
IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 12, December 2021

DOI: 10.17148/IJARCCE.2021.101264

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 340

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Review of Compiler Structure and Processing in

Compiler Design

Barkha Gupta1

Programme Assistant, Department of Computer, Agriculture University, Jodhpur, Rajasthan, India1

Abstract: Computer became integral tool in our lives because it helps in many ways by solving the human problems as

and when required but when it comes to the working of computer. It becomes very difficult to understand. In normal

and day-to-day scenario, software engineers and computer programmer write the programming or code in high level

language, which is understood by human but not by machine and to make that code understable to machine there come

the requirement of converting that language to computer understable form and this generates the need of compiler.

Compiler is a computer program which translate high level language into the machine understable form. Compiler do

this conversion in numbers of phases which will be covered here.

Keywords: Compiler design, compiler phase, syntax analysis, semantic analysis, code generation, code optimization,

structure of compiler.

I. INTRODUCTION

A compiler is a set of computer program that is used to convert source code written in any programming language

generally termed as source code into another programming language generally termed as target code or an object code.

Compiler is generally used to convert any high-level language into lower-level language. The reason behind this

process is to create an executable file of a program.

II. BASIC TERMINOLOGIES

(i) De -compiler- Reverse process of a complier is known as de-compiler. A set of computer program that

translate higher-level programming language into lower-level programming language.

(ii) Cross-compiler- A Cross compiler is a compiler that is capable enough to create an executable file for a

platform or operating system different from its current one on which it is running. It runs on platform A and is capable

of generating executable code for platform B. For example, a compiler that is running on windows operating system

but create an executable file for Android operating system.

(iii) Language Rewriter- Language rewriter is a computer program that translate the form of expression without

changing its programming language.

(iv) Source to Source Compiler – Source to source compiler is capable to take the source code of one

programming language and translate it into the source code of another programming language.

III. COMPILER PHASE

Compiler has two phases: -

(i) Analysis Phase – It is also known as front end analysis. This phase is machine independent phase. It includes

following: -

a) Divides the source program into tokens

b) Groups tokens into syntactic structure

c) Verify lexical grammar and syntax error

d) Generates intermediate code and symbol table

e) Perform machine independent optimization

(ii) Synthesis Phase – It is also known as back-end analysis. This phase is machine dependent phase. It includes

following: -

a) Generates target code

b) Target code optimization

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 12, December 2021

DOI: 10.17148/IJARCCE.2021.101264

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 341

ISSN (O) 2278-1021, ISSN (P) 2319-5940

 IV. STRUCTURE OF COMPILER

Fig 1: Basic Structure of Compiler

 FRONT-END BACK-END

Fig 2: Detailed structure of compiler

Process of compilation is divided into five phases which are as follows: -

(i) Phase 1 : Lexical Analysis

Lexical analyzer divides the source program into tokens. It reads one character at a time and group them into the

keywords, identifiers, operators which are known as tokens. It removes white spaces and comments from the

programming language and maintains the line number. It creates storage for identifier in symbol table. Lexical Analyzer

is also known as linear analyzer or scanner. Tokens has a particular pattern which is defined by regular expression. It

follows longest match rule and rule priority where reserved word is given the highest priority than user defined word. It

generates transition table.

Example: Printf (“you are welcome”);

In the above sentence there are 5 tokens which are as follows

Printf (“ “ (counted as one) you are welcome)

Source

Code
Front end

Analysis

Semantic

representation

Back-end

Analysis

Executable

Code

Source Code

Program

text Input

Lexical

analysis

Syntax

analysis

Context

handling

Intermediate

code

generation

Intermediate

code

IC

optimization

Code

generation

Target code

optimization

Machine

code
generation

Executable

code

output

Output

File

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 12, December 2021

DOI: 10.17148/IJARCCE.2021.101264

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 342

ISSN (O) 2278-1021, ISSN (P) 2319-5940

 (ii) Phase 2 : Syntax Analysis

In this phase of compiler, it groups the tokens into syntactic structures. It builds the symbol table. The parser does the

syntax analysis on the groups of tokens. This phase is also known as hierarchical analysis or hierarchical parsing. This

phase uses context free grammar to check balancing token which is recognised by push down automata. Output of this

phase is a parse tree.

