to detect more 

complex motion. The idea presented in this paper uses existing MEMS technology to explore the application of gesture 

language recognition in a standard computer-controlled environment. This idea can be easily implemented and further 

developed in other computer control applications. 
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Appendix A – Final Code  

#include <ICM_20948.h> 

#include <Mouse.h> 
#define SERIAL_PORT Serial 
#define WIRE_PORT Wire 
#define AD0_VAL 1 

  

ICM_20948_I2C myICM; 
int flexT = 650; 
float Aystart = 0;  //Startup Neutralization values 
float Azstart = 0; 
float Aypos = 5;    //Y-axis thresholds 
float Ayneg = -5; 
float Azpos = 5;    //Z-axis thresholds 
float Azneg = -5; 
int Ypstate = 0;    //Previous state variables for axes 
int Zpstate = 0; 
int ms = 5;        //Pixels per dt  

float time = 0; 
  

 

void setup() { 

  Serial.begin(9600); 
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  pinMode(14,INPUT); 
  pinMode(LED_BUILTIN, OUTPUT); 
  digitalWrite(LED_BUILTIN, LOW); 
  Mouse.begin(); 
  Mouse.screenSize(1920, 1080);  // configure screen size 
  Mouse.moveTo(960,540);         // Center the mouse  

  

  //IMU Initialization 
  WIRE_PORT.begin(); 
  WIRE_PORT.setClock(16000000); 
  bool initialized = false; 
  while(!initialized){ 
    myICM.begin(WIRE_PORT, AD0_VAL); 
    SERIAL_PORT.print( F("Initialization of the sensor returned: ") ); 
    SERIAL_PORT.println( myICM.statusString() ); 
    if( myICM.status != ICM_20948_Stat_Ok ){ 
      SERIAL_PORT.println( "Trying again..." ); 

      delay(500); 
    } 
    else{ 
      initialized = true; 
    } 
  } 

  

  //DLPF Configuration and Initialization 
  ICM_20948_dlpcfg_t myDLPcfg; 
  myDLPcfg.a = acc_d246bw_n265bw;   //Set DLPF for Accelerometer to Nyquist BW of 265Hz 
  myDLPcfg.g = gyr_d361bw4_n376bw5; //Set DLPF for Gyroscope 
  myICM.setDLPFcfg( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), myDLPcfg );  //Check config 
  if( myICM.status != ICM_20948_Stat_Ok){ 
    SERIAL_PORT.print(F("setDLPcfg returned: ")); 
    SERIAL_PORT.println(myICM.statusString()); 
  } 
  ICM_20948_Status_e accDLPEnableStat = myICM.enableDLPF( ICM_20948_Internal_Acc, true ); 
  ICM_20948_Status_e gyrDLPEnableStat = myICM.enableDLPF( ICM_20948_Internal_Gyr, true ); 

  SERIAL_PORT.print(F("Enable DLPF for Accelerometer returned: "));  
  SERIAL_PORT.println(myICM.statusString(accDLPEnableStat)); 
  SERIAL_PORT.print(F("Enable DLPF for Gyroscope returned: "));  
  SERIAL_PORT.println(myICM.statusString(gyrDLPEnableStat)); 
  SERIAL_PORT.println(); 
  SERIAL_PORT.println(F("Configuration complete!"));  

  

  //Startup Neutralization 
  //Over 1 second, take an average neutral value for acceleration in Z and Y 
  //Requires user to hold IMU still for 1 second on startup/reset 
  int i; 
  int k = 100; 
  float aysum = 0; 
  float azsum = 0; 
  for (i=0;i<k;i++){ 
    while(!myICM.dataReady()){} 
    myICM.getAGMT(); 
    aysum += myICM.accY(); 

    azsum += myICM.accZ(); 
    delay(10); 
  } 
  Aystart = aysum / k; 
  Azstart = azsum / k; 
} 
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void loop() { 
  while(!myICM.dataReady()){} 
  myICM.getAGMT(); 

   

  

  float step = 10;  //Step size in milliseconds 

  float N = 1;   //Number of steps of 'step' milliseconds 
  time = time + step * N / 1000; //Time in seconds 
  //Frequency of sampling then is  
  float i = 0;    //Step counter 
  float prevAy = myICM.accY(); 
  float prevAz = myICM.accZ(); 
  float Aysum = 0; 
  float Azsum = 0; 

