
IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI 10.17148/IJARCCE.2021.10810

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 68

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Cov-INS | Intelligent Navigation System to

Avoid Infected Covid-19 Areas with

Reinforcement Learning and Internet of Things

1Sudip Mitra, 2Shree Sarkar

1Department of Computer Science and Engineering, Government College of Engineering and Leather Technology,

Kolkata, India
2Department of Computer Science and Engineering, Budge Budge Institute of Technology, Kolkata, India

Abstract: In this paper, a Machine Learning-enabled intelligent navigation system is presented. It will recommend routes

in a road network by minimizing source to destination distance by choosing right shortest path between source to

destination , it also take care and avoids categorically marked COVID-19 hotspots. The Q-Learning based system takes

the source and destination as inputs from the users and recommends a safe and shorter path for traveling. It reduces the

risk of getting exposed to the contaminated zones and contracting the virus by bypassing the red covid19 hotspot zones.

Keywords: Reinforcement Learning, IoT, Intelligent Navigation System, Route Planning, Q-Learning, Covid19 Hotspot

I. INTRODUCTION

Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected
with the COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special
treatment. Coronaviruses belong to the Coronaviridae family in the Nidovirales order. Corona represents crown-like spikes
on the outer surface of the virus; thus, it was named as a coronavirus. Coronaviruses are minute in size (65–125 nm in
diameter) and contain a single-stranded RNA as a nucleic material, size ranging from 26 to 32kbs in length. The small size
and intangible nature of the virus have led to an uncontrollable spread across the world, resulting in creation of COVID-
19 hotspots.

The best way to prevent and slow down transmission is to be well informed about the COVID-19 virus, the disease it
causes and how it spreads. Protect yourself and others from infection by washing your hands using an alcohol based rub
frequently, not touching your face and maintaining physical distance. Since contact tracing in these covid19 hotspot areas
is challenging, the concerned authorities identify these hotspots and categorize them as red, orange, or green zones. These
zones are classified based on the severity of the spread, and the restrictions in each zone vary accordingly.

Hotspot areas classified as Red Zone as it needs to have focused attention in these areas reporting a large number of Covid-
19 cases and high growth rate.

The areas with a limited number of cases in the past and with no surge in positive cases recently would be included under
the orange zone. For the Green Zone, the area that has not reported positive coronavirus cases can be marked under this
zone.

Although the conditions are adverse, people need to commute from one place to the other regularly for work and basic
amenities. Safe and Intelligent Transportation is a concern at this moment, and avoidance of hotspots is of paramount
importance.

Here, shortest path and optimized path algorithms do not suffice in finding safe routes in COVID-19 environments. In
such situations, intelligent system that recommend routes [1] that bypass hotspots or minimize passage through them is
necessary for ensuring the safety of the people.

In this Reinforcement Learning-based intelligent navigation system avoids COVID- 19 hotspots according to the category
of the zones for ensuring the safety of the users. It takes Source and Destination as inputs from the users and recommends
a safe path that is optimal route and minimizes traveling through the hotspot areas.

A. Uniqueness of Intelligent Navigation System

 Some of the most commonly used applications are Google Maps, Apple Maps, HERE WeGo Maps, and others.
Apart from their uniqueness in features, such as online/offline, personalization, and visualization, these applications
typically focus on road traffic, blockage, speed, and distance for finding the shortest/optimized route from source to
destination. Such methods are not suitable for use in the current scenario of COVID-19. The commuters need to avoid

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI 10.17148/IJARCCE.2021.10810

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 69

ISSN (O) 2278-1021, ISSN (P) 2319-5940

traveling through hotspots to reduce exposure. Our algorithm recommends paths that bypass traveling through hotspots.
In unavoidable situations, it ensures minimal travel through them.

B. Related Work

 Navigation and path planning has been an area of great interest among researchers.