Context free grammar has 4 components: -

a) Non terminal symbol

b) Terminal symbol

c) Set of productions

d) Start symbol (one of non-terminal symbol)

Example a + b then its syntactic structure will be

Derivation here are of two types: -

a) Leftmost derivations – Derivation is called leftmost derivation if and only if all steps involved in derivation

have leftmost variable replacement only.

Example 1. Consider a context free grammar

 S xS | AA, A YA | xA | xBB | x, B y

Find leftmost derivation for w = xxxyyxx.

Then solution is

 S xS

 S xxS

S xxxS

S xxxAA

S xxxyAA

S xxxyyAA

S xxxyyxA

S xxxyyxx

b) Rightmost derivations - Derivation is called rightmost derivation if and only if all steps involved in derivation

have rightmost variable replacement only.

Example 1. Consider a context free grammar

 S xS | AA, A YA | xA | xBB | x, B y

Find rightmost derivation for w = xxxyyxx.

Then solution is

 S xS

 S xxS

S xxxAA

S xxAxA

S xxAxx

S xxxBBxx

S xxxByxx

S xxxyyxx

+

a
b

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 12, December 2021

DOI: 10.17148/IJARCCE.2021.101264

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 343

ISSN (O) 2278-1021, ISSN (P) 2319-5940

 Parser is divided into two parts: -

(i) Top-Down Parsing

Top-Down Parsing

 Recursive Descent

 Back tracking Non-Back tracking

 Predictive parser

 LL Parser

a) Recursive descent parsing – It is the top-down parser. It recursively parses input to make parse tree which

may or may not require backtracking. This parser has more than one production to choose from single instance of input.

b) Back tracking – it is the top-down parser which chooses backtracking till not found the matching string or the

desired output.

c) Predictive parser - It is the top-down parser which do not suffer from backtracking. Predictive parser uses

look ahead pointer which points to the next input symbol. To make this backtracking free, predictive parser put some

constraint on grammar and accepts only LL (K) grammar. Predictive parser uses stack and parsing table to parse input

and generated parse tree. In predictive parser each step has utmost one production to choose.

d) LL Parser – It is top-down parser. It accepts LL grammar. LL grammar is subset of context free grammar. It

is implemented by recursive descent or table driven.

Here

 LL (K) implies

 Left to right left most derivations Number of look ahead symbol

(ii) Bottom-Up Parsing

Bottom-Up Parsing

 Shift Reduce

 LR Parsing

 SLR Parser LR Parser LALR parser

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 12, December 2021

DOI: 10.17148/IJARCCE.2021.101264

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 344

ISSN (O) 2278-1021, ISSN (P) 2319-5940

 a) Shift Reduce – shift reduce has two steps: -

1) Shift step – Shift step implies shifting of input pointer to next input symbol and push that onto stack.

2) Reduce step- Reduce step implies replacement of left-hand side variable which is done by popping the

element from the stack.

b) LR Parser – It is the most efficient parser.

Here LR (K) implies

 Number of look ahead symbol

 Left to right right most derivation in reverse

LR Parser is divided into three widely used parser: -

1) SLR Parser – It is the simplest LR Parser. It works on smallest class of grammar. It has only few numbers of

states hence it has small table. It is simple in process and hence fast construction.

2) LR Parser – It works on set of LR (1) grammar. It generates large table and large number of states hence it

has slow construction.

3) LALR Parser – It is look ahead LR Parser. It works on intermediate size of grammar.

