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Abstract: Diminishing of green areas (vegetation, park, forest, etc.) influences the climate change and the quality of life 

in an area. Indonesia has large are, hence, it is difficult to find the number of vegetation and without the computer-based 

calculation accurately. Also, nowadays, the remote sensing technology has been widely used to capture the large region 

using satellite sensor, e.g., Landsat, Sentinel, Ikonos, etc. from websites that give free access like United States Geological 

Survey (USGS). Many vertical applications can be used to calculate percentage of vegetation, e.g., IDRISI, Dyna-Clue, 

eCognition, etc., but in this study, a Matlab-based calculation was used. This programming language will convert a data 

into a mat-file that can be integrated in a single datastore, hence the program will execute the data efficiently. In a 

datastore, many regions can be calculated simultaneously using the big data facility in Matlab. The study shows the 

calculation using a special data format (mat-file) has good accuracy and fast although in this study multispectral data 

were used before conversion into normalized difference vegetation index (NDVI).   
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I. INTRODUCTION 

 

Land Use/Cover always coverts from one type to another type. The problem occurs if the conversion reduces the number 

of vegetation that affects the Climate change and global temperature change. Therefore, it makes difficult to achieve 

sustainable development goals (SDGs) [1]. The conversion cannot be avoid in urban areas, especially in Java island, the 

most concentration of people in Indonesia [2]. Government should maintain the conversion by monitoring the percentage 

of the vegetation regularly. The satellite remote sensing data can be employed since this method can be easily access, 

without doing additional activities, e.g., unmanned aerial view (UAV), drone, and other capturing devices.  
 

Most cities in Java convert its area into an urban area that perceived as the source of environmental degradation [3]. Some 

problems are invited in urban regions, e.g., health, socio-economic, etc. The government should uses technology that 

easily capture the real condition, not only based on the census since a study shows the different result between census 

and satellite imageries analysis [4]. This study compared the number of buildings by satellite imagery and by census. 

Land Change Modeler (LCM) has been widely implemented to predict the land use/cover change [5]–[7]. This method 

needs a land use/cover classification based on satellite imageries that will be used as well in the current study for finding 

percentage of vegetation in Ciamis and Pangandaran District, West Java, Indonesia, as the study area. 
 

Satellite imageries have multispectral characteristics with a lot of band frequencies, i.e. visible and reflective infrared 

remote sensing, thermal infrared remote sensing, and microwave remote sensing [8]–[12]. The classification result show 

the multispectral and hyperspectral show the better accuracy than only RGB image. This study will analyse NIR and R 

bands to generate NDVI maps. 
 

After data and methods section, this paper will discuss the results. Some findings will be concluded in the conclusions 

section. 

II. DATA AND METHODS  

 

Satellite imageries used in this study is raster data. Another kind of data, called vector data, was also used for study area 

boundary. These data were prepared using ArcMap 10.1 with some additional projection WGS and Universal Transverse 

Mercator (UTM). 

 

A. Data 

Fig 1 shows the study area with two districts: Ciamis and Pangandaran that represents two kind of region, i.e. urban and 

coastal, respectively. It located in the south of the border between West Java and Central Java. latitude and longitude of 

of these areas are about 7 degrees and 108 degrees, respectively.  
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Fig. 1  Ciamis and Pangandaran District, West Java, Indonesia  

 

The study area is predicted to grow since the longest toll road in Indonesia (Gedebage – Tasikmalaya – Cilacap) will be 

built across this location that will influence the grow of these areas. Table 1 shows the date and sensor of the satellite 

imageries data. We used NIR and R bands to get the NDVI where band 3, 4, and 5 were used that different with Landsat 

7 that use band 2,3, and 4 for the same NIR and R. Two main sensors of the satellite are operational land imager (OLI) 

that produces 9 spectral bands (15m, 30m, and 60m spatial resolution) and thermal infrared sensors (TIRS) that produces 

thermal bands (100m spatial resolution). 

 

TABLE 1. LANDSAT SATELLITE IMAGERY 

No. Date Sensor 

1. 15 November 2019 Landsat 8 OLI/TIRS 

 

B. Methods 

Fig 2 shows the framework for finding the percentage of vegetation in the study area. Briefly, the framework contains 

two main stages, i.e., data preparation and vegetation percentage calculation. Both stages used ArcMap 10.1 for spatial 

analysis and Matlab 2017a for NDVI analysis.  

