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Abstract This paper introduces an effective semantic segmentation of satellite imagery using 3D-Unet. We discussed 

previous work carried out and used deep learning to reproduce the work of Kemker et al. (2018) and other methods. We 

used performance metric to compare the performance of the proposed. This work underline that most RS and DL 

segmentation can be enhanced using DL models. 
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1. INTRODUCTION 

In order to make informed decisions concerning the environment, there are government ministries and agencies that are 

equipped to observe it. This enables us to make effective changes around us as appropriate or desirable. This process is 

referred to as earth observation, and has applications in disaster response, resource management and precision farming 

among others. Earth observation data is gathered by a range of techniques, and can be roughly categorized as remote 

sensing. It is where "the distance between the object and the sensor far surpasses the linear dimensions of the sensor 

Shivaprakash (2016). In the last decade, manual analyses of satellite imagery were feasible primarily because the volume 

of images available was quite low - but that is not the case now. Relevant information extraction from images thus 

becomes a problem with the high volume of data we deal with today. A major component of these problems is annotation 

(or labeling), wherein one identifies the structures and patterns visible in a satellite image. Over the years, research in the 

computer vision community has addressed this problem of automating the analysis of large-scale data in different ways.  

Machine learning techniques have proven to be strong candidates here, especially in the last few years Shivaprakash 

(2016). In this work, pixel-wise classification and semantic segmentation are synonymous. Semantic segmentation is the 

term more commonly used in computer vision and is becoming increasingly used in remote sensing. State-of-the-art 

semantic segmentation frameworks for RGB colors imagery are trained end-to-end and consist of convolution and 

segmentation sub-networks. Semantic segmentation (also named image classification in remote sensing) is the pixelwise 

classification of an image and is an important task for numerous applications of object recognition. With the rapid 

development of Remote Sensing (RS) technology, the RS imagery produced by high-resolution remote sensing satellites 

(such as IKONOS, SPOT-5, World View and Quick bird) have more abundant information to extract features and 

recognition ground object than the low-resolution remote sensing imagery. Many artificial objects that are difficult to be 

recognized in the past are now available to be detected Yuan et al. (2020). Semantic segmentation has been widely studied 

in computer vision (CV) and remote sensing, mainly using shallow features that were hand engineered by skilled people 

who have experience in the field and also often required domain-expertise Girshick et al (2014).  

This also means that if the conditions change even slightly, a framework which works well in a given task may fail in 

another task and the whole feature extractor might have to be rewritten from scratch, which is very time-consuming and 

expensive. These disadvantages led researchers in the field looking for a more robust and effective approach Wu et al. 

(2019). At the time of writing, the state of the art in the automation of visual labeling tasks is seen in the deep learning 

research community, and that is where this thesis picks up at. 

Semantic segmentation of remote sensing imagery has been employed in many applications and is a key research topic 

for decades. With the success of deep learning methods in the field of computer vision, researchers have made a great 

effort to transfer their superior performance to the field of remote sensing image analysis Yuan et al. (2020). In the past 

decade, deep learning methods have demonstrated much superior performance in many traditional computer vision 

applications including object classification, and semantic segmentation. Deep learning methods automatically derive 

features that are tailored for the targeted classification tasks, which makes such methods better choices for handling 

complicated scenarios. The great success in other domains excited the adoption and extension of deep learning methods 

for the problems in the field of remote sensing Yuan et al. (2020). Despite decades of efforts, literature review. The work 

reveals the following major challenges that require investigation and development of novel methods: (1) demand for 

pixel-level accuracy, (2) analysis of non-conventional data, and (3) lack of training examples. This opens up a significant 

room for further investigations to address the aforementioned challenges. 
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The existing models base on deep convolutional neural network for the semantic segmentation of satellite imagery has 

shown that synthetic imagery can be used to assist the training of end-to-end semantic segmentation frameworks when 

there is not enough annotated image data. The network initialization scheme has been shown to increase semantic 

segmentation performance when compared to traditional classifiers and unsupervised feature extraction techniques. 

