
IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 483

ISSN (O) 2278-1021, ISSN (P) 2319-5940

CROP YIELD AND PRICE PREDICTION

USING ARTIFICIAL NEURAL NETWORKS

AND DECISION TREE REGRESSION

Abhishek Parashar

Maharaja Agrasen Institute of Technology, New Delhi

Abstract: Agriculture is the basic source of food supply in all the countries of the world whether under-developed,

developing or developed. Besides providing food, this sector has contributions to almost every other sector of a country.

According to the Bangladesh Bureau of Statistics (BBS), 2017, about 17% of the country’s Gross Domestic Product

(GDP) is a contribution of the agricultural sector, and it employs more than 45% of the total labor force. In light of the

decreasing crop production and shortage of food across the world, one of the crucial criteria of agriculture now-a-days is

selecting the right crop for the right piece of land at the right time. Therefore, in our research we have proposed a method

which would help suggest the most suitable crop(s) for a specific land based on the analysis of the data of previous years

on certain affecting parameters using machine learning. In our work, we have implemented Random Forest Classifier,

Gaussian Naïve Bayes, Logistic Regression, Support Vector Machine, k-Nearest Neighbor, and Artificial Neural Network

for crop selection. We have trained these algorithms with the training data and later these were tested with test dataset.

We then compared the performances of all the tested methods to arrive at the best outcome.

My target is focused largely on agriculture. In agriculture, farmers play the most important role. When the price falls after

the harvest, farmers face immense losses. A country's GDP is affected by the price fluctuations of agricultural products.

Crop price estimation and evaluation are done to take an intelligent decision before farming a specific type of crop.

Predicting the price of a crop will help in taking better decisions which results in minimizing the loss and managing the

risk of price fluctuations. Therefore, the web app also includes a crop price predictor to predict crop prices for the next

12 months. In this paper, we predicted the price of different crops by analyzing the previous rainfall and WPI data. We

used the decision tree regressor (Supervised machine learning algorithm) to analyze the previous data and predict the

price for the latest data and estimate the price for the twelve months to come.

Keywords: Agriculture, Crop yield, Logistic Regression, k-Nearest Neighbors, ANN, price prediction, decision tree,

crop price, regression, forecasting, machine learning.

1. INTRODUCTION

Prediction of crop yield mainly strategic plants such as wheat, corn, rice has always been an interesting research area to

agro meteorologists, as it is important in national and international economic programming. Dry farming crop production,

apart from relationship to the genetic of cultivator, adaphic terms, effect of pests and pathology and weeds, the

management and control quality during the growing season and etc. is severely depend to climatic events. Therefore, it is

not beyond the possibility to acquire relations or systems which can predict the more accuracy using meteorological data.

Nowadays, there are a lot of yield prediction models, that more of them have been generally classified in two group a)

Statistical Models, b) Crop Simulation Models (e.g. CERES). Recently, application of Artificial Intelligence (AI), such

as Artificial Neural Networks (ANNs), Fuzzy Systems and Genetic Algorithm has shown more efficiency in dissolving

the problem. Application of them can make models easier and more accuracy from complex natural systems with many

inputs. In this research it has been tried to develop a wheat yield prediction model using ANNs. If we design a network

which correctly learn relations of effective climatic factors on crop yield, it can be used to estimate crop production in

long or short term and also with enough and useful data can get a ANNs model for each area. Furthermore, using ANNs

can find the most effective factors on crop yield. Therefore, some factors that their measurements are difficult and cost

effective can be ignored. In this the effect of climatic factors on wheat yield has only been applied.

2. IMPLEMENTATION OF PROPOSED METHOD

2.1 IMPLEMENTATION OF CROP YIELD PREDICTOR USING ANN:

2.1.1 Data Classification

Classification is a data mining function that assigns items in a collection to target categories or classes. The goal of

classification is to accurately predict the target class for each case in the data. For example, a classification model could

