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Abstract: The anomaly detection system gives a solution to detect anomaly in crowd event video and sets alarm for 

public safety in mass gatherings. This paper presents a novel framework to represent video data by a set of general 

features, which are inferred automatically from a long video footage through a deep learning approach. Specifically, a 

deep neural network composed of a stack of convolutional autoencoders was used to process video frames in an 

unsupervised manner that captured spatial structures in the data, which, grouped together, compose the video 

representation. Then, this representation is fed into a stack of convolutional temporal autoencoders to learn the regular 

temporal patterns. Our proposed method is domain free (i.e., not related to any specific task, no domain expert 

required), does not require any additional human effort, and can be easily applied to different scenes. To prove the 

effectiveness of the proposed method we apply the method to real-world datasets and show that our method 

consistently outperforms similar methods while maintaining a short running time. 
 

Keywords: Anomaly Detection; Convolutional Autoencoders, Deep Learning Technique; Convolutional Neural 

Network (CNN). 

I.  INTRODUCTION 

Nowadays the developed countries are improving the security system to defend and manage the public and private 

crowd. Anomaly detection is a perilous issue in a crowded place. Since Anomaly has made injuries and damages in 

public area. Sometimes if any anomaly has occurred in a crowded area, the anomaly detection is essential to protect 

people and the environment without any severe impairment. When the anomaly is perceived, alerting crowd people by 

an alerting system is very imperative. The alerting system is in different forms such as tones, voice and alert message. 

After detecting anomaly in the crowd, the alarm system should intimate message or make sound automatically. 

Particularly in private and public crowded area, the government needs a solution to provide safety now- a- days with 

low cost. People need security in mass assemblies, public and private events. Thus the Deep Learning based computer 

vision technique [1], provides a lot of talented methods for private and public safety. And also the technique affords 

real time video surveillance system for crowd management.  

 
Figure 1 Steps convoluted in the anomaly detection system. 

 

Anomaly detection implements as an essential and requisite phase in the process of assessing the video events 

(Musical Function, Public Meeting, Bazaar, and Protest). The anomaly detection system will be very cooperative if the 

enormous detection in event videos on the web can be routinely categorized into predefined classes. Video event holds 

visual information of anomaly can be detected on a frame basis using Convolution Neural Network (CNN). System has 

initialized CNN model and implemented with high resolution video event frames. The huge amount of trained data 

used for working out the CNN mode [2].   
 The rest of the paper is organized as follows: Section 2 discusses a more brief survey of related works. 

Section 3 discusses about proposed method and different parameters ueasd to implement proposed model used for 

anomaly detection. The implementation method and results and extensive experimental results analysis are discussed in 

Section 4, where we also briefly introduce the new dataset. Finally, Section 5 concludes the paper. 
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II. LITERATURE SURVEY 

A. Anomaly Detection Approaches In Video Surveillance 

Various approaches to detect anomalies in surveillance video have been proposed. The choice of a suitable approach is 

dependent on the nature of data available and also on the environmental characteristics where the surveillance 

application is deployed. In applications where there is a known behavioral pattern, anomaly detection becomes easier 

and can be implemented using some rule based approaches where a set of pre-defined rules are coined and fed to the 

surveillance system. Any deviation from those rules is categorized as anomaly. A rule based anomaly detection 

approach to detect the anomalies in ship was proposed by (Liu et al 2015). Various parameters such as longitude, 

latitude, speed and direction were considered to frame the rules that determine the trajectory of movement of ship. An 

optimal decision rule based approach was proposed by (Saligrama et al 2012) to determine local anomalies and a 

probabilistic framework was developed.  