However, there exist some more open issues as suggested by the author Kemker, et al. (2018) that requires future 

researchers to address such as, exploring deeper CNN architecture such as ResNet and U-Net models base on newer state-

of-the-art convolution deep learning architectures and segmentation model by Including additional diverse classes to the 

synthetic data. Thus, this work hopes to solve semantic segmentation of RS imagery using 3D-UNET. 

The remainder of this paper is organized as follows. Section 2 present the review of related work, section 3. Present the 

methodology, section 4 presents the results and finally section conclude the research findings proffer future work. 

 

2. RELATED WORK 

Pixel-wise classification and semantic segmentation are synonymous. Semantic segmentation is the term more commonly 

used in computer vision and is becoming increasingly used in remote sensing. State-of-the-art semantic segmentation 

frameworks for RGB imagery are trained end-to-end and consist of convolution and segmentation sub-networks. 

Recently, deep learning (DL) has become the fastest-growing trend in big data analysis and has been widely and 

successfully applied to various fields of computer application successfully including sequential data, processing of natural 

language, speech recognition and image classification Abdel-Hamid et al. (2012), because of its outstanding performance 

compared with that of traditional learning algorithms. Standing at the paradigm shift towards data-intensive science, 

machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, 

deep learning has proven as an extremely powerful tool in many fields. 

Praveena and Singh (2015) proposed a hybrid clustering algorithm and feed-forward neural network classifier for land-

cover mapping of trees, shade, building and road. The proposed technique performed better than all the existing 

algorithms taken for comparison. However, the results indicate that Moving KFCM is performed better than the existing 

algorithms for shade region classification. Additionally, an effective deep neural network was also proposed by Shuang 

et al. (2018) and compare the performance with SIFT, SURF, SAR-SIFT, PSO-SIFT, the experimental results shows that 

the applied transfer learning further improves the accuracy and reduces the training cost. However, the major limitation 

of this research is that there is no unified feature representation for different source images. 

Jony et al. (2018) employs an ensemble classifier to detect water in satellite images for flood assessment and evaluate it 

against Mediaeval (2017), it was found that this approach is capable of producing good classification accuracy for a seen 

location when bands are used and an unseen location when NDWI is used. However, the major setback of the study was 

that the study achieved worse results on an unseen location. 

More so, Wang et al, (2018) proposed a novel convolutional neural network (CNN) to classify cloud and snow on an 

object level. Specifically, a novel CNN structure capable of learning cloud and snow multiscale semantic features from 

high-resolution multispectral imagery is presented. In order to solve the shortcoming of “salt-and-pepper” in pixel level 

predictions, the author extend a simple linear iterative clustering algorithm for segmenting high-resolution multispectral 

images and generating super pixels. Results demonstrated that the new proposed method can with better precision 

separate the cloud and snow in the high-resolution image, and results are more accurate and robust compared to the other 

methods. However, the study fails to generalize the proposed convolutional neural network-based methods to another 

task in remote sensing fields such as urban water extraction and ship detection. 

The study Kemker et al. (2018) demonstrated the utility of FCN architectures for the semantic segmentation of remote 

sensing MSI by proposing an end-to-end segmentation model, which uses a combination of convolution and pooling 

operations, is capable of learning global relationships between object classes more efficiently than traditional 

classification methods. The result showed that an end-to-end semantic segmentation framework provided superior 

classification performance on fourteen of the eighteen classes in RIT-18. However, the result can be improved via 

exploring deeper ResNet and U-Net models. Additionally, including additional diverse classes to the synthetic data should 

aid the development of more discriminative frameworks that yield superior performance. 