Zhou and Wang [2] designed a routing model by considering intersection signals and real-time velocity of the vehicle.
Szucs [3] developed a model based on Dempster–Shafer theory to calculate the uncertainty (road conditions) in cost
function while using Dijkstra’s algorithm. Chen et al. [4] proposed a log C-means clustering algorithm (LFCM) to form
clusters based on driving style. Then, they used the ant colony algorithm to calculate the shortest path. Sun et al. [5]
proposed a graph-based method to minimize travel time by either recommending the shortest path or the best starting time
using conventional and extended Bellman–Ford algorithms.

Lv et al. [6] demonstrated how IoT systems have the potential to monitor these routes and vehicles by using off-the-shelf
sensors for communicating with street lights and other stationary units installed on the street. Xu et al. [7] proposed a
crowd evacuation recommender system in case of disasters. Zhu et al. [8] exploited the features of Q-learning methods to
schedule transmissions to ensure reliable exchange of data.

 The existing solution techniques typically focus on finding the shortest/optimal paths between the source and
destinations. Such methods are not suitable for use in the current scenario due to the threat of the COVID-19 virus. The
commuters need to maintain social distancing and avoid traveling through zones that may be part of the optimized routes
to reduce exposure.

II. INTELLIGENT NAVIGATION MODEL

A. Why Q- Learning is used to build the model?

The COVID-19 virus spreads primarily through droplets of saliva or discharge from the nose when an infected person
coughs or sneezes, so virus is spreading rapidly and it got out of control. Due to this, the status of the hotspots keeps
changing at specific intervals. The criteria for road routes need to change per the changing states of the hotspots.

Q-learning is an off-policy value-based Reinforcement Learning technique that does not depend on the conventional
greedy methods and estimates its reward for the future. In summary, because of the feedback loop, Q-learning, changing
status of the hotspots, and nongreedy selection technique, we use Reinforcement Learning instead of other possible solution
techniques.

B. Analysing Routes and Generation of Graph

For a geographic region, we extract the road information and form a road network graph. We represent it as G = < V, E >
such that V is the set of vertices representing the intersection points, and E is the set of edges representing the roads. For
the set of vertices V = {v1, v2,..., va} and corresponding edges E = {e1, e2,..., eb}, the final vertex–edge pair representing
the road route is < V∗, E∗ > ⊆ < V, E > . The < V∗, E∗ > pair is user centric as it depends on the user’s source and
destination.

C. Intelligent Safety-aware Navigation Algorithm

We obtain G from the maps to generate a reward matrix and process it on C or F to produce the safety-aware route. For G

= < V, E > , we represent the length of the ith edge as edisti= li and the set of all distances as L = {l1, l2,..., lc}.

It operates on the roads from G and the corresponding R matrix. The rewards for each edge in take care of assigning higher
rewards to low containment factors and distances. The low containment factors ensure taking routes through low-risk
regions. The distance parameter ensures minimal traversal through the containment zones if there is no safer alternative.
Upon training the Q matrix based on these rewards, it considers the path that renders the maximum reward. For a road ei,
its containment factor is αi and the set of all containment factors is α = {α1, α2, α3,...,αb} such that |E|=|α|. For instance, the
government has divided the regions into zones according to three categories: 1) red zone (αr): regions that have a large
number of COVID-19 positive cases; 2) orange zone (αo): regions with a relatively fewer number of COVID-19 cases
compared to the red zones; and 3) green zone (αg): regions with no reported COVID-19 cases. In this work, we assign low
α values to edges belonging to zones with lower severity, implying that αg < αo < αr. In context of the mentioned parameters,
we formulate the reward of a path based on two major components—1) path length or distance and 2) intensity of
containment.

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI 10.17148/IJARCCE.2021.10810

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 70

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Algorithm: Intelligent Navigation Model Training

We used a random distribution process to allocate the categorical hotspot zones in the network map. We used Google
Colab to assume the role of cloud and the device mentioned earlier. We scale our results here and presented them in its
original form.

Fig 1: Reward values while training the Intelligent Navigation model with varying number of nodes in the map.