When the common behavioural pattern is unknown, training based approaches are preferred for detecting 

anomalies. Training based approaches involve the usage of some set of data to train the system to understand the 

common behavioural pattern and there by classify any abnormal activities as anomalies. Standard classifier based 

approaches such as Random Forest, SVM and other classification mechanisms are used to classify anomalies. When the 

training data is not balanced an ensemble of classifiers are deployed to balance the training data. When the data is auto-

correlated, time series based approaches or Recurrent Neural Network based approaches are used. However, the 

training data may not be available at all times. In such cases, anomaly detection can be accomplished using semi-

supervised or unsupervised learning. It may be applying some point based anomaly approaches such as percentiles and 

histograms or applying some collective anomaly approaches. If the data is univariate in nature, Markov chain based 

approach or any model based approaches can be deployed to detect anomalies. When the data is multivariate and 

ordered, a combination of clustering and Markov chain based approaches can be used. If the data is multivariate and 

un-ordered, any of the clustering based approaches or K-nearest neighbour based approaches can be used. Figure 6 

shows the taxonomy of different approaches to anomaly detection. 

This literature review was performed over several works related to detecting anomalies such as detecting masked or 

partially occluded faces, anomaly detection in video sequences, detecting anomalies in crowded area and detecting 

abandoned objects in video. 

 
Figure 2 Different approaches used for anomaly detection 

B. Review on Detecting Anomalies in Video Sequences 

Kim & Reddy (2006) had proposed a network based measurement approach which can spontaneously identify and 

detect attacks and anomalous traffic by monitoring packet headers passively. Saligrama et al.(2010) proposed a family 

of unsupervised approaches to anomaly detection in videos based on statistical activity analysis.(Li et al. 2012) have 

addressed the automatic anomaly detection problem for surveillance applications by devising a general framework for 

anomalous event detection in un-crowded sequences. Tran et al.(2014) proposed a solution to search for spatio-

temporal paths for detecting events in video which can detect and locate video events accurately in cluttered space and 

at the same time produced stable results to camera motions. 

Hu et al.(2018) proposed a modified LBP called as squirrel cage LBP (SCLBP) that can encode the motion 

information effectively and was robust to noise and unwanted disturbances caused by dynamic background and lighting 

changes. Piciarelli et al.(2008) proposed an approach based on single-class Support Vector Machine (SVM) clustering, 

where the SVM classifier was used for the identification and detection of anomalous trajectories. Piciarelli & Foresti 

(2011) have worked towards semantically interpreting video sequences to detect anomalous, dangerous or forbidden 
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situations. Leyva et al.(2017) proposed an approach that used a compact set of highly descriptive features, which was 

extracted from a new cell structure which helped to define supportive regions from coarse to fine fashion. 

Sabokrou et al.(2016) introduced two novel cubic patch based anomaly detector approaches where one worked 

based on power of an auto encoder on reconfiguring an input video patch and another one was based on the sparse 

representation of an input video patch. Using this, a fast and precise video localisation and anomaly detection method 

was presented. Laxhammar & Falkman (2014) proposed a sequential Hausdorff Nearest Neighbor Conformal Anomaly 

Detector (SHNN-CAD) for online learning and sequential anomaly detection in trajectories. This algorithm was having 

less input parameters and offered a well formed approach to calibrate the anomaly threshold. Mo et al.(2014) developed 

a new joint model based on sparse representation for anomaly detection that enabled the joint anomalies detection 

involving more than one objects. A greedy pursuit technique was deployed to solve the continuous sparsity problem. 

Xiang & Gong (2008) proposed a new framework for automatic behaviour profiling and online detection of 

anomalies without any manual labelling of the training data set with the aim to address the modelling video behaviour 

problem captured in surveillance videos for the application of anomaly detection and online normal behaviour 

recognition. Thomaz et al.(2018) developed a family of algorithms based on sparse decompositions that detect 

anomalies in video sequences obtained from slow moving cameras to restrict search space to the most relevant 

subspaces search spaces. Cheng et al.(2015) presented a hierarchical framework for detecting local and global 

anomalies via hierarchical feature representation and Gaussian process regression (GPR) which was fully non-

parametric and robust to the noisy training data, and supported sparse features.Hu et al.(2016) proposed a deep 

incremental slow feature analysis (D-IncSFA) network which was constructed and applied to directly learning 

progressively abstract and global high-level representations from raw data sequence. The D-IncSFA network had the 

functionalities of both feature extractor and anomaly detector that make AD completion in one step.  