In the past, remote sensing has proven to be an extremely valuable and effective tool for mapping 

slums. The study in Wurm et al. (2019) aimed at analyzing transfer learning capabilities of FCNs to slum mapping in 

various satellite images. A model trained on very high-resolution optical satellite imagery from QuickBird is transferred 

to Sentinel-2 and TerraSAR-X data. While free-of-charge Sentinel-2 data is widely available, its comparably lower 

resolution makes slum mapping a challenging task. TerraSAR-X data on the other hand, has a higher resolution and is 

considered a powerful data source for intra-urban structure analysis. Due to the different image characteristics of SAR 

compared to optical data, however, transferring themodel could not improve the performance of semantic segmentation 

but we observe very high accuracies for mapped slums in the optical data to address the challenges in VHR image 

semantic segmentation performance. Mi and Chen (2020) proposed a Superpixel-enhanced Deep Neural Forest (SDNF). 

A fully differentiable forest is introduced to dominate the representation learning of deep convolutional layers in order 

to balance the classification ability and representation learning capability of DCNNs. Moreover, a Superpixel-enhanced 
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Region Module (SRM) is proposed to alleviate the classification noises and strengthens edges of ground objects. The 

efficiency of SDNF is evaluated on the ISPRS 2D labeling benchmark. Experimental results demonstrate that our method 

reaches a new state-of-the-art performance. 

 

Similarly, Wu et al. (2019) proposed an FCN-based model is to implement pixel-wise classifications for remote sensing 

image in an end-to-end way, and an adaptive threshold algorithm is proposed to adjust the threshold of Jaccard index in 

each class. Experiments on DSTL dataset show that the proposed method produces accurate classifications in an end-to-

end way. Results show that the adaptive threshold algorithm can increase the score of average Jaccard index from 0.614 

to 0.636 and achieve better segmentation results. However, the major limitation of the research is training the model in a 

weak supervision way, to further enhance its applicability. 

In 2020, You et al. (2020) propose a weed/crop segmentation network that provides better performance for precisely 

recognizing the weed with arbitrary shape in complex environment condition, and offers great support for autonomous 

robots to successfully reduce the density of weed. the deep neural network (DNN)-based segmentation model obtains 

persistent improvements by integrating four additional components by evaluating the network performance on two 

challenging Stuttgart and Bonn datasets. The state-of-the-art performance on the two datasets shows that each added 

component has notable potential to boost the segmentation accuracy. However, the research fails to exploit the domain 

knowledge in weed detection, and model the network to learn more correlated spatial information. 

The application of drones has recently revolutionized the mapping of wetlands due to their high spatial resolution and 

the flexibility in capturing images. Hence, Bhatnagar et al. (2020)  

proposed mapping of vegetation in wetlands using image segmentation. For this, ML and DL algorithms were compared 

by applying them to a set of drone images of Clara Bog, a raised bog located in the middle of Ireland. Overall, the 

accuracy of the DL was approximately 4% higher than the ML methods. Additionally, the DL method does not require 

any colour correction or the addition of extra textural features. However, DL requires a large amount of initial labelled 

training data (approximately 48 x 106 pixels). 

So far, from this survey, it is noticed that nearly all the existing CNN architecture used for the semantic segmentation of 

multispectral images are based on 1D or 2D architectures. The 2D convolutional kernels are able to leverage context 

across the height and width of the slice to make predictions. However, because 2D CNNs take a single slice as input, 

they inherently fail to leverage context from adjacent slices. Voxel information from adjacent slices may be useful for 

the prediction of segmentation maps. 3D CNNs address this issue by using 3D convolutional kernels to make 

segmentation predictions for a volumetric patch of a images. The ability to leverage interslice context can lead to 

improved performance (Hamida, Benoit, Lambert, & Ben-Amar, 2016). 