While training the model for Intelligent Navigation System, we fix the number of epochs/iterations sufficiently high to
ensure that the model accurately explores the environment. We draw inferences, and safety-aware paths after the training
is complete.

III. EXPERIMENTAL SETUP

We performed a series of experiments to evaluate the performance of our Intelligent Navigation Model. Toward this, we,
used the road-network data set exported from OpenStreetMap and processed the data in a device with 1.8-GHz Dual-Core
Intel Core i5 processor with Q Reinforcement Learning. We used different sets of longitudes and latitudes to vary the
number of nodes and edges. We used a random distribution process to allocate the categorical hotspot zones in the network
map.

Here we used osmnx 1.1.0, OSMnx is a Python package that lets us download spatial data and model, project, visualize,
and analyze real-world street networks from OpenStreetMap’s APIs. we can download and model walkable, drivable, or
bikeable urban networks with a single line of Python code, and then easily analyze and visualize them. With OSMnx we
can just as easily download and work with amenities/points of interest, building footprints, elevation data, street
bearings/orientations, speed/travel time, and network routing.

We also used matplotlib 3.4.1, Matplotlib is a comprehensive library for
creating static, animated, and interactive visualizations. Matplotlib produces
publication-quality figures in a variety of hardcopy formats and interactive
environments across platforms. Matplotlib can be used in Python scripts, the
Python and IPython shell, web application servers, and various graphical user
interface toolkits.

Let us bound the range of the map: north, east, south, west = 22.5862, 88.3785, 22.5764, 88.3645. And decide node
numbers of Orange and Red Zone node:

Orange = [1177655232, 1176976769, 663846649, 1202746627, 1176978122, 1202746673, 1177816130, 1195827529,
1177815769, 1194743066, 663940665, 1202168183, 1202168279]

Red = [1217614532, 663847554, 2281800874, 1177815903, 1217614604, 1217614501, 121761790, 1202332476,
1217614545, 1217614635, 1217614499, 1217614509, 663843644]

#Install Required Libraries

!apt-get -qq install -y libspatialindex-dev

!pip install -q -U osmnx

!pip install matplotlib = = 3.4.1

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI 10.17148/IJARCCE.2021.10810

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 71

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Let us assign the source node and destination node number:

initial_state = 21 #assign source node number

goal = 41 #assign destination node number

NumPy is a Python library used for working with arrays.
It also has functions for working in domain of linear
algebra, fourier transform, and matrices.

NetworkX is a Python library for studying graphs &
networks.

OSMnx is a Python package to retrieve, model, analyse,
and visualize street networks from OpenStreetMap.

Matplotlib is a plotting library for creating static, animated, and interactive visualizations in Python.

import numpy as np

import pylab as plt

import networkx as nx
import time

import osmnx as ox

import matplotlib.pyplot as plt ox.config(use_cache=True,

log_console=True)

Defining the map boundaries

north, east, south, west = 22.5862, 88.3785, 22.5764,

88.3645
Downloading the map as a graph object

G = ox.graph_from_bbox(north, south, east, west,

network_type = 'drive')

red = [1177655232, 1176976769, 663846649, 1202746627,

1176978122, 1202746673, 1177816130, 1195827529,

1177815769, 1194743066, 663940665, 1202168183,

1202168279] #assign node numbers of edges in red zone

orange = [1217614532, 663847554, 2281800874,

1177815903, 1217614604, 1217614501, 121761790,
1202332476, 1217614545, 1217614635, 1217614499,

1217614509, 663843644] #assign node numbers of edges
in orange zone

avg_path_len = avg_path_len/len(edges)
print("average path length : ",avg_path_len)

print("maximum path length : ",max_path_len)

print("minimum path length : ",min_path_len)

Plotting the map graph

ox.plot_graph(G,node_zorder=3,annotate =
True,node_edgecolor = 'w',node_color = node_color, node_size