Ying Zhang et al.(2016) proposed a novel anomaly detection approach based on Locality Sensitive Hashing 

Filters (LSHF), which hashed normal activities into multiple feature buckets with Locality Sensitive Hashing (LSH) 

functions to filter out abnormal activities. (Emmanu Varghese et al.) proposed a new supervised algorithm for detecting 

abnormal events in confined areas like ATM room, server room etc. (Siqi Wang et al. 2018) proposed a novel approach 

to detect and localize video anomalies automatically. Video volumes were jointly represented by two novel local 

motion based video descriptors, SL-HOF and ULGP-OF. Sovan Biswas & Venkatesh Babu(2017) proposed a novel 

idea of detecting anomalies in a video, based on short history of a region in motion based on trajectories. Maying Shen 

et al.(2018) proposed a Nearest Neighbour (NN) based search with the Locality-Sensitive B-tree (LSB-tree) to detect 

anomalies, which helped to find the approximate NNs among the normal feature samples for each test sample. Dan Xu 

et al.(2014) proposed an approach to detect anomalies based on a hierarchical activity pattern discovery framework, 

comprehensively considering both global and local spatio-temporal contexts. Tian Wang et al.(2018) proposed an 

algorithm to solve abandoned object detection efficiently based on an image descriptor which encodes the movement 

information and the classification method. 

Huorong Ren et al.(2017)proposed an anomaly detection approach based on a dynamic Markov model. This 

approach segmented sequence data by a sliding window. Also, an anomaly substitution strategy was proposed to 

prevent the detected anomalies from impacting the building of the models and keep anomaly detection continuously. 

Fan Jiang et al.(2011) proposed a hierarchical data mining approach where frequency-based analysis was performed at 

each level to automatically discover regular rules of normal events. Events deviating from these rules were identified as 

anomalies. Shifu Zhou et al.(2016)coupled anomaly detection with a spatial–temporal Convolutional Neural Networks 

(CNN) to capture features from both spatial and temporal dimensions by performing spatial–temporal convolutions, 

thereby, both the appearance and motion information encoded in continuous frames were extracted. 

III. EXPERIMENT AND RESULTS. 

This project is differs from other implementations in quite a few aspects. Firstly you can input any video based data for 

training. The data will be pre processed and converted into numpy matrix which will be used for training. Converting 

data into matrix allows for more efficient retention of data. We have also tinkered with the layers and parameters of the 

model to make it more efficient and accurate.  

 
Fig. 3.  Algorithm of proposed system 

Our changes led to a boost in accuracy compared to baseline. We have also added 4 different ways to deploy the model. 

A person can use frames extracted from video to get accuracy, use real time video feed, use saved video or directly use 
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a numpy file of the data to be classified and pass it through the model. All these changes make our project flexible, 

adaptable and modular. 

A. Dataset 

Avenue Dataset contains 16 training and 21 testing video clips. The videos are captured in CUHK campus avenue with 

30652 (15328 training, 15324 testing) frames in total. This dataset contains the some challenges. Slight camera shake 

(in testing video 2, frame 1051 - 1100) presents. A few outliers are included in training data and Some normal patterns 

seldom appear in training data. 

B. Implementation work:  

The famous recent technique of Modified Spatio-Temporal Autoencoder  technique is applied in the proposed with help 

softwares such as Visual Studio 2012 Various Dependencies and library based Dependencies such as ffmpeg for Video 

frame extraction, numpy, sklearn, keras, tensorflow, h5py, scipy, OpenCV and hardware used Computer with windows 

OS: for simulation and training and code compilation purpose, Camera: record real time anomaly activity performed by 

subject and Pen drives: transfer data from one device to another device with python code. 

1. Parameters:  

In the proposed system, the convolutional network model is constructed with some crucial parameters. The three 

convolution layers are implemented by the activation function of layers namely, Relu and max pooling layer. In this 

layer, it has filters. The kernel size is 2×2. The model is trained for four classes. There are four neurons in the output 

layers. The special activation function of this network for classifying the dataset is categorical-cross entropy.  