 

3. METHODOLOGY 

In this research, pixel-wise classification and semantic segmentation are synonymous. Semantic segmentation is the term 

more commonly used in computer vision and is becoming increasingly used in remote sensing. State-of-the-art semantic 

segmentation frameworks for RGB imagery are trained end-to-end and consist of convolution and segmentation sub-

networks. The goal of this study is to design and implement a remote sensing image segmentation model using 

Convolutional Neural Network (CNN) specifically the deeper U-Net architecture. In other to address the issues of the 

existing work, this research will include additional diverse classes to the synthetic data about each pixel using the Hamlin 

Beach State Park data set which is then use to train a U-Net convolutional neural network to perform semantic 

segmentation of a multispectral image with seven channels: three color channels, three near-infrared channels, and a 

mask. Additionally, the research will use the deep-learning-based semantic segmentation techniques to calculate the 

percentage vegetation cover in a region from a set of multispectral images. Finally, the performance of the proposed 

method will be evaluated against state-of-the-art approaches. 

 

3.1 Convolutional Neural Network 

This proposed work will employ 3D U-Net deep CNN architecture to perform semantic segmentation of remote sensing 

image by including additional diverse classes to the synthetic data. The general structure of a CNN is the combination of 

two components: The feature extractor in the first stage and the classifier as shown in Fig. 1. 
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Figure 1. Convolutional Neural Network NN architecture. Kemker et al. (2018) 

 

CNNs for segmentation can be categorized based on the dimension of convolutional kernel that is utilized. 2D CNNs use 

2D convolutional kernels to predict the segmentation map for a single slice. Segmentation maps are predicted for a full 

volume by taking predictions one slice at a time. The 2D convolutional kernels are able to leverage context across the 

height and width of the slice to make predictions. However, because 2D CNNs take a single slice as input, they inherently 

fail to leverage context from adjacent slices. Voxel information from adjacent slices may be useful for the prediction of 

segmentation maps. 3D CNNs address this issue by using 3D convolutional kernels to make segmentation predictions 

for a volumetric patch of a images. The ability to leverage interslice context can lead to improved performance but comes 

with a computational cost as a result of the increased number of parameters used by these CNNs. 

 

3.2 3D Convolutional Neural Network 

This research proposed a deep network that learns to generate dense volumetric segmentations, but only requires some 

annotated 2D slices for training. This network can be used in two different ways as depicted in Fig. 2 the first application 

case just aims on densication of a sparsely annotated data set; the second learns from multiple sparsely annotated data 

sets to generalize to new data. Both cases are highly relevant. The network is based on the previous u-net architecture, 

which consists of a contracting encoder part to analyze the whole image and a successive expanding decoder part to 

produce a full-resolution segmentation. While the u-net is an entirely 2D architecture, the network proposed in this 

research takes 3D volumes as input and processes them with corresponding 3D operations, in particular, 3D convolutions, 

3D max pooling, and 3D up-convolutional layers. Moreover, we avoid bottlenecks in the network architecture and use 

batch normalization for faster convergence. The architecture of proposed 3d U-Net deep CNN is presented in Figure 2. 

 

 
Figure 2. The 3D u-net architecture Cicek Et al. (2016) 

 

As a solution for the challenges presented in the previous sections, we introduce a new three-dimensional based 

architecture that is dedicated to hyperspectral images and tackles most of the DL for RS aspects of difficulty. This research 
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proposes to use a new 3D CNN architecture that, unlike the previously mentioned approaches, simultaneously processes 

the spatial and spectral components with real 3D convolutions giving better investments of the few samples available 

with fewer trainable parameters. This proposal decomposes the problem as the processing of a series of volumetric 

representations of the image. Therefore, each pixel is associated to an n×n spatial neighborhood and a number of f spectral 

bands. As a result, each pixel is treated as a n×n×f volume. The main concept behind this architecture is to combine the 

traditional CNN network with a twist of applying 3D convolution operations instead of using 1D convolution operators 

that only inspect the spectral content of the data. An overview of the 3D architecture is presented in Figure 2. 

Different blocks of CNN layers are stacked on top of each other in order to ensure deep efficient representations of the 

image. Firstly, a 3D convolution-based set of layers is introduced in order to cope with the three-dimensional input voxels. 