Difference between LL Parser and LR Parser

S.No. LL Parser LR Parser

1. Left most derivation Rightmost derivation in reverse

2. It starts from the root It ends with the root

3. It ends when stack is empty It starts with empty stack

4. It builds parse tree while following top-down approach It builds parse tree while following bottom-up

approach

5. It uses stack for designating what is still to be expected It uses stack for designating what is already seen

or visited

6. It expands the non-terminal symbol It reduces the non-terminal symbol

7. It follows pre order traversal of parse tree It follows post order traversal of parse tree

8. It read terminal when it pops one off the stack It read the terminal while it pushes them to stack

9. It continually pops a non-terminal symbol off the stack and

pushes the corresponding right hand side symbols.

It tries to recognise right hand side on the stack,

pop it and pushes the corresponding non terminal

symbol.

Phase 2 also includes semantic analysis. (or it can be included into different and separate phase). This phase is also

termed as type checker phase. This phase helps to interpret symbols, their types and relation with each other. It judges

whether syntax structure constructed in source program derives any meaning or not. It uses syntax directed translation.

It produces annotated syntax tree as an output.

Context Free Grammar + Semantic Rules = Syntax Directed Definitions

Here attribute is divided into two parts: -

(i) Synthesis attribute – Synthesis attribute is also termed as s-attribute. It evaluates post order traversal. It gets

the values from their child nodes. It defined the left-hand side variables.

Example: - S ABC

Here S is a synthesis attribute.

(ii) Inherited attribute–It evaluates pre order traversal. It gets the values from parent or siblings. It defined the

right-hand side variables.

Example: - S ABC

Here A, B, C are inherited attributes.

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 12, December 2021

DOI: 10.17148/IJARCCE.2021.101264

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 345

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Semantic analyser receives abstract syntax tree (AST) from the previous phase. It attaches attribute information with

AST called attribute AST.

S-attribute SDT – This attribute evaluates bottom-up parsing. In this semantics action are placed at right hand side. It

uses only synthesis attribute.

L-attribute SDT – This attribute evaluates depth first parsing and moves from left to right side. It uses both synthesis

and inherited attribute restricted from parent or left siblings only.

Example: - S ABC

Here S can take the value from A, B, C (synthesis)

A can take the value from S

B can take the value from S, A

C can take the value from S, A, B

(iii) Phase 3 : Intermediate Code Generation

In this phase simple instruction has been generated or intermediate code is generated form the syntactic structure

generated in its previous phase. Intermediate code can be language specific or language dependent. Intermediate

representation of a code is divided into two parts: -

a) High level intermediate representation – This representation is close to the source code. It is simple and easy

code. Modification in the code can take place here but target code optimization is less preferred here.

b) Low level intermediate representation - This representation is close to the target machine code. It is suitable

to the registers and memory allocation. Machine code optimization is preferred here.

(iv) Phase 4 : Code optimization

This phase is an optional phase. It is from the perspective of saving and utilizing the memory. It is used to reduce the

usage of number of registers during the programming language. This is done by code optimizer.

a) Peephole optimization – It works locally on the source code to transform into an optimized code. A small

portion is analysed and checked for possible optimization.

1) Redundant instruction elimination

Example –

 int fun (int x)

{

Int y, x;

y = 10;

z = x + y;

return z;

}

int fun (int x)

{

Return x + 10;

}

2) Remove unreachable code

3) Flow of control optimization – where program jump back and forth without performing any task.

4) Algebraic expression simplification – like a = a + 1 must be written as a++

5) Strength reduction – like x2 must be written as x<<1

S-attribute SDT

L-attribute SDT

Must be written as

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 12, December 2021

DOI: 10.17148/IJARCCE.2021.101264

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 346

ISSN (O) 2278-1021, ISSN (P) 2319-5940

 b) Loop optimization – It includes following: -

1) Invariant code – The code which exist inside loop and computes same value at each iteration. So, this code

must be moved outside the loop body.

2) Induction analysis – if its value is altered within the loop-by-loop invariant value.