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 484

ISSN (O) 2278-1021, ISSN (P) 2319-5940

be used to identify a particular crop as to the possibility of its production given a set of features, as per our research. A

classification task begins with a data set in which the class assignments are known. For example, a classification model

that predicts crop selection could be developed based on observed data for many crop selections over a period of time. In

addition to the crop data, the data might track a number of features. A specific crop would be the target, the other attributes

would be the predictors, and the data for each crop would constitute a case. Classifications are discrete and do not imply

order. Continuous, floating-point values would indicate a numerical, rather than a categorical, target. A predictive model

with a numerical target uses a regression algorithm, not a classification algorithm. The simplest type of classification

problem is binary classification. In binary classification, the target attribute has only two possible values: for example,

rice or no rice. Multi-class targets have more than two values: for example, low, medium, high, or unknown possibility

of rice production. In the model build (training) process, a classification algorithm finds relationships between the values

of the predictors and the values of the target. Different classification algorithms use different techniques for finding

relationships. These relationships are summarized in a model, which can then be applied to a different data set in which

the class assignments are unknown. Multiple pathways can be taken for research of this sort. The field of machine learning

is vast enough to accommodate a great number of ways this type of prediction work can be done. For our model, we have

implemented all the algorithms and data processing codes using the Python programmable language. The Integrated

Development Environment (IDE) that we have used is Anaconda Spyder, during our initial data processing phases. Our

model consists of all the aforementioned algorithms which has led us to propose a comparison between all of them, based

on performance. There are 8 steps that we have followed in our model:

• Dataset collection.

• Data visualization.

• Data pre-processing in the form of data cleaning and feature extraction.

• Data splitting into train and test sets.

• Fitting the algorithm.

• Parameter tuning (only for Artificial Neural Network).

• Testing the accuracy of the model.

• Data post-processing in the form of performance metrics.

2.1.2 Data Collection

For research of this sort, it is crucial to have an available dataset to work upon. It is very difficult to find legible and

reliable datasets of this sort. It took us a lot of time and effort to find one suitable for us. The dataset that we finally found

contained all the accurate features that we really wanted. The features were perfect for research of this sort. There was a

total of 12 columns and around 250,000 rows. The columns were “State Name”, “District Name”, “Crop Year”, “Season”,

“Area”, “Rainfall”, “Humidity”, “Temperature”, “Previous Year’s Rainfall”, “Previous Year’s Humidity”, “Previous

Year’s Temperature” and “Crop”. 4 of the columns contained data which were in string notation. The rest of the columns

contained data which were numerical. The “State Name” column had the names of a number of important states in the

country. The “District Name” column had names of districts in those states. The “Crop Year” column had the crop years

for the past 19 years. “Season” contained 4 different seasons. “Area” had area data in meters squared. “Area”, “Rainfall”,

“Humidity”, “Temperature”, “Previous Year’s Rainfall”, “Previous Year’s Humidity”, and “Previous Year’s

Temperature” all contained data respective of the names just mentioned. Finally, the “Crop” column, our most important

column, contained 135 different crops which were grown in the places mentioned in the respective columns. All this data

is for India, and were taken from the Indian Government Agricultural website upon email request. Research in the field

of machine learning, especially deep learning within machine learning, requires heavy usage of computational power. In

our research, we had to use Kera’s and Tensor flow as a back-end engine which actually supports the Scikit-learn library.

Scikit-learn is basically run by Kera’s. Furthermore, as our dataset contained a massive number of rows, algorithms such

as the Artificial Neural Network algorithm, required high computational power.

2.1.3 Data Pre-Processing

One of the primary tasks we completed was to convert all of our string data into numerical data. In order to do this, we

converted all the string features into dummy variables. This greatly increased our column number. We then cleaned our

data in a very singular pattern. We had a small portion of null values in the production column. Due to the miniature

amount, we dropped the fields off of the dataset. This did not affect much, as the amount was minimal. We also performed

feature extraction on the dataset. Some of our data were categorical and some were continuous numeric. This type of

mixed data always causes problems to the algorithms. Hence, we performed standard feature scaling on all of the data to

bring them into a common scale. Feature scaling is extremely important due to the fact that, most algorithms feature a lot

of internal calculation. Additionally, feature selection was done to reduce over fitting issues.

2.1.4 Data Splitting

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 485

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Data splitting is the process of splitting the dataset into training and testing data. This process is very useful for any

machine learning process as the main idea of machine learning depends on training and testing data and finding the

accuracy of the machine given result. In our research, we divided our dataset because we trained our algorithms on the

test dataset where the particular crop had its data in there. Here the algorithms were trained using that data. We deduced

that data having 1 to be yes, and 0 to be no. The algorithms were trained and we will apply the trained algorithm to our

test set and measured the accuracy of the machine. The datasets are usually divided into an 80:20 ratio. However, for our

model the dataset was split into both 80:20 and 60:40 ratio. Thus, the 80%/60% of the selected data was chosen as training

set and the remaining 20%/40% was test set. There are many built in python tool-kits for splitting data such as, ‘pandas’,

‘keras’, ‘scikit-learn’ etc. although we used “scikit-learn” for the machine learning approaches in this research because

of its built-in libraries.