Each and every one of these layers encompass a number of volumetric kernels that simultaneously execute convolutions 

on the width, height and depth axis of the input. Such 3D convolutions stack is followed by a set of 1 × 1 convolution 

(1D) layers that discards the spatial neighborhood and a series of Fully Connected layers. Basically, the proposed 

architecture considers 3D voxels as input data and first generates 3D feature maps that are gradually reduced into 1D 

feature vectors all along the layers. This procedure is ensured by the choice of specific configurations of the convolution 

filter strides and paddings. 

 

3.3 Proposed Approach 

Figure 2 illustrates the network architecture. Like the standard u-net, the 3D U-Net has an analysis and a synthesis path 

each with four resolution steps. In fact, each pixel is taken into account as a 3D n×n×f voxel in the research contex. In 

the analysis path, each layer contains two 3x3x3 convolutions each followed by a rectified linear unit (ReLu), and then a 

2x2 x2 max pooling with strides of two in each dimension. In the synthesis path, each layer consists of an up convolution 

of 2x2x2 by strides of two in each dimension, followed by two 3x3x3 convolutions each followed by a ReLu. Shortcut 

connections from layers of equal resolution in the analysis path provide the essential high-resolution features to the 

synthesis path. In the last layer a 1x1x1 convolution reduces the number of output channels to the number of labels which 

is 7 in our case. The architecture has 19069955 parameters in total. we will avoid bottlenecks by doubling the number of 

channels already before max pooling. We also adopt this scheme in the synthesis path. The input to the network is a N x 

N x F voxel tile of the image with 7 channels. Our output in the final layer is N x N x F voxels in x, y, and z directions 

respectively. With a voxel size of 1:76x1:76x2:04xm3, the approximate receptive field becomes 155x155x180xm3 for 

each voxel in the predicted segmentation. Thus, each output voxel has access to enough context to learn efficiently. 

We also introduce batch normalization (\BN") before each ReLU. each batch is normalized during training with its mean 

and standard deviation and global statistics are updated using these values. This is followed by a layer to learn scale and 

bias explicitly. At test time, normalization is done via these computed global statistics and the learned scale and bias. 

However, we have a batch size of one and few samples. In such applications, using the current statistics also at test time 

works the best. The important part of the architecture, which allows us to train on sparse annotations, is the weighted 

SoftMax loss function. Setting the weights of unlabeled pixels to zero makes it possible to learn from only the labelled 

ones and, hence, to generalize to the whole volume. 

 

3.4 Network Training 

In order to train the network, first we use a random patch extraction datastore to feed the training data to the network. 

This datastore extracts multiple corresponding random patches from an image datastore and pixel label datastore that 

contain ground truth images and pixel label data. Patching is a common technique to prevent running out of memory for 

large images and to effectively increase the amount of available training data. We will train the network using stochastic 

gradient descent with momentum (SGDM) optimization by Specifying the hyperparameter settings for SGDM by using 

the training Options (Deep Learning Toolbox) function. 

 

Training a deep network is time-consuming. Hence, we will accelerate the training by specifying a high learning rate. 

However, this can cause the gradients of the network to explode or grow uncontrollably, preventing the network from 

training successfully. We will keep the gradients in a meaningful range, and then enabling gradient clipping by specifying 

'Gradient Threshold' as 0.05, and specify Gradient Threshold Method to use the L2-norm of the gradients. 

To create the 3D U-Net Layer, this research will use a variation of the 3D U-Net network. In U-Net, the initial series of 

convolutional layers are interspersed with max pooling layers, successively decreasing the resolution of the input image. 

These layers are followed by a series of convolutional layers interspersed with up sampling operators, successively 

increasing the resolution of the input image. The name U-Net comes from the fact that the network can be drawn with a 

symmetric shape like the letter U. This research will modify the U-Net to use zero-padding in the convolutions, so that 

the input and the output to the convolutions have the same size. Hence, we will create a U-Net with a few preselected 

hyperparameters.  
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3.5 Datasets 

This research will use a high-resolution multispectral data set to train the network. The image set was captured using a 

drone over the Hamlin Beach State Park, NY. The data contains labeled training, validation, and test sets, with 18 object 

class labels. The size of the data file is 3.0 GB. 