= node_size, edge_color = edge_color, edge_linewidth=2,

use_geom = True, bgcolor = "aliceblue")

ox.plot_graph(G,node_zorder=3,node_edgecolor =
'w',node_color = node_color, node_size = node_size,

edge_color = edge_color, edge_linewidth=2, bgcolor =

"aliceblue")

nodes = []

 node_color = []

node_size = []
initial_state = 21 #assign source node number

goal = 41 #assign destination node number

for i in range(len(list(G.nodes(data = True)))):

 temp = list(G.nodes(data = True))[i]

 nodes.append(temp[0])
 print(i," - ",temp[0])

 if i == initial_state:

 node_color.append('darkblue')
 node_size.append(200)

 else:
 node_color.append('k')

 node_size.append(80)edges = []

edge_color = []

max_path_len = 0

min_path_len = 1000
avg_path_len = 0

for i in range(len(list(G.edges(data = True)))):

 temp1 = list(G.edges(data = True))[i]

 length = temp1[2]['length']

 if min_path_len>length:

 min_path_len = length
 if max_path_len<length:

 max_path_len = length

 avg_path_len += length

 alpha = 0;
 node1 = temp1[0]

 node2 = temp1[1]

 if node1 in red and node2 in red:
 edge_color.append('crimson')

 alpha = 0.3 # assign contamination factor for red

 elif node1 in orange and node2 in orange:
 edge_color.append('darkorange')

 alpha = 0.2 # assign contamination factor for orange

 else:
 edge_color.append('darkgreen')

 alpha = 0.1 # assign contamination factor for green

 temp2 = (nodes.index(node1), nodes.index(node2), length,
alpha)

 edges.append(temp2)

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI 10.17148/IJARCCE.2021.10810

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 72

ISSN (O) 2278-1021, ISSN (P) 2319-5940

average path length : 176.0204108527131

maximum path length : 416.677

minimum path length : 15.602

(<Figure size 576x576 with 1 Axes>,

<matplotlib.axes._subplots.AxesSubplot at 0x7f4284b36050>)

We keep track of the rewards while training the Intelligent Navigation Model and present the results. We vary the
number of nodes on the map and start training. We observe convergence in each case. Additionally, as we increase the
number of nodes, the value of the rewards keeps increasing.

We measure the reward values by the sum of all the entries in the Q-matrix of the model. We notice the jumps and
downs as the model’s training phase uses the trial and error approach. It learns from its mistakes and gains knowledge of
the safer path. So, when the number of nodes is more, the number of edges is usually more. The model needs to explore
all the possibilities and requires more number of iterations.

0 - 663843644 16 - 1177816130 32 - 1217614499

1 - 663846649 17 - 1194742715 33 - 1217614501

2 - 663847548 18 - 1194742977 34 - 1217614509

3 - 663847554 19 - 1194743014 35 - 1217614510

4 - 663940656 20 - 1194743066 36 - 1217614532

5 - 663940665 21 - 1194743076 37 - 1217614545

6 - 663940666 22 - 1195827529 38 - 1217614574

7 - 664446482 23 - 1196059624 39 - 1217614579

8 - 1176976769 24 - 1200782099 40 - 1217614580

9 - 1176978122 25 - 1202168057 41 - 1217614581

10 - 1177655232 26 - 1202168183 42 - 1217614604

11 - 1177815213 27 - 1202168279 43 - 1217614635

12 - 1177815361 28 - 1202332476 44 - 1217614783

13 - 1177815769 29 - 1202746627 45 - 1217614790

14 - 1177815854 30 - 1202746673 46 - 2281800874

15 - 1177815903 31 - 1217614493

def available_actions(state):

 current_state_row = R[state,]
 av_act =np.where(current_state_row >=0)[1]

 return av_act

def sample_next_action(available_actions_range,state):

 next_action = int(np.random.choice(available_act,1))

 return next_action

def update(current_state, action):
 max_index = np.where(Q[action,] ==

np.max(Q[action,]))[1]

 if max_index.shape[0] > 1:

 max_index = int(np.random.choice(max_index, size =

1))
 else:

 max_index = int(max_index)

 max_value = Q[action, max_index]