2.1.5 Algorithm Fitting

The most crucial part of the model was to fit the algorithm with the data. All the algorithms were easily fitted as the

programming of this part was comparatively easy. Simple method callings were all that were required. The algorithms,

upon being implemented, processed all the data using all the internal calculations. Data frames were created and could be

viewed in the variable explorer. Because of the fact that the data had been split into training and testing datasets, the

algorithm could start the core process: learning. The machine learned from the train set. This learning was to be used later

on while predicting from the test set. Fitting is similar to training. For example, let us assume that we have measured the

production for a group of crops and decided that your model would be a normal distribution. Then determining the mean

and variance of the normal distribution that best explains our observed data is called fitting: we are determining the

parameters’ mean µ and variance σ. Suppose we have an algorithm that estimates µ and σ given our data. We can ask our

algorithm to run “n” iterations where each iteration takes the same amount of time but more iterations yield slightly more

accurate estimates of the parameters µ and σ. “n” is a value we supply that may influence the estimates and is called a

hyper-parameter.

2.1.6 Testing Accuracy

To test the accuracy, we implemented different methods on different algorithms based on requirement. Some were direct

accuracy-check method calls from scikit-learn libraries. While in some other algorithms, we implemented manual

accuracy checks, again based on the algorithm itself. In Random Forest of instance, mean was calculated. In Artificial

Neural Network, despite calling an accuracy-check method, all the accuracy from all the epochs were taken in for mean

value of accuracy. The accuracy check is crucial in understanding the viability of the algorithms and also the research

itself. A very low accuracy in all the algorithms would mean the entire research was a dead end. It would mean this

method altogether is not viable for this research. A low accuracy in a few algorithms and a high accuracy in the others

would mean the ones with the low accuracy are not efficient in this model, but the others are. We would have discarded

the low accuracy yielding algorithms. However, in our case, all the algorithms yielded a very high accuracy. Although

this issue did cause us a few problems later on when comparing the accuracy amongst all the algorithms, the fact that the

accuracy is high on all, was a strong point in determining the methods to be viable in this field of research. An Effective

Model is a model which basically predicts the testing data most accurately as compared to other models and hence, can

be deployed successfully. Testing accuracy of k-NN is shown

2.1.7 Data Post-Processing

After all the accuracy have been taken into account, a few other data processes can still be implemented. This part of the

model is not necessary for the primary target of the research, but we still used it for certain confirmation purposes. We

implemented a method which would create a confusion matrix. A confusion matrix is a technique for summarizing the

performance of a classification algorithm. Classification accuracy alone can be misleading if we have an unequal number

of observations in each class or if we have more than two classes in our dataset. Calculating a confusion matrix can give

us a better idea of what our classification model is getting right and what types of errors it is making. Figure 3.2 shows

the confusion matrix we got by implementing Logistic Regression for crop prediction.

Figure 1 Confusion Matrix for Crop Prediction

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 486

ISSN (O) 2278-1021, ISSN (P) 2319-5940

The methods to reduce any over fitting issues that were implemented earlier in the data pre-processing stage, can even be

implemented here instead the other stage. However, it was extremely necessary for us to use those in the model, any form

of over fitting or under fitting would actually render the whole model lack of any real use.

2.1.8 Artificial Neural Network (ANN)

We followed standard procedures for all the algorithms apart from the Artificial Neural Network (ANN). Starting from

the data pre-processing, to algorithm fitting, to accuracy checking, and finally predicting the desired outcome, the methods

and codes used nearly remained the same. The only major variation was in the part where we called the algorithm fitting

functions. However, the deep learning model that we created for the ANN,

was different to the other algorithms to a certain extent. We created the hidden layers and perceptions manually. Even

after the predictions were being generated, we performed further checks in the form of k-Fold Cross Validation and Grid

Search CV to ensure the highest viability of the accuracy obtained. The first step was to calculate the activation of one

neuron given an input. The input was a row from our training dataset, as in the case of the hidden layer. It might also be

the outputs from each neuron in the hidden layer, in the case of the output layer. Neuron activation was calculated as the

weighted sum of the inputs, much like linear regression.