3.6 Choice of Metric 

This research will adopt accuracy to evaluate the performance of the proposed model: this performance metric deals with 

the correct prediction made by the model and this metric can be expressed as: 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
  (1) 

 

4. IMPLEMENTATION OF THE SYSTEM 

The experiment was conducted on MATLAB 2021a running a Microsoft Window 10 with 64-bit Operating System, 8GB 

(RAM) and Intel(R) Core (TM) i7-4000M @ 2.4 GHz. To implement the proposed model, this research uses a high-

resolution multispectral data set to train the network. The image set was captured using a drone over the Hamlin Beach 

State Park, NY. The data contains labeled training, validation, and test sets, with 18 object class labels as shown in Fig. 

3. The size of the data file is ~3.0 GB. 

 

 
Figure 3: Multispectral images with 18 object class labels. 

 

The multispectral image data is arranged as num Channels-by-width-by-height arrays. To reshape the data so that the 

channels are in the third dimension.  The RGB color channels are the 3rd, 2nd and 1st image channels shown in Figure 4 

displaying the color component of the training, validation, and test images as a montage.  
 

 
Figure 4: RGB component of training image (left), validation image (center) and test image (right) 
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Figure 5: IR channel 1 (left), 2 (center) and test image (right) 

 

 
Figure 6: Mask of training image (left), validation image (center) and test image (right) 

 

The labeled images contain the ground truth data for the segmentation, with each pixel assigned to one of the 18 classes. 

Table 1 shows the 18 classes and their IDs. 

Table 1. Image Classes and IDs for the rits18 datasets. 

IDs Class Name 

0.    Other Class/Image Border    

1.                 Road Markings 

2.                       Tree     

3.      Building                  

4.  Vehicle (Car, Truck, or Bus)   

5.               Person           

6.              Lifeguard Chair   

7.                Picnic Table    

8.            Black Wood Panel    

9.            White Wood Panel    

10.        Orange Landing Pad     

11.                   Water Buoy 

12.                  Rocks        

13.           Other Vegetation    

14.                         Grass 

15.    Sand                       
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16.  Water Lake     

17.             Water Pond   

18.  Asphalt (Parking Lot/Walkway) 

 

Figure 4.5 depict the training labels for the 18 classes. 

 

 
Figure 7: Training labels for Rits18 datasets. 

 

In order to create random patch extraction datastore for Training, we use a random patch extraction datastore to feed the 

training data to the network. This datastore extracts multiple corresponding random patches from an image datastore and 

pixel label datastore that contain ground truth images and pixel label data. Patching is a common technique to prevent 

running out of memory for large images and to effectively increase the amount of available training data. 

To create the U-Net network layers, this research uses a variation of the U-Net network. In U-Net, the initial series of 

convolutional layers are interspersed with max pooling layers, successively decreasing the resolution of the input image. 

These layers are followed by a series of convolutional layers interspersed with up sampling operators, successively 

increasing the resolution of the input image. The name U-Net comes from the fact that the network can be drawn with a 

symmetric shape like the letter U. We train the network using stochastic gradient descent with momentum (SGDM) 

optimization. We Specify the hyperparameter settings for SGDM as depicted in Table 3. Training a deep network is time-

consuming. Hence, we accelerate the training by specifying a high learning rate. However, this can cause the gradients 

of the network to explode or grow uncontrollably, preventing the network from training successfully. To keep the 

gradients in a meaningful range we enable gradient clipping. To quantify segmentation accuracy, we create a pixel Label 

Datastore for the segmentation results and the ground truth labels. The final goal of this research is to calculate the extent 

of vegetation cover in the multispectral image by dividing the number of vegetation pixels by the number of valid pixels. 

