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Abstract: Cloud computing substantially reduces the carbon footprint of IT services, with consumption of energy 

from renew- able resources being the key driver behind energy-efficient design in cloud data centres. The energy 

footprint of applications hosted on public clouds is nevertheless non-negligible and sustainability- aware design 

choices should be employed to minimize it. Large- scale banking applications represent an ideal case for such patterns 

as they are expected to operate round-the-clock while generally being subject to low resource utilization for significant 

periods of time. Additionally, besides energy concerns, they are also subjected to nearby real-time performance SLAs, 

high avail- ability requirements, and predictable traffic provisioning. Typical energy-aware design choices made for 

services hosted on the AWS public cloud include using energy-demand-aware variants of the services (e.g. EC2 

Reserved Instances instead of EC2 On-Demand Instances), reducing the traffic across regions, and adapting the 

allocation of network and compute resources (e.g. RDS read replicas) to the system load. The recommendations 

summarized here relate to a full-scale case-study banking application—the piece of project work—deployed into the 

AWS public cloud. The AWS support for energy-aware design patterns is illustrated by the practical application of 

System Architecture and AWS deployment design guidelines proposed for making the systems energy-efficient while 

meeting the aforementioned constraints. The suggested design patterns include principles for sustainable software 

architecture, patterns that drive power-aware design at the service layer, and techniques for optimizing compute and 

network resources under the joint action of energy demand and service responsiveness. 
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I. INTRODUCTION AND SCOPE 

 

The growing emphasis on energy-efficiency in IT, mandated by regulations and driven by public awareness, forces 

major corporations to integrate these criteria into software design. For companies running banking applications on 

AWS, the demand for low latency, high availability, and fault tolerance plays a major role in making the choice for 

conventional design patterns. These patterns, however, increase power con- sumption and carbon emissions. While the 

cost of transactions reflects requirements and quality of service, electricity is generally seen as free. A combination of 

cost and energy metrics is needed to optimize energy use without deterioration of performance. Length-of-life 

indicators (PUE, GWP, CO2e), 

 

 
 

Fig. 1. Architecture: Cloud Design Patterns (AWS) 
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power metrics (CPU/GPU utilization, request per second per watt), and cost-per-transaction curves provide guidance 

for application design, as do three energy-aware principles of cloud applications—adaptability, event-driven behavior, 

and finishable tasks. Power-aware design patterns indicate when these principles should be applied. Their 

consideration within the architecture ensures that application behavior stays within the expected boundaries. Power-

aware design patterns indicate when principles of sustainable cloud applications—adaptive scaling, event-driven 

behavior, and tasks that can be fin- ished—should be applied. Application structure and business rules must support 

the direct integration of autoscaling into production environments. They should also minimize the acti- vation of cross-

AZ and cross-region traffic. By reducing zone latency differences to the inside of common-values regions, energy- and 

cost-conscious consumption patterns can be built. 

 

A. Context and Motivation 

Building and operating large-scale online banking services is a challenging task, given the stringent regulatory require- 

ments for latency, reliability, and data safety of such solutions. Besides these requirements, the sustainability of 

deployed systems is also becoming a major concern for all companies. Online banking systems hosted on AWS are 

already optimized for energy consumption, thanks to the adoption of Energy Star- compliant hardware, utilization of 

renewable energy sources, and innovative cooling solutions. Moreover, many AWS ser- vices (e.g., Amazon 

CloudFront, Amazon Aurora with Global Database, Amazon EC2 Auto Scaling) automatically provide energy 

optimizations. However, practical implementations are far from optimal. Identifying energy-aware design patterns for 

banking solutions deployed on AWS, together with formalizing a well-defined set of applicable AWS services, 

enables practitioners to minimize energy consumption while maintaining the specified performance levels. Energy 

Efficiency in Banking Applications. The electricity consumed when running a banking solution and the related 

operational expenses are the most important indicators of energy efficiency in online bank- ing applications. A well-

defined set of metrics helps define the minimization process. It includes measurements such as Power Usage 

Effectiveness (PUE), Global Warming Potential (GWP), CO2e emissions, CPU/GPU utilization, requests per second 

per watt, and cost per transaction; the last increases the service cost and has to be kept as low as possible as well. 

These metrics are connected to the energy-efficiency design patterns discussed in the following sections. 