  

  for(i=0;i<N;i++){ 
    delay(step); 
    while(!myICM.dataReady()){} 
    myICM.getAGMT(); 
    Aysum += 0.5 * (myICM.accY() + prevAy) - Aystart; //Average acceleration added over each N step within dt 
    Azsum += 0.5 * (myICM.accZ() + prevAz) - Azstart; //Average acceleration added over each N step within dt 
    prevAy = myICM.accY(); 
    prevAz = myICM.accZ(); 
  } 

  float Az = Azsum / N; //Average acceleration over 0.5 second 
  float Ay = Aysum / N; //Average acceleration over 0.5 second 

   

  //Limit Finding 

//  if(Az > Azpos){ 
//    Azpos = Az; 
//  } 
//  else if(Az < Azneg){ 
//    Azneg = Az; 
//  } 
//  if(Ay > Aypos){ 
//    Aypos = Ay; 
//  } 
//  else if(Ay < Ayneg){ 
//    Ayneg = Ay; 
//  } 

   

  //Managing current state and prev state 
  int Z = 0; 
  int Y = 0; 
  if(Az > Azpos){ 
    Z = 1; 

  } 
  else if(Az < Azneg){ 
    Z = -1; 
  } 
  if(Ay > Aypos){ 
    Y = 1; 
  } 
  else if(Ay < Ayneg){ 
    Y = -1; 
  } 

  

  //Setting motion commands 
  //Zpos = yneg for mouse 
  int ymov = 0; 
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  if(Zpstate == 1 && Z == 1){ 
    //Moving in Zpos 
    ymov = -1; 
  } 
  else if(Zpstate == 1 && Z == 0){ 
    //Not moving 
  } 
  else if(Zpstate == 1 && Z == -1){ 
    //Not moving 
  } 

   

  else if(Zpstate == 0 && Z == 1){ 
    //Moving in Zpos 
    ymov = -1; 
  } 
  else if(Zpstate == 0 && Z == 0){ 
    //Not moving 

  } 
  else if(Zpstate == 0 && Z == -1){ 
    //Moving in Zneg 
    ymov = 1; 
  } 

  

  else if(Zpstate == -1 && Z == 1){ 
    //Not moving 
  } 
  else if(Zpstate == -1 && Z == 0){ 
    //Not moving 
  } 
  else if(Zpstate == -1 && Z == -1){ 
    //Moving in Zneg 
    ymov = 1; 
  } 

  

  //Ypos = xneg for mouse 
  int xmov = 0; 
  if(Ypstate == 1 && Y == 1){ 
    //Moving in Ypos 
    xmov = -1; 

  } 
  else if(Ypstate == 1 && Y == 0){ 
    //Not moving 
  } 
  else if(Ypstate == 1 && Y == -1){ 
    //Not moving 
  } 

   

  else if(Ypstate == 0 && Y == 1){ 
    //Moving in Ypos 
    xmov = -1; 
  } 
  else if(Ypstate == 0 && Y == 0){ 
    //Not moving 
  } 
  else if(Ypstate == 0 && Y == -1){ 
    //Moving in Yneg 
    xmov = 1; 

  } 

  

  else if(Ypstate == -1 && Y == 1){ 
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    //Not moving 
  } 
  else if(Ypstate == -1 && Y == 0){ 
    //Not moving 
  } 
  else if(Ypstate == -1 && Y == -1){ 
    //Moving in Yneg 
    xmov = 1; 
  } 
  Ypstate = Y; 
  Zpstate = Z; 
  Mouse.move(xmov * ms, ymov * ms);   

   

  

  //Flex Sensing 
  int flexval = analogRead(14); 
  if (flexval > flexT) {      //Unflexed 
    digitalWrite(LED_BUILTIN, LOW); 
  } 
  else {                      //Flexed 
    digitalWrite(LED_BUILTIN, HIGH); 

    Mouse.click(); 
  } 

  

   

  //Debug Outputs 
  Serial.print("Time: "); 
  Serial.println(time); 

//  Serial.print("AccY: "); 
//  Serial.println(Ay); 
//  Serial.print("AccZ: "); 
//  Serial.println(Az); 
//  Serial.print("Aypos: "); 
//  Serial.println(Aypos); 
//  Serial.print("Azpos: "); 
//  Serial.println(Azpos); 
//  Serial.print("Ayneg: "); 
//  Serial.println(Ayneg); 
//  Serial.print("Azneg: "); 
//  Serial.println(Azneg); 
//  Serial.print("Y: "); 
//  Serial.println(Y); 