Activation = sum (weight_i ∗input_i)+bias

Where weight was a network weight, “i” was the index of a weight or an input and bias was a special weight that had no

input to multiply with. Once a neuron was activated, we needed to transfer the activation to see what the neuron output

actually was. Different transfer functions could be used. It was traditional to use the sigmoid activation function, but we

could also use the tan h (hyperbolic tangent) function to transfer outputs. However, due to the recent popularity and

increase in efficiency, the rectifier transfer function had been used by us in our deep learning model. The sigmoid

activation function looks like an S shape; it is also called the logistic function. It can take any input value and produce a

number between 0 and 1 on an S-curve. It is also a function of which we can easily calculate the derivative (slope) that

we use later when back propagating error.

The first step was to calculate the error for each output neuron, that gave us our error signal (input) to propagate backwards

through the network. The error for a given neuron was calculated as follows.

error =(expected−output)∗ transfer derivative (output)

Where “expected” was the expected output value for the neuron, “output” was the output value for the neuron and

transfer_derivative() calculated the slope of the neuron’s output value, as shown above. This error calculation was used

for neurons in the output layer. The expected value was the class value itself. In the hidden layer, things are a little more

complicated. The error signal for a neuron in the hidden layer was calculated as the weighted error of each neuron in the

output layer. The error traveled back along the weights of the output layer to the neurons in the hidden layer. The back-

propagated error signal was accumulated and then used to determine the error for the neuron in the hidden layer, as

follows.

error = (weight_k∗error_j) ∗ transfer_derivative(output)

Where “error_j” was the error signal from the “j” th neuron in the output layer, “weight_k” was the weight that connects

the “k”th neuron to the current neuron and output was the output for the current neuron. The network was trained using

stochastic gradient descent. This involves multiple iterations of exposing a training dataset to the network and for each

row of data forward propagating the inputs, back propagating the error and updating the network weights. Once errors

were calculated for each neuron in the network via the back-propagation method above, they could be used to update

weights. Network weights were updated as follows.

weight =weight+learning_rate∗error∗input

Where “weight” was a given weight, “learning_rate” was a parameter that we specify, “error” was the error calculated by

the back-propagation procedure for the neuron and “input” was the input value that caused the error. The same procedure

might have been used for updating the bias weight, except there was no input term, or input was the fixed value of 1.0.

Learning rate controls how much to change the weight to correct for the error. For example, a value of 0.1 will update

the weight 10% of the amount that it possibly could be updated. Small learning rates are preferred that cause slower

learning over a large number of training iterations. This increases the likelihood of the network finding a good set of

weights across all layers rather than the fastest set of weights that minimize error. If errors were accumulated across an

epoch before updating the weights, this would be called batch learning or batch gradient descent. Once all the

aforementioned steps were completed, the network became eligible for training. The rest of the procedure followed a

similar structure to the rest of the algorithms, as discussed above.

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 487

ISSN (O) 2278-1021, ISSN (P) 2319-5940

2.1.9 Algorithms fo r Proposed Model

2.1.9.1 Logistic Regression

Methods involving regression are essential to any data analysis models which attempt to describe the association between

a response variable and any number of predictor variables. Situations involving discrete variables constantly arise. For

instance, the dataset we have implemented has an outcome involving the presence or absence of a particular crop, given

a set of features. Logistic regression analysis extends the techniques of multiple regression analysis to investigate and

inquire situations in which the outcome is categorical, which is, taking on multiple values. This is a very basic branch of

data science. Although the name suggests a regression technique, logistic regression is a statistical classification model

which deals with categorical dependent variables. Classification is decision. To make an optima decision we need to

assess the utility function, which implies that we need to account for the uncertainty in the outcome, i.e., a probability.

Logistic regression is emphatically not a classification algorithm on its own. It is only a classification algorithm in

combination with a decision rule that makes dichotomous the predicted probabilities of the outcome. This is one of the

very first algorithm any machine learning practitioner attempts when faced with a classification problem. The basic

mechanism and output of this algorithm is similar to many other machine learning algorithms. It is the appropriate

regression analysis to conduct when the dependent variable is dichotomous or binary. Like all regression analyses, the

logistic regression is a predictive analysis. Logistic regression is used to describe data and to explain the relationship

between one dependent binary variable and one or more nominal, ordinal, interval or ratio-level independent variables.