 

B. Key Energy and Cost Metrics in Banking Applications 

AWS can be assessed by key performance metrics important for both sustainable software architecture and cloud-

network- data optimization. The potential energy use in data centers is indicated by the Power Usage Effectiveness 

(PUE) metric, while the Global Warming Potential (GWP) and CO2e values associated with energy consumption 

reflect the application’s contribution to greenhouse effect and climate change. Request per second per watt is a 

measure for the efficient use of compute resources in executing business transactions. Low CPU/GPU utilization 

exposes a poor compute-resource uti- lization, while the cost per transaction quantifies the expense of providing the 

services. Together with the latency asked by users, all these key performance indicators (KPIs) are incorporated in a 

single graph representing banking application energy-efficiency properties on the AWS cloud; this graph highlights the 

best-cost-maintaining trade-off in Low Latency Demand. The analysis of architectural principles for energy efficiency, 

along with the identification of compute-resource optimization strategies with main focus on right-sizing big- data 

workloads, form the foundation for deploying large-scale global banking applications on AWS clouds in a sustainable, 

cost-efficient, and latency-driven way. 

 

II. ARCHITECTURAL PRINCIPLES FOR ENERGY EFFICIENCY 

 

 
Fig. 2. Instances over time 
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TABLE I 

DAILY SUMMARY: FIXED VS AUTO SCALE 

 

 IT energy (kWh) Total energy @PUE=1.2 

(kWh) 

Fixed (peak) 36.03486 43.24183 

Autoscale (60% u*) 17.58236 21.09883 

 

construction choices aimed at energy efficiency. The fulfilment of these principles aids the natural pursuit of 

sustainability, even when no particular green objective is defined. Energy use in banking software is driven by 

the energy profile of the underlying cloud platform, along with the way in which the on-demand components—

mostly databases and data stores—are used. A specialized database design and tiered caching systems, together with 

carefully thought-out data-access patterns, can minimize the energy consumed by these non-compute parts of the 

system. 

 

Equation 01: Energy & carbon fundamentals 

 

Power Usage Effectiveness (PUE) 

 

PUE ≡ PITPfacility    (1)                                           

 

sofacility = PUE · IT ⇒ Pfacility = PUE · PIT · PIT      (2) 

                                            ∫ 

Overtime, withenergyE =       P dtEfacility = PUE · EIT    (3) 

 

A. Principles of Sustainable Software Architecture 

Decoupled architecture enables applications to evolve in- dependently. Each component has a well-defined interface, 

facilitating debugging, fault isolation, technology updates, and risk exposure. Statelessness improves robustness by 

removing state dependencies that prolong recovery from VM or con- tainer failures; resilient external storage mitigates 

remaining state risks. Consistent observability simplifies understanding runtime behavior and resolving problems. 

Designing demand- driven systems ensures that execution depends on user requests or business events, avoiding 

additional work during inactivity. Such design improves fault tolerance and support for short- lived functions, leading 

to elastically sized, on-demand-priced operations consistent with carbon and electricity pricing. The following cloud-

native patterns related to demand-driven be- havior foster power-aware software design: adaptive scaling based on 

monitored power usage or predicted demand, event- driven operations invoked through messaging queues, and task- 

based workflows to support scheduling of bursts with capacity interruptions. Demand-driven traffic patterns, especially 

with peaky usage, minimize costs in a carbon-aware infrastructure. 

 

B. Cloud-Native Patterns for Power-Aware Design 

Power-aware design patterns inherent in cloud-native ap- plications provide an essential foundation for energy-

efficient deployments of banking systems on AWS. Functionally de- coupled, event-driven, and finishable-process 

architectures na- tively minimize energy waste and enable demand-sensitive resource provisioning, a property that can 

be further exploited with dedicated traffic-shaping techniques. When properly ad- justed, these patterns allow all 

components in the banking application and its back-end systems—including data access nodes, databases, and 

storage—to benefit from adaptive scal- ing, utilization-based right-sizing, or purely serverless execu- tion. The 

completeness of this set of design patterns ensures that further energy-related decisions for data, network, and I/O 

layers remain sound and focus primarily on performance optimization. Functionally decoupled subcomponents require 

only the resources needed for their own individual load levels. When incorporated into transportation system state 

machines, throughput per state enables provisioned-layer uti- lization and activity levels to be monitored. So long as 

the expected workload modes are understood, these patterns can be enhanced with external traffic-shaping techniques 

to reduce energy wasted in idle states. Emphasizing demand horizontal- ity and time-limited workload duration allows 

all submove build processes to be run as finishable tasks, exploiting the underlying vanishing-residuals principle to 

ensure that all tasks fit into available execution resources. 