//  Serial.print("Z: "); 
//  Serial.println(Z);  
  Serial.print("Xmov: "); 
  Serial.println(xmov); 
  Serial.print("Ymov: "); 
  Serial.println(ymov); 
} 

Appendix B – Code Excerpts 

Trapezoidal Integration 

//Global declarations 

float Aystart = 0; 

float Azstart = 0; 

float Vy = 0; 

float Vz = 0; 

float Y = 0; 

float Z = 0; 

float t = 0; 
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void loop() { 

  while(!myICM.dataReady()){} 

  myICM.getAGMT(); 

  

  float step = 5;  //Step size in milliseconds 

  float N = 100;   //Number of steps of n milliseconds 

  float dt = step * N / 1000; //Time in seconds 

  //Frequency of sampling then is  

  float i = 0;    //Step counter 

  float prevAy = myICM.accY(); 

  float prevAz = myICM.accZ(); 

  float Aysum = 0; 

  float Azsum = 0; 

  

 

  for(i=0;i<N;i++){ 

    delay(step); 

    while(!myICM.dataReady()){} 

    myICM.getAGMT(); 

    Aysum += 0.5 * (myICM.accY() + prevAy) - Aystart; //Average acceleration added over each N step within dt 

    Azsum += 0.5 * (myICM.accZ() + prevAz) - Azstart; //Average acceleration added over each N step within dt 

    prevAy = myICM.accY(); 

    prevAz = myICM.accZ(); 

  } 

  

  Vy += dt * Aysum / N; // Velocity as of time (t) [seconds * mg] 

  Vz += dt * Azsum / N; // Velocity as of time (t) [seconds * mg] 

  Y += dt * Vy; // Position as of time (t) [seconds * seconds * mg] 

  Z += dt * Vz; // Position as of time (t) [seconds * seconds * mg] 

  

  //After the loop, V and Y are correct for t = +N*0.01 = +0.5 seconds 

  //So every half second this algorithm will determine the velocity and position of the sensor 

  //***Relative to its starting position and with assumed 0 velocity on startup 

  t += dt; 

} 

 

Trinary Accumulation 

//Global Declarations 

float Aystart = 0;  //Startup Neutralization values 

float Azstart = 0; 

float Aypos = 5;    //Y-axis thresholds 

float Ayneg = -5; 

float Azpos = 5;    //Z-axis thresholds 

float Azneg = -5; 

int Y = 0; 

int Z = 0; 

float time = 0; 

void loop() { 

  while(!myICM.dataReady()){} 

  myICM.getAGMT(); 

   

  

  float step = 10;  //Step size in milliseconds 

  float N = 50;   //Number of steps of n milliseconds 

  time = time + step * N / 1000; //Time in seconds 

  //Frequency of sampling then is  

  float i = 0;    //Step counter 

  float prevAy = myICM.accY(); 

  float prevAz = myICM.accZ(); 

  float Aysum = 0; 

  float Azsum = 0; 

  

  for(i=0;i<N;i++){ 

    delay(step); 

    while(!myICM.dataReady()){} 
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    myICM.getAGMT(); 

    Aysum += 0.5 * (myICM.accY() + prevAy) - Aystart; //Average acceleration added over each N step within dt 

    Azsum += 0.5 * (myICM.accZ() + prevAz) - Azstart; //Average acceleration added over each N step within dt 

    prevAy = myICM.accY(); 

    prevAz = myICM.accZ(); 

  } 

  float Az = Azsum / N; //Average acceleration over 0.5 second 

  float Ay = Aysum / N; //Average acceleration over 0.5 second 

   

  //Limit Finding 

  if(Az > Azpos){ 

    Azpos = Az; 

  } 

  else if(Az < Azneg){ 

    Azneg = Az; 

  } 

  if(Ay > Aypos){ 

    Aypos = Ay; 

  } 

  else if(Ay < Ayneg){ 

    Ayneg = Ay; 

  } 

   

  //Accumulating positivity or negativity of acceleration over time 

  if(Az > Azpos){ 

    Z = Z + 1; 

  } 

  else if(Az < Azneg){ 

    Z = Z - 1; 

  } 

  if(Ay > Aypos){ 

    Y = Y + 1; 

  } 

  else if(Ay < Ayneg){ 

    Y = Y - 1; 

  } 
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