This algorithm works with binary data, where either the event happens, represented by “1”, or the event does not happen,

represented by 0. So given some feature “X”, it tries to find out whether some event “y” happens or not. So “y” can either

be “0” or “1”. In the case where the event happens, “y” is given the value “1”. If the event does not happen, then “y” is

given the value of “0”. For example, if “y” represents whether a particular crop among a huge variety of crops, then “y”

will be “1” if the crop does grow or “y” will be “0” if it does not. This is known as Binomial Logistic Regression. There

is also another form of Logistic Regression which uses multiple values for the variable “y”. This form of Logistic

Regression is known as Multinomial Logistic Regression. Figure 3.3 shows a simple flow chart representation of logistic

regression.

Figure 2 Flow Chart of Logistic Regression

Logistic Regression uses the logistic function to find a model that fits with the data points. The function gives an “S”

shaped curve to model the data. The curve is restricted between “0” and “1”, so it is easy to apply when “y” is binary.

Logistic Regression can then model events better than linear regression, as it shows the probability for “y” being “1” for

a given “x” value. Logistic Regression is used in statistics and machine learning to predict values of an input from previous

test data. Scatter plot classification of data by Logistic Regression is shown in Figure 3.4

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 488

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Figure 3 classification of data by Logistic Regression.

2.1.9.2 Support Vector Machine (SVM)

“Support Vector Machine” (SVM) is a supervised machine learning algorithm which is a very useful technique for data

classification. However, this learning algorithm can also be used for regression challenges. A classification task usually

involves separating data into training and testing sets. Each instance in the training set contains one “target value” (i.e.,

the class labels) and several “attributes” (i.e., the features or observed variables). The goal of SVM is to produce a model

(based on the training data) which predicts the target values of the test data given only the test data attributes.

Linear SVM

Support Vector Machine classifier plots each data item with the value of each feature as a point in an n-dimensional space

(where n is number of features) being the value of a particular coordinate. SVM maps data to a high-dimensional feature

space so that data points can be categorized, even when the data are not otherwise linearly separable. Then, it performs

classification by finding the hyper-plane that differentiates the two classes very well. points can be categorized, even

when the data are not otherwise linearly separable. Then, it performs classification by finding the hyper-plane that

differentiates the two classes very well.

When the data can be linearly separated in two dimensions, as shown in Figure 3.5, any machine learning algorithm tries

to find a boundary that divides the data in such a way that the mis-classification error can be minimized. Nevertheless,

there can be several boundaries that correctly divide the data points as shown below in Figure 3.6.

Figure 4 Classifications of Two Classes Using Boundary.

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 489

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Figure 5 Multiple Decision Boundaries.

SVM is different from the other classifiers in the way that it chooses the decision boundary that maximizes the distance

from the nearest data points of all the classes. This boundary has the maximum margin from the nearest points of the

training class as well as the test class. As a result, SVM classifier does not only find a boundary; it finds the most optimal

decision boundary. This boundary resulting from SVM is called the maximum margin classifier, or the maximum margin

hyper plane. The nearest points from the hyper plane that maximize the distance between the decision boundaries are

called support vectors.

2.1.9.3 K-Nearest Neighbours

K-Nearest Neighbors (KNN) algorithm is one of the simplest, easy to understand, versatile and one of the topmost

machine learning algorithms. KNN is a non-parametric supervised learning algorithm. Additionally, it is an instance-

based learning or a lazy algorithm. When a query to the database is made, the algorithm uses the training instances to spit

out an answer. That is why, for KNN the training phase is very fast compared to other classifier algorithms. However, the

testing phase becomes slower and costlier, that is in terms of time and memory. KNNs purpose is to use a database in

which the data points are separated into several classes to predict the classification of a new sample point. Informally,

this means that for a labeled dataset consisting of training observations (x, y) and the algorithm is used to capture the

relationship between x and y. KNN Algorithm is based on feature similarity: How closely out-of-sample features resemble

our training set determines how we classify a given data point. An example of KNN classification is shown below in

Figure 3.7.