 

Tile of Study Area 
Downloading from 

USGS

` Cropping to Study 
Area Using ArcGIS

Creating Composite 
From Band 3,4,5 

Using Matlab 2017a

NDVI Calculation, 
Vegetation Map & 

Percentage 
Calculation Using 

Matlab 2017a
 

Fig. 2 Research Framework  

 

C. Normalized Difference Vegetation Index (NDVI) 

NDVI is the index for separating the vegetation from other land cover types. This index is calculated using equation 1 

[8]: 

 

ndvi = (NIR – R)/(NIR + R)      (1) 

 

Where NIR and R represent the Near Infrared and Red parts. Normalized means that the value must be from zero to one. 

 

III. RESULT AND DISCUSSION 
 

Every stage in research framework gives important results that affects the next stages.    

 

A. Near Infrared and R Map Creation 

In order Near Infrared (NIR) and R bands can be seen as a map, we presents the map into Red-Green-Blue (RGB) style 

that R,G, and B are NIR, visible red, and visible green, respectively. Function ‘imshow’ in matlab generate the Figure 3. 
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Fig. 3 NIR and R Map 

 

B. NIR vs Red Scatter Plot 

Infrared is the frequency that for separating the vegetation from other land use/cover since the vegetation with chlorophyl 

that absorb the infrared band. Therefore, we see the vegetation as green colour. Figure 4 shows the NIR vs Red shows 

the value of infrared. 

 

 
Fig. 4 NIR and R scatter plot shows NIR+R in blue and NIR+R threshold in Green 

 
 

C. NDVI Map 

NDVI map was created using NIR and R bands with equation 1. To find the significant vegetation areas, the threshold 

limitation was implemented. Figure 5 show the NDVI map and NDVI with threshold 0.4. 
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Figure. 5 White areas show the vegetation, (A) NDVI, and (B) NDVI with 0.4 threshold  

 

The similar technique is also done for 2014 clustering map. For analysing the decrease of vegetation, in this paper we 

merged the agriculture and forest/vegetation as well as built-up and other land use, e.g. road, and other land cover similar 

to built-up. Without calculating the percentage of vegetation, figure 5 shows a lot of numbers of vegetation region in this 

study area. Black areas are both non vegetation and outside the study area. Figure 5 shows that there are diminishing of 

vegetation in Ciamis city and the coastal area of Pangandaran that contains a lot of hotel (tourism area). 
 

D. Calculation Percentage of Vegetation 

Because there is a region outside the study area in map, we must exclude this region from percentage calculation. Because 

if we use all pixels in the map the percentage of vegetation is low (about 26%). The technique is create a map of study 

area that contain a study are with 1 and the outside the study are as zero using the function: 

 

studyArea = r > 0.1;       (2) 

Where r represents the red, green, or blue matrix. Figure 6 shows the study area map after equation 2 implementation. 

The white area is ‘1’ and black area is ‘0’. 

 

Fig. 6 Study Area Matrix  

 

To find number of pixels of the study area we only sum all the ‘1’ in the matrix using function sum(studyArea(:)) in 

Matlab. Therefore we get the percentage of vegetation using the equation (3). 

 

Veg=100 * numel(NIR(q(:))) / sum(studyArea(:))     (3) 
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Where ‘numel’ and ‘sum’ are Matlab function to count number of pixels and summation, respectively. We find the 

percentage of the study area of 58.9%. This value show that Ciamis and Pangandaran have vegetation area higher than 

other land use/cover type (built-up, water, etc.). 

 

IV. CONCLUSION 

 

To find the vegetation area, remote sensing data is recommended since it is cheap, fast, and wide. The study shows the 

usage of mat-file format from satellite imagery. In this study we only used two study area, i.e. Ciamis and Pangandaran 

district, but using the mat-file format, Matlab can calculate all area in Indonesia after conversion satellite imageries into 

mat-file using parallel processing in Matlab Big Data facility. The result show the percentage of vegetation in Ciamis 

and Pangandaran are higher that other land use/cover types, but in the future study we should consider the temporal aspect 

of remote sensing (spatio-temporal data). 
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