 Q[current_state,action] = R[current_state, action] +
gamma * max_value

 if (np.max(Q) > 0):
 return(np.sum(Q/np.max(Q)*100))

 else:
 return (0)

MATRIX_SIZE = len(nodes)
print(MATRIX_SIZE)

create matrix x*y

R = np.matrix(np.ones(shape=(MATRIX_SIZE,

MATRIX_SIZE)))
R *= -100

def sigmoid(x):
 return 1/(1+np.exp(-x))

gamma = 0.5 #assign gamma value

for point in edges:

 if point[1] == goal:

 R[point[0],point[1]] = 1800
 else:

 R[point[0],point[1]] =

max_path_len*point[3]*sigmoid((min_path_len-
point[2])/avg_path_len)

 if point[0] == goal:
 R[point[1],point[0]] = 1800

 else:

 R[point[1],point[0]] =

max_path_len*point[3]*sigmoid((min_path_len-

point[2])/avg_path_len)

R[goal,goal] = 1800

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI 10.17148/IJARCCE.2021.10810

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 73

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Commonly available applications, such as Google Maps rely
on Dijkstra’s algorithm and recommend shortest paths based
on parameters. Without loss of generality, we refer to the
available methods as shortest path algorithms. Although the
Intelligent Navigation model finds the safest route possible,
it increases the travel distance, implying a trade-off between
safety and distance. On setting arbitrary source–destination
pairs, we study the increase in travel distance.

We observe higher travel distances by our model in all cases.

On average, we see almost 15% additional travel distance in

the case of Intelligent Navigation Model as compared to the

shortest path. However, we analyse the travel distance

through hotspots (red/orange/green) and present the

percentage with respect to each case’s total recommended

path. In both red and orange zones, we observe that our

model takes paths as small as 2% (15 m). The shortest path

algorithm takes 65% on the same source–destination pair. In

the case of green zones, we observe that our model travels

mostly through them compared to the shortest path model.
O/P 47

Fig 2: R and Q matrices while training the Intelligent
Navigation Model

 We consider a map with 22 nodes and 55 edges. We
demarcate some areas as red and orange zones to show the
confusion matrices. We set the rewards according to (1)
and populate the R matrix of size 22×22. R is a symmetric
matrix as we consider an undirected map. The destination
node has the highest reward, and hence we observe dark
patches in Fig. 2(a). The lightest shade, which covers the
majority of the matrix, represents non existing edges
among the nodes. The other shades represent the rewards
for each edge. The Intelligent Recognition System trains
the model and populates the Q matrix in Fig. 2(b). The
patch with the darkest shade in the row represents the best
possible next state from the current state (row index). The

MATRIX_SIZE = len(nodes)
print(MATRIX_SIZE)

Q = np.matrix(np.zeros([MATRIX_SIZE,MATRIX_SIZE]))

available_act = available_actions(initial_state)

action = sample_next_action(available_act,initial_state)

update(initial_state, action)
scores = []

for k in range(25000):

 current_state = np.random.randint(0, int(Q.shape[0]))
 available_act = available_actions(current_state)

 action = sample_next_action(available_act,current_state)

 score = update(current_state,action)

 scores.append(score)

plt.xlabel("epochs")

plt.ylabel("reward maximization")

plt.title("number of nodes = 198")
plt.plot(scores)
plt.show()

current_state = initial_state

steps = [current_state]
prev = current_state;

def avail(state):

 ttt = []

 for y in range(MATRIX_SIZE):

 if Q[state,y] >0:
 ttt.append(y)

 return ttt

ach = 0

while current_state != goal:
 indices = avail(current_state)

 next_step = []

 for ee in range(len(indices)):
 if indices[ee]==goal:

 ach = 10

 next_step.append((Q[current_state,indices[ee]],
indices[ee]))

 break

 elif indices[ee] not in steps:

 next_step.append((Q[current_state,indices[ee]],

indices[ee]))

 if ach!=10:

 next_step.sort()

if len(next_step)==0:
 print('path not possible')

 steps = nx.shortest_path(G,nodes[1],nodes[goal],weight

= 'length')

 for p in range(len(steps)):

 steps[p] = nodes.index(steps[p])

 break

 next_step_index = next_step[len(next_step)-1][1]

 steps.append(next_step_index)
 prev = current_state
 current_state = next_step_index

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI 10.17148/IJARCCE.2021.10810

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 74

ISSN (O) 2278-1021, ISSN (P) 2319-5940

values of the Q-matrix updates according to the Bellman equation.