 

III. COMPUTE AND RESOURCE OPTIMIZATION 

 

Balancing performance and energy use requires right-sizing resources and defining appropriate autoscaling strategies. 

Right-sizing is driven by business-critical performance re- quirements, and scaling strategies support dynamic 
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workloads with distinct seasonal trends or daily peaks during business hours. It defines thresholds and deltas that 

trigger scaling actions. Many AWS services can be set up to maximize en- ergy efficiency while still meeting 

performance requirements. Events can be leveraged to trigger processing in serverless and container solutions (AWS 

Fargate and a managed Kubernetes installation). A suitable design writes finishable tasks to event sources that AWS 

Lambda or Fargate consumes, using native integration whenever possible. Underlying processing can use a delayed 

broker (Amazon SQS with a short visibility time- out) or a fully fledged data-centric stream messaging service  

 

 
Fig. 3. An Optimized Framework for Energy-Resource Allocation in a Cloud Environment 

 

(Amazon Kinesis). Each consumer group is provisioned for the processing throughput of the complete application, even 

if the load is not constant. However, sub-second delays are difficult to provide with a finishable-task design, since no 

native event sources are available. Resource consumption can be adjusted to match the load, which means the run time 

fluctuates with demand rather than a workload-characterizing metric—CPU use, for example. The ideal is a resource 

consumption set point, around 60% utilization, that reduces the time-based cost while allowing peak load to fit within 

non-overscaled resources. For EC2 and Amazon RDS workloads, utilization thresholds cause scaling-ins and scaling-

outs, adjusting the number of running resources based on usage. For AWS Fargate containers, the active service size 

defines scaling, while for managed Kubernetes workloads, Karpenter can automatically provision instances in line 

with load. 

 

A. Right-Sizing and Autoscaling Strategies 

Key metrics for optimizing performance while minimizing power consumption have been defined. Appropriate thresh- 

olds of CPU and memory utilization that trigger scaling actions have been identified. Workload characteristics have 

been studied to derive the trade-offs, ramifications, and cri- teria for effective usage of horizontal, vertical, and 

network- aware scaling. Best practices span the spectrum, covering dynamic adjustment of instance size and type, 

deployment of adaptive application-layer scaling, integration of autoscaling groups with optimized scaling policies, 

and characterization of workloads to guide these optimizations. Monitoring CPU and memory utilization is common 

for horizontal and verti- cal scaling. Tail latency is often employed for vertical and network-aware scaling of managed 

services. Power-efficiency considerations can also supplement the usage of other met- rics. For extreme long-running 

and read-heavy workloads, network-endpoint location diversity should be exploited to decrease latency and thus power 

consumption. Additionally, adaptive scaling and autoscaling groups should operate on traffic patterns rather than on 

raw usage metrics, striking a balance between false positives and long-polling overheads. 

 

Performance exacerbation has been a recurring problem for latent cloud services. PUE and power consumption per op- 

eration for virtualized sharing of compute and I/O systems have increased. For transient workloads on low-utilization 

servers, power consumption of the idle state has overwhelmed compute. Power-aware latent scaling of services, 

including multi-region architectures and pooling of client resources, can reverse this development. 

 

B. Serverless and Container-Based Workloads 

Although serverless architectures are popularly associated with cost savings—only paying when the function is exe- 

cuted—this is mostly not the case with AWS Lambda imple- mentations of banking applications. Besides, AWS 

Lambda comes with a major caveat, namely its cold start. When a function is not executed for a while, the 

executors are deactivated, and the next time the function is called, it takes more time to execute as a new executor 

needs to be created. Therefore, when mainly idle functions are present, paying for idle time is not optimal. So, 

when the majority of the execution is near idle time, AWS Lambda becomes expensive. However, with traffic 

shaping, this caveat can be mitigated to some extent by pacing the traffic. When the function is at hundreds of 

request per minute or higher, paying for idle time is beneficial compared to using EC2 instances that need to be 

running and therefore consuming power all the time. Therefore, during these periods of high demand, the function 

https://ijarcce.com/


IJARCCE ISSN (Online) 2278-1021 
ISSN (Print) 2319-5940 

 