The settings for hyper parameters and training option is depicted in Table. 2. 

 

Table. 2 Parameter settings 

Parameters Settings 

Initial Learning Rate  0.05 

Max Epochs  150 

Mini batch Size  16 

l2reg 0.0001 

Momentum 0.9 

Learn Rate Schedule piecewise 

Shuffle every-epoch  

Gradient Threshold Method l2norm 

Gradient Threshold 0.05 

Verbose Frequency 20 

 

Hence, we can now use the developed 3D-U-Net to semantically segment the multispectral image. The prediction results 

in terms of accuracy are presented in the preceding section. 

4.1 Result Presentation and Discussion 

To perform the forward pass on the trained network and performs segmentation on image patches using the semantics 

function. The typical sample of the segmented image is presented in Figure 4.6. 
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Figure 8: Segmented Image. 

The segmented image and ground truth labels are saved as PNG files. These will be used to compute accuracy metrics 

by overlaying the segmented image on the histogram-equalized RGB validation image as shown in Figure 9. 

 

 
Figure 9: label Validation Image 

 

After overlaying the segmented image, Measure the global accuracy of the semantic segmentation as shown in Table 3. 

The final goal of this research is to calculate the extent of vegetation cover in the multispectral image by dividing the 

number of vegetation pixels by the number of valid pixels. For this experiment, the total vegetation cover from the 

segmented image is 51.72% 

We evaluate the performance of the proposed model against the benchmark classification framework on RIT-18 datasets. 

Table 3 depicts the mean-class accuracy (AA) on the RIT-18 test set compare with other existing studies. 

 

Table 3. Performance comparison base on mean-class accuracy against Kemker et al. (2018). 

Model Mean Accuracy (%) 

Proposed 90.698 

MLP 30.4 

KNN 27.7 
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SVM 29.6 

Sharp Mask 57.3 

Refine-Net 59.8 

 

From table 4. It is quite obvious that the deep learning algorithms outperformance the conventional approach in terms of 

accuracy. This result is further depicted in Figure 10 in a graphical representation for clear understanding on how the 

difference in performance trend continues. 
 

 
Figure 10: Performance comparison base on mean class accuracy on the RIT-18 test set 

 

From Fig. 10 it is observed that the proposed model achieved the best performance compare to the other approaches. For 

mean class accuracy metric, the higher the value, the better the better the segmentation performance of the model, in this 

case, it can be observed that the proposed model achieved 90.698% accuracy which is the best score when compare to 

existing approach. However, it is also notice that, the sharp mask and Refine-Net proposed by Kemker et al. (2018). 

where superior than the other machine learning algorithms. The Refine -Net deep learning algorithm achieved accuracy 

of 59.8% follow by the sharp mask which achieved accuracy of 57.3%. the worst performance was observed in the case 

of KNN with 27% accuracy, SVM with 29.9% accuracy and MLP with 30.4%. this experiment further demonstrates the 

robustness of deep learning algorithms over conventional machine learning algorithms. This performance improvement 

can be attributed to the features of deep learning algorithms such as higher layers of abstraction that makes them suitable 

in modelling complex image processing task as stated earlier in the literature. 

 

5. CONCLUSION 

This research has shown that using a new 3D CNN architecture that is dedicated to multispectral images can tackles most 

of the difficulty in DL for RS aspects, by employing newer end-to-end DCNN segmentation frameworks via 3D U-Net 

convolutional neural network to perform semantic segmentation of a multispectral image with seven channels. It is belief 

that these techniques can aid the development of more discriminative frameworks that yield superior performance. Unlike 

previous studies, the research also calculates the vegetation cover of the segmented image. Hence, the results in this study 

show that this improved model offer more to image processing in the context of remote sensing and satellite image 

enhancement. 

One of the major limitations of this research is that, this research focuses on mean segmentation accuracy as the key 

evaluation metric of the models, there is need for further studies to measure the computing time of each model as an 

index for evaluating the quality of the models. 
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