We safely comment that our model ensures safe to travel in all source–destination pairs. However, it increases the travel
distance, which is not a concerning factor as it reduces the risk of contracting the virus.

[1, 16, 22, 13, 2, 31, 25, 38, 41]

[663846649, 1177816130, 1195827529, 1177815769,

663847548, 1217614493, 1202168057, 1217614574,

1217614581]

[21, 20, 27, 26, 24, 6, 41]

[1194743076, 1194743066, 1202168279,

1202168183, 1200782099, 663940666, 1217614581]

Final Directed Path by Avoiding Covid19 Hotspots:

IV. NETWORK ARCHITECTURE WITH IOT

We consider an IoT-based network architecture, as shown in Fig. 3 for realizing Intelligent Navigation System. In this
work, we consider a scenario with a remote cloud server C and a set of Fog Layer Nodes F = {f1, f2,..., fn}. The cloud is
responsible for computing the paths for a wide area (cities/states) and for areas that are devoid of Fog Nodes. On the other
hand, we propose the use of location-aware Fog Nodes for Intelligent Navigation System. In other words, for a set of
geographical regions G = {g1, g2,..., gm} each of the Fog Nodes is responsible for their own geographical area. This strategy
reduces the size of the map on the Fog Nodes, which is suitable for the resource-constrained nature of the Fog Nodes. It
may be noted that we consider networking devices, such as switches, routers, and others for assuming the role of Fog
Nodes.

route1 = []

for i in range(len(steps)):
 route1.append(nodes[steps[i]])

print(steps)

print(route1)

steps2=[]
route2 =

nx.shortest_path(G,nodes[initial_state],nodes[goal],weight =

'length')
for i in range(len(route2)):

 steps2.append(nodes.index(route2[i]))

print(steps2)

print(route2)

c1 = 'green' #assign colour to our model

c2 = 'magenta' #assign colour to Shortest
rc1 = [c1] * (len(route1) - 1)

rc2 = [c2] * (len(route2) - 1)

rc = rc1 + rc2
nc = [c1, c1, c2, c2]

plot the routes

fig, ax = ox.plot_graph_routes(G, [route1,route2],

route_color=rc, route_linewidth=5,route_alpha=
0.8,edge_linewidth = 2 ,node_color = 'k',node_zorder = 3,

orig_dest_node_color='maroon',

node_edgecolor='w',orig_dest_node_alpha = 0.8,
node_size=80,orig_dest_node_size=200,bgcolor='aliceblue')

fig, ax = ox.plot_graph_routes(G, [route1,route2],
route_color=rc, route_linewidth=5,route_alpha=

0.8,edge_linewidth = 2 ,node_color = 'k',node_zorder = 3,

node_edgecolor='w', node_size=80,bgcolor='aliceblue')

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI 10.17148/IJARCCE.2021.10810

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 75

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Fig 3: Network Architecture for Intelligent Navigation System

As Cloud Server tries to train for a large region, and the FNs feed granular details with respect to the hotspots, the
separation of the tasks among the fog and cloud helps distribute the load along with easy data management.

It may be noted that the red zones are converted to orange when there are no COVID-19 positive cases for 14 continuous
days, and its conversion to the green zone needs at least 28 continuous days with no positive reports. In this work, we
depend on some user intervention in this regard and allow only concerned authorities to update the databases.