2. Training:  

The training phase of this work has 6 epochs and 100 training samples to implement the model for extracting crucial 

features and good training. The needed dataset of video frames are stored in a stack array and modified size as 150 

x150. The stacked array of the dataset is changed into a batch file and provides data to the Spatio-Temporal 

Autoencoder model for the training process. The model extracts the features through epochs to detect the anomaly 

using separate labels (0,1,2,3) for anomalies namely.  

3. Testing:  

The final phase of testing in the Spatio-Temporal Autoencoder model detecting the anomaly is in different video events 

is taken and converted these into frames. 100 datasets of video events are stored in a stack array of a batch file and 

modified size as 150x150. The event video frames are collected from different events namely Sports, Protest, Temple, 

etc. From each video, 30 frames are collected and stored for a test container. In that, 10 false datasets are collected from 

other videos and stored in the test container. From the batch file, the testing data is sent to the trained model. The 

Spatio-Temporal Autoencoder model finds four categories of the anomaly and shows anomaly name for each category 

correctly. Shown in Figure 5. The Spatio-Temporal Autoencoder baseline gives 100% validation accuracy 

The main goal of the proposed system is used to acquire in what way to recognize anomaly on various crowd 

videos. The proposed system has applied Spatio-Temporal Autoencoder baseline and VGG-16 for crowd video 

anomaly detection. The network model predicts the scenes of the test images at that time. The performance of the 

Spatio-Temporal Autoencoder baseline and VGG-16 model is evaluated and calculated as true positive, true negative, 

false positive and false negative in Table 1. Totally 100 true datasets and 30 false datasets are taken to classify the 

anomaly from crowd video. 
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Fig. 4. Frame Sequence of a segmented video 

 
Fig. 5.  Man throwing bag in air  

Fig. 6.  Small Boy Jumping 

 
Fig. 7. Man Running Man 

 
Fig. 8. Running In Opposite Direction 

IV. RESULT ANALYSIS 

A. Performance Parameters 

The performance of the existing and the proposed methods for human activity prediction in the VSS are analysed on the 

basis of accuracy, precision, recall, information gain ratio, and true positive rate. 

 

a) True Positive Rate 

True Positive Rate is described as the rate of human abnormal activity predicted as human abnormal activity in videos. 

 

b) Accuracy 

It is the fraction of true results of human activity prediction (true positive and true negative) among the total number of 

cases analyzed. It is calculated as, 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 (𝑻𝑷)+ 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒆𝒕𝒊𝒗𝒆 (𝑻𝑵)

𝑻𝑷+𝑻𝑵+𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 (𝑭𝑷)+ 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒆𝒕𝒊𝒗𝒆 (𝑭𝑵)
                                  Equation Error! No text of specified 

style in document..1 

where, if the class label is positive and the human abnormal activity prediction outcome is positive, then it is TP. If the 

class label is negative and the human abnormal activity prediction outcome is negative, then it is TN. If the class label 

is negative and the human abnormal activity prediction outcome is positive, then it is FP. If the class label is positive 

and the human abnormal activity prediction outcome is negative, then it is FN. 

c) Precision 

It is the fraction of the number of suspicious faces that are appropriately recognized to the sum of the count of correctly 

recognized suspicious faces and the wrongly recognized suspicious faces. 
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𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 (𝑻𝑷)

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 (𝑻𝑷)+𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 (𝑭𝑷)
                                 Equation Error! No text of specified style in 

document..2 

d) Recall 

It is the fraction of the number of suspicious faces that are appropriately recognized to the sum of the count of correctly 

recognized suspicious faces and the wrongly recognized non-suspicious faces. 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 (𝑻𝑷)

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 (𝑻𝑷)+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒆𝒕𝒊𝒗𝒆 (𝑭𝑵)
                          Equation Error! No text of specified style in document..3 

e) Information Gain Ratio 

It is defined as a quantity of knowledge obtained during the prediction of human activities in the videos. 