              International Journal of Advanced Research in Computer and Communication Engineering 
 

Vol. 9, Issue 12, December 2020 
 

DOI  10.17148/IJARCCE.2020.91225 
 

Copyright to IJARCCE                                                             IJARCCE                                                                             193 

This work is licensed under a Creative Commons Attribution 4.0 International License 

based execution can lead to a higher overall request per second per watt indicator. Besides AWS Lambda, Lambda, the 

AWS Fargate service that runs containers and the elastic Kubernetes should also be considered similarly when none 

idle requests are present. Auto scaling is a key cost-energy optimization pattern, but data locality and data access 

patterns have a great merit on the overall cost-energy indicators. When using AWS services, its architecture is 

designed to favour the data locality for all services, meaning for example that for an EC2 instance the data will be 

closest to it in terms of hop count and latency. When using services that do not favour data locality, significant efforts 

must be put in understanding how to minimize the involved data transfer latency-energy. The ap- plication Cosmos, 

using a Microservices oriented architecture style, shows that on the APN multiple AWS services are used, including 

Lambda, EC2, and Fargate, creating a performance oriented implementation. While testing Cosmos in production 

environment, it became clear that the timing of executions in each of the independent services leads to a waste of 

resources on the APN, making it a good candidate for traffic shaping. 

 

IV. DATA LAYER AND STORAGE EFFICIENCY 

 

Energy consumption during computation is not the only concern. The energy cost of data movement is significant as 

well, affecting not just the energy consumption and carbon footprint but also the financial cost. Energy-aware patterns 

and best practices in the data layer therefore contribute to the overall energy efficiency of the application. Efficient 

energy- aware design requires careful consideration of where, how, 

 

 
Fig. 4. Estimated Response Time (S) Over Time (M/M/M Approx) 

 

TABLE II 

TOTALS COMPARISON 

 

 Total energy (kWh) CO2e (kg) 

Fixed (peak) 43.24183 19.45882 

Autoscale (60% u*) 21.09883 9.494473 

 

and when the data is stored. Not only the storage technology (SSD/HDD) but also the choice of indexing, 

partitioning, and replication affect energy consumption. Caches and tiered caches help reduce energy spent on access 

in I/O operations. Careful tuning of caching strategies, time-to-live settings, and hot-cold separation can reduce 

response times, make better use of caches, and minimize latency and associated energy during I/O-intensive compute 

operations, such as search queries. Additionally, data locality contributes to energy efficiency by limiting the distance 

data need to travel. When these points are considered, the entire architecture is designed for minimal energy and cost-

consumption in data operations. 

 

Equation 02: Cost & efficiency 

 

Let total cost over the period be C and total transactions be 

N 

Cost/tx = NC (4) 

% In the sim, =instances+egressC=Cinstances+Cegress % Cegress (illustrative), and 

 

N = 
Σ 

t RPS(t) · ∆t (5) (6) 
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A. Energy-Aware Database Design 

Supporting cloud-based applications with energy-efficient databases requires a combination of replication, 

partitioning, indexing, data transfer optimizations, and judicious cost con- siderations. Energy-aware database 

operation must connect closely with application-level patterns. An energy-aware ap- plication profile guides decisions 

on load and burst distri- bution, helping to determine the number of active replicas and whether multi-AZ 

deployment is appropriate for latency and redundancy. Existence of energy-aware database cost analytics promotes 

energy-cost consideration when trading read, write, and transfer costs. Partitioning according to access patterns 

ensures that the energy cost of data transfers does not dominate query costs on partitions. Caution should be 

exercised during partition replication to minimize write traf- fic for seldom-accessed replicas, and cross-region 

replication must be matched with an evaluation of transfer energy in mul- tiregion deployments. The most powerful 

energy-motivated optimization is the use of application-traffic-aware partitioning together with strong-read-quorum, 

weak-write-quorum repli- cation for NoSQL databases. Carefully planned query struc- tures that minimize indexed-

query-set size can reduce index- related energy, especially when combined with read-heavy traffic characteristics 

downstream of the partition function. With image data, a clear separation of the image-fetch oper- ation from the 

transcoding operation can allow highly loaded services to draw from a much smaller dataset than is used by the 

general application-case transcoding. Dominance of write costs in a replica’s operation tempts consideration of traffic-

pacing strategies that can trade cooling-energy economy against hardware-lifetime economy if the replication lag can 

be tolerated. 