V. CONCLUSION

In this article, we proposed and developed an Reinforcement Learning based intelligent navigation model that recommends
road routes with ensured safety from interaction with covid19 viruses. The recommended path avoids traveling categorical
hotspots, ensuring safety, and reducing exposure risk for the users. To facilitate real-time results, we proposed an IoT-
based network architecture. We formulate the reward function for the reinforcement learning model by imposing zone-
based penalties and demonstrate that Intelligent Navigation System achieves convergence under all conditions. To ensure
real-time results, we propose an Internet of Things (IoT) based architecture by incorporating the cloud and fog computing
paradigms. The fog computing platform allows partitioning of the maps and operations on small portions rather than the
entire map, which is time-consuming. We also performed extensive experiments on Intelligent Navigation System using
real data sets from OpenStreetMap, Google Maps and presented results. We also performed a detailed comparative analysis
of the recommended paths by Intelligent Navigation System with Dijkstra’s shortest path algorithm. We observed an
average 14% increase in travel distances by our navigation system. Here we also described the total procedure of Q-
Learning with Python step by step. We plan to extend this work by considering additional factors, such as real-time traffic,
multilane road system, and speed control.

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI 10.17148/IJARCCE.2021.10810

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 76

ISSN (O) 2278-1021, ISSN (P) 2319-5940

REFERENCES

[1] G. Andonov and B. Yang, “Stochastic shortest path finding in pathcentric uncertain road networks,” in Proc. 19th IEEE Int. Conf. Mobile

Data Manag. (MDM), Jul. 2018, pp. 40–45.

[2] W. Zhou and L. Wang, “The energy-efficient dynamic route planning for electric vehicles,” J. Adv. Transp., vol. 2019, pp. 1–16, Aug. 2019
[3] I G. Szucs, “Decision support for route search and optimum finding in transport networks under uncertainty,” J. Appl. Res. Technol., vol.

13, pp. 125–134, Feb. 2015

[4] P. Chen, X. Zhang, X. Chen, and M. Liu, “Path planning strategy for vehicle navigation based on user habits,” Appl. Sci., vol. 8, p. 407, Mar.
2018

[5] Y. Sun, X. Yu, R. Bie, and H. Song, “Discovering time-dependent shortest path on traffic graph for drivers towards green driving,” J. Netw.

Comput. Appl., vol. 83, pp. 204–212, Apr. 2017.
[6] Z. Lv, B. Hu, and H. Lv, “Infrastructure monitoring and operation for smart cities based on IoT system,” IEEE Trans. Ind. Informat., vol. 16,

no. 3, pp. 1957–1962, Mar. 2020

[7] X. Xu, L. Zhang, S. Sotiriadis, E. Asimakopoulou, M. Li, and N. Bessis, “CLOTHO: A large-scale Internet of Things-based crowd evacuation
planning system for disaster management,” IEEE Internet Things J., vol. 5, no. 5, pp. 3559–3568, Oct. 2018.

[8] J. Zhu, Y. Song, D. Jiang, and H. Song, “A new deep-Q-learning-based transmission scheduling mechanism for the cognitive Internet of

Things,” IEEE Internet Things J., vol. 5, no. 4, pp. 2375–2385, Aug. 2018

BIOGRAPHY

Sudip Mitra is a Bachelor of Technology final year candidate in the Department of Computer Science

and Engineering at Government College of Engineering and Leather Technology, Kolkata. He

received Diploma in Engineering in Computer Science and Technology from Budge Budge Institute

of Technology, Kolkata at 2019. He has been recognized as Google Information Technology Support

Professional at 2020. He worked in two product based companies as a Software Developer and

Research & Mobile App Developer. His primary research interest in Systems, Networks and Artificial

Intelligence. He is the member of National Society of Professional Engineers (US) since 2021.

Shree Sarkar is a Bachelor of Technology final year candidate in the Department of Computer

Science and Engineering at Budge Budge Institute of Technology, Kolkata. She received Diploma in

Engineering in Computer Science and Technology from Budge Budge Institute of Technology, WB at

2019.

https://ijarcce.com/