f) Regularity Score 

Once the model is trained, we can evaluate our models performance by feeding in testing data and check whether it is 

capable of detecting abnormal events while keeping false alarm rate low. To better compare with [5], we used the same 

formula to calculate the regularity score for all frames, the only difference being the learned model is of a different 

kind. The reconstruction error of all pixel values I in frame t of the video sequence is taken as the Euclidean distance 

between the input frame and the reconstructed frame: 

𝒆(𝒕)‖𝐱(𝐭)  − 𝐟𝐖(𝐱(𝐭))‖𝟐                      Equation Error! No text of specified style in document..4 

where fW is the learned weights by the spatiotemporal model. We then compute the abnormality score sa(t) by scaling 

between 0 and 1. Subsequently, regularity score sr(t) can be simply derived by subtracting abnormality score from 1: 

𝒔𝒂(𝒕) =
𝒆(𝒕)−𝒆(𝒕)𝒎𝒊𝒏

𝒆(𝒕)𝒎𝒂𝒙
                      Equation Error! No text of specified style in document..5 

𝒔𝒓(𝒕) = 𝟏 − 𝒔𝒂(𝒕)                    Equation Error! No text of specified style in document..6 

The unusual circumstances comprise of various volunteers suddenly dancing, running and pushing in a crowded place. 

Overall there are six kinds of unusual or abnormal circumstances which take place in 12000 frames of video series. The 

usual screening quality for a video surveillance is 720 576 by 29 frames per second, which is the spatial motion of a 

novel video frame. Moreover, a different strategy which is projected by the authors in (Jian-hao&Li 2011) is contrasted 

with the presentation of this strategy and the resulting outcome is evaluated. Each frame is divided into four segments 

in our present research work. The number of segments per frame is customizable. The entropy of DCT coefficients is 

computed for every segment also the median rate for the first 500 frames is calculated. In relation to this research and 

analysis, the threshold median entropy is positioned to 3 times than the median rate to categorize the abnormal 

happenings. If there are any unusual happenings in any of the segment, in such cases an unusual indicator raises for the 

entire structure. Table 1 represents the set of all frames extracted from a segmented video. The duration of the 

segmented video is one minute and is customizable and obtained results are summarised in table I below figure 9 shows 

comparisons of parameters summarised in table below parameters such as Accuracy, precision and recall as per results 

accuracy of all sample video analysed is 50% and Precision is 53% and recall value is 0.8 approx.  

 

TABLE I 
SYSTEM ACCURACY FOR DIFFERENT DATA SAMPLES TAKEN 

Data (video) 

Frames Classification 

Total 

frames 
Accuracy Precision Recall 

True 
Positive 

False 
Positive 

True 
Negative 

False 
Negative 

Boy Jumping 435 430 65 70 500 0.5035 0.5028 
0.861

3 

Man Running 16 10 314 330 330 0.4925 0.6153 
0.046

2 

Man Running 

Opposite 
634 630 136 140 770 0.5024 0.5015 

0.819

1 

Throwing Bag 563 560 537 540 1100 0.5045 0.5013 
0.510

4 
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Fig. 9. Comparison graph of Accuracy, Precision and Recall 

V. CONCLUSION 
 

The proposed system detects anomaly using Spatio-Temporal Autoencoder based techniques. After detecting the 

anomaly region, automatically the system makes visual alert in the form of massege and alarm with frame detection. 

The technique works well and finds the different anomalies such as WalkFall, ClimbLadder, JumpOverGap, 

PullHeavyObject, Kick, ShotGunCollapse, LookInCar, PickupThrowObject, WalkTurnBack, DrunkWalk, 

CrawlOnKnees, WaveArms, DrawGraffiti, JumpOverFence, RunStop, SmashObject, and Punch in different location. 

The proposed system can implement in large space crowd area and parameters such as Accuracy, precision and recall 

as per results accuracy of all sample video analysed is 50% and Precision is 53% and recall value is 0.8 approx. In 

future work, the system could be considered for implementing more different types of anomaly. 
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