3) Strength reduction

4) Dead code elimination

5) Partial redundancy

(v) Phase 5 : Code Generation

In this phase target code or output code has been generated which can be executed on any device. It produces target

code by deciding its memory location for data, selecting appropriate registers to perform the various computations and

selecting code for accessing and generating output. Code generator should consider: -

1) Target language

2) Intermediate representation

3) Register allocation

4) Ordering of instruction

5) Selection of instruction

Code generator has two descriptors:

1) Register descriptors – which specify the availability of registers

2) Address descriptors – which is used to retrieve the value of variable stored at different location, to keep track

on it.

Directed Acyclic Graph (DAG) is a tool that provides easy transformation on basic block.

1) Leaf node – implies name, identifier and constant. It is also known as exterior node.

2) Interior node – operator or result of expression.

Example 1:

X= a + b

Y = X + c

Z = X + Y

X Y Z

 a b c

 X Y

 c

 a b X

 a b

+
+

+

+

+

+

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 12, December 2021

DOI: 10.17148/IJARCCE.2021.101264

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 347

ISSN (O) 2278-1021, ISSN (P) 2319-5940

 X* (Y+Z)

 PHASE 1:

 Divide into tokens

 X, *, (, Y, +, Z,)

 PHASE 2 :

 PHASE 3 :

 PHASE 4 :

Source Code

Lexical Analysis

TOKENS

Syntax Analysis

Syntactic

Structure

Intermediate code

generation

Simple

Instructions

Code optimization

Lesser Simple

Instructions

Code generation

*

+ X

Y Z

R1 Y

R2 Z

R1 R1+R2

R3 A

R1 R3*R1

Simple Instructions

(Using 3 registers)

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 12, December 2021

DOI: 10.17148/IJARCCE.2021.101264

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 348

ISSN (O) 2278-1021, ISSN (P) 2319-5940

 PHASE 5 :

Fig 3: Detailed structure of compiler with its example of working

V. CONCLUSION

A compiler is an important computer program or software used to convert human-readable language into the machine

understable language. It consists of various phases such as lexical analysis, syntax analysis, semantics analysis, code

optimization, code generation. Each phase has its own and different working. In compiler technology, we need to

provide higher level of automation such that we could meet the requirement of virtual machine and reduce the cost of

compiler while reusing the code again and again to solve specific problem instead of rewriting the code. Optimizing the

compiler is one of the complex tasks which must be efficiently and effectively done by the engineers by integrating

various compiles into one form. There is further scope of development and improvement such that we can enable more

languages implementation to deploy better interpreters and compilers and hence deliver better computer language

performance to more users.

VI. ACKNOWLEDGEMENTS

Author is grateful to Agriculture University, Jodhpur for encouraging writing in my field and increasing the dynamics

and knowledge in my stream.

VII. REFERENCES

[1] Alfred V. Aho. Monica S. Lam. Ravi Sethi. Jeffrey D. Ullman. Compilers: Principles, Techniques & Tools. Second Edition. Pearson Publisher

[2] Anuradha A. Puntambekar. Compiler Design. First Edition. Technical Publications.
[3] Ikvinderpal Singh. Compiler Design (Principles, Techniques and Tools). Khanna Publishers.

[4] Adesh K. Pandey. Fundamentals of Compiler Design. Kataria, S. K. & Sons Publisher.
[5] Dr. R, Venkatesh. Dr. N. Uma Maheshwari. Ms. S. Jeyanthi. Compiler Design. Publisher Yes Dee.

[6] Dr. Kavita A. Sultanpure. Compiler Design. Publisher Tec knowledge Publications Course Edition.

[7] Dr. B. S. Charulatha. Dr. J. Stanly Jayaprakash. Dr. A. Kanchana. Compiler Design. Publisher Charulatha Publications Private Limited.

Machine

code/output

R1 Y

R2 Z

R1 R1+R2

R2 A

R1 R2*R1

Lesser Simple Instructions

(Using 2 registers)

https://ijarcce.com/