 

B. Catching, Tiering, and Data Locality 

Minimizing the compute energy component is vital for overall energy efficiency. Substantial gains can be achieved by 

adopting 2.2 cloud-native design patterns. Caching is essential to limit redundant computation and data I/O. Data 

move- ment is typically the most energy-intensive action, so placing tasks and data in proximity to each other is 

crucial. Traffic shaping is necessary to alleviate the effect of network idling on energy consumption. Application logic 

patterns such as request shaping, bulk data movement, and the use of long-lived egress streams or connections can be 

exploited to minimize energy use during data transfer. Network and transport layer QoS mechanisms must be 

leveraged to reduce the need for excessive provisioning of network bandwidth. Idle resources should be powered down 

or scaled to lower configurations. Multi-tier cache hierarchies, ideally with separate TTL policies for different data 

classes, can significantly reduce redundant compute energy. The potential benefit is maximized when tasks are 

deployed in geographical proximity to cache tiers. Caching mechanisms, however, may incur additional compute costs 

when monitoring and maintaining data consistency. Care- ful strategy selection is required to maximize the net gain. 

Data properties and access patterns must be analyzed to determine the most useful set of caches. The optimization 

problem can be partly solved by spatially partitioning workloads based on user request locality prior to execution. 

 

V. NETWORKING AND I/O EFFICIENCY 

 

Energy-efficient banking applications should also optimize I/O operations and their networking topology. An isolated 

service can behave well under low latency requirements using  

 
Fig. 5: Networking and I/O Efficiency 
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AWS services that cross regional boundaries. However, every such region has a cost involved not only for data 

transfer but also in terms of the amount of energy used for that data transfer. So, some users may prefer paying a 

little more for the entire service if that service shows energy efficiency. Seamless operation across AWS zones may 

provide HA at the application level in the event open/close requests are issued on the same service instance and run 

across separate AWS zones. Thus, these should be efficiently planned considering both HA and energy consumption. 

With wired networks in- creasingly more efficient than wireless, power consumption is often higher when the 

devices are idle rather than under heavy use, resulting in idle power levels close to the peak. Therefore, whenever the 

objectives include energy efficiency, ideally, these idle phases must be eliminated or reduced. Rainflow congestion, 

bandwidth throttling, and QoS level usage can help in reducing inter-service communication when using VB across 

services. Further, software optimization (of HTTP long polling, TCP connection, etc.), connection pooling, and 

connection reuse techniques would also provide energy savings. 

 

1) Cross-Region and Multi-AZ Considerations for Energy Use: Among the diverse aspects relevant to energy and 

performance in banking applications, operating in multiple availability zones (AZs) and AWS regions can be 

significant. Of particular interest are the energy costs involved when data must be transferred between these locations 

due to replication or other reasons, or during a failover. Although moving resources across regions may have 

implications for latency and CO2 emissions, the energy introduced by the extra hops in the network should also be 

considered. Communication between regions normally travels over the public Internet. While all data packets are sent 

through multiple carriers and data centers of varying energy efficiency, these hops consume electric power without 

any useful computational work be- ing performed. Region pairs offering accelerated cross-region transfer using the 

AWS backbone tend to have considerable economic and ecological advantages—and in addition, can reduce the 

energy impact. The fact that these locations remain fixed over time makes them suitable for database architectures 

requiring low latency. Customers willing to pay a higher price may prefer private links, which may provide the fastest 

or the most energy-efficient solution. 

 

A. Traffic Shaping and Connection Management 

Effective traffic shaping and connection management can significantly reduce the idle power consumption of 

servers in a system while maintaining service quality. One approach is to characterize the demand for connection 

establishment and treat it as a discrete event, triggering connection creation and destruction. Doing so minimizes the 

amount of time the connection is idle. A different approach is to change the shape of the traffic being sent, 

smoothing and spacing it out to limit peak bandwidth requirements. Finally, the reuse of TCP connections when 

using HTTP can be leveraged; keeping HTTP connections open can prevent large delays at the cost of keeping the 

connection active. Excessive numbers of kept open connections must also be avoided, as they still consume resources 

on both the client and server side. For databases, a certain amount of idle persistent connections must be maintained to 

allow fast response to queries. However, it is better to optimize for high-buffer-cache efficiency and keep the 

connection over TCP open for a long time (e.g., hours), as the idle connection is lightweight. It is, nonetheless, still 

prudent to avoid excessive fragmentation and excessively small queries. Queued connections must be reused when 

tuning the server’s socket settings and can be gained from placing a limit on the number of allowed connections. 

 

VI. CONCLUSION 

 

In sum, the principles outlined contribute to energy- efficient design patterns for large-scale banking applications 

deployed in the AWS public cloud. The balance between cost, performance, and energy use can be efficiently 

managed through an integrated approach whereby all layers of the application consider all dimensions. Control 

of these dimensions at the fastest time scale possible leads to limit- compliant energy-efficient banking applications 

that are not only environmentally friendly but also cost effective. The economic aspect is crucial as the 

sustainability and environmental damage aspects play only a minor role in such a solution. The various proposals 

should, however, undergo further practical validation. Finally, some of the tasted patterns are expected to become 

even more relevant in the near future. The interest in AI/ML is moving toward the scheduling domain. Scheduling 

workloads on a plethora of heterogeneous hardware resources with different levels of energy efficiency is a 

fascinating area of research, and power-aware scheduling of AI workloads for automatic resource provisioning 

should become commercially available soon. Hardware engineers are becoming more aware of the problem. The 

provision of a hardware monitoring tool through the AWS cloud that can estimate the carbon impact of the operation 

of EC2 instances should grow interest in the selection of the right instances, not only for cost but also for a lower 

carbon footprint. The migration of applications in the banking domain toward a microservice architecture, together 

with the possibility of routing DB calls to the least loaded regions, opens the door to a powerful mean of 

distribution of the load on the Networking I/O dimension across regions; a method that should be explored in 

the near future is the class-based routing for different types of services with different environmental impact when 

the load is reduced. 
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Σ 

 
Fig. 6. Totals: Energy, CO2e, Cost (Illustrative) 

 

Equation 03: Latency/SLA orientation (queueing view) 
 

Arrival rate λ = L(t) (RPS) Per-instance service rate µ = κ  (RPS) Servers m = n(t) 
 

Utilization per server ρ = λ/(mµ) (needs < 1)  
 

Erlang-C wait probability PW and waiting time 

 

 

W = k = 0m − 1k!(mρ)k + m!(1 − ρ)(mρ)mm!(1 − ρ)       (7) 

 

(mρ)m Wq = mµ − λPW , W = Wq + µ1     (8) 

 
 

A. Emerging Trends 

Several emerging trends may influence future energy- efficient designs on the AWS cloud. AWS powers services and 

servers with sustainable energy such as hydro and wind, but mainframes for AI training still consume excessive 

resources. Power-efficient AI-ML deployment models integrated into AWS services or with third parties that follow 

energy-aware design patterns would extend such scheduling to service- oriented architecture. Reference [36] shows 

that real-time energy forecasting on IoT devices can inform scheduling, and AI-ML models can also enable 

cloud service providers to deliver AI-ML jobs with reduced energy consumption without compromising users’ 

continual real-time requirements. Greener cloud- and hardware-side designs may improve sus- tainability by 

interacting with energy providers at larger power stations. Copying AWS products, future AWS and cloud ser- vice 

providers should integrate AI-ML prediction functions to choose energy sources with the lowest carbon index and 

real- time update devices to work with energy-polluting centers in non-peak hours. Sustainability benchmarking should 

influence such ecosystems and products. Incorporating carbon-aware routing functions into Layer 4 and 7 services 

would provide traffic routing based on carbon consumption without perfor- mance loss during peak hours. Moreover, 

OpenAI and Google are developing their own LLM models that require huge resources and energy. Incorporating 

power and carbon metrics into planned language models would reduce energy consump- tion in prediction and training 

and control I/O bandwidth and energy consumption in data exchange. This function can be in- tegrated into basic data 

exchange and training services of AWS and similar service providers. Power-aware design patterns that target energy 

reduction while maintaining integrity and reliability strongly resonate with banking applications. Energy consumption 

of such battery-powered devices but with lower performance demand may attract industrial attention. 
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