Figure 6 K-Nearest Neighbours Classification

Here, the test sample (inside circle) has to be classified either to the first class of blue squares or to the second class of

red triangles. If k = 3 (outside circle) it is assigned to the second class because there are 2 triangles and only 1 square

inside the inner circle. If, k = 5 it is assigned to the first class (3 squares vs. 2 triangles outside the outer circle). In KNN,

K is considered as the number of the nearest neighbours. The number of neighbours is the core deciding factor for the

classification. The algorithm is known as the nearest neighbour algorithm when K=1. In the classification setting, the K-

nearest neighbour algorithm essentially boils down to forming a majority vote between the K most similar instances to a

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 490

ISSN (O) 2278-1021, ISSN (P) 2319-5940

given “unseen” observation. Similarity is defined according to a distance metric between two data points. The “Euclidean

distance” is a popular choice. But other measures can be better suited for a particular setting that includes the distance

Manhattan, Minkowski and Hamming. The equations are shown in the Figure 3.8 below:

Figure 7 Formula for Distance Metric Calculation.

More formally, given a positive integer K, an unseen observation x and a similarity metric d, KNN classifier performs

the following three steps:

• It runs through the whole dataset computing d between x and each training observation. We’ll call the K points in the

training data that are closest to x the set A. Note that K is usually odd to prevent tie situations.

• It then estimates the conditional probability for each class, that is, the fraction of points in A with that given class label.

• Finally, the input x is assigned to the class with the largest probability.

The number of neighbors (K) is a hyper-parameter that needs to be chosen at the time of model building. Research has

shown that there is no optimal number of neighbors which suits all kind of data sets. Each dataset is different and needs

to fulfill its own requirements. In most cases, it is better to choose it as an odd number if the number of classes is even.

When the value of K is small, the region of a given prediction is being restrained. And the classifier is being forced to be

“more blind” to the overall distribution. A small value for K provides the most flexible fit, which will have low bias but

high variance. Graphically, the decision boundary will be more jagged, which is shown in the Figure 3.9 below. On the

other hand, a higher valued K averages more voters in each prediction. Hence it is more resilient to outliers. Larger values

of K will have smoother decision boundaries which mean lower variance but increased bias, shown below in the Figure

3.10 below.

Figure 8 Data Classification When K=1

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 491

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Figure 9 Data Classification When K = 20.

This graph clarifies that at K=1, the boundaries were being over-fitted. So, the error rate initially decreases and reaches

minima. After the minima point, it then increases with increasing K. To get the optimal value of K, the training and

validation can be segregated from the initial dataset. Then by plotting the validation error curve, it is easier to get the

optimal value of K. This value of K should be used for all predictions.

2.2 IMPLEMENTATION OF CROP PRICE PREDICTOR USING DECISION TREE REGRESSOR:

2.2.1 Decision Tree Regressor based Price predictor

This work focuses on investigating the prediction of Crop price estimation. The proposed methodology uses the decision

tree algorithm to predict the results efficiently and proves to best suitable for the research work. The data collected, is

analyzed and cleaned to predict the price of the crops. The architecture of the proposed crop prediction system is depicted

below in Figure.

Figure 10 Crop price prediction system architecture

The implementation is divided into the following modules.

A. Data Gathering

B. Data Cleaning

C. Data Exploration

D. Prediction using Machine learning

E. Web application

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 492

ISSN (O) 2278-1021, ISSN (P) 2319-5940

2.2.2 Data Gathering

Dataset is prepared by collecting the crop and rainfall data from the Indian government data repository (data.gov.in).

There are a lot of datasets that contain data. We obtained the data which contains the details of the whole price index and

rainfall of the individual crops per month.

Figure 11: Combined dataset of Barley

2.2.3 Data Cleaning

One of the most significant steps in any machine learning project is data cleaning. There are several different methods of

statistical analysis and data visualization techniques in the dataset that you can use to explore the data to identify the

appropriate data cleaning operations to be conducted. There are some very simple data cleaning operations before jumping

to the advanced methods that we can conduct in a machine learning project on every single dataset. They are so important

that models can break or report excessively optimistic outcomes of success if missed. In our dataset, we cleaned all the

null values and checked whether all the datatypes are valid.

2.2.4 Data Exploration

Also known as E.D.A, exploratory data analysis is a very important phase in researching and investigating various data

sets and summarizing their significant characteristics, often using different methods of data visualization. It allows it

simpler for a data analyst to obtain repeated trends, spot anomalies, test theories, and conclusions to decide the best way

to monitor data sources to get the results with greater precision.

2.2.5 Prediction using Machine learning

We tested around 6 different algorithms and found the Decision Tree Regressor algorithm as the most effective. Its root

mean squared value is 3.8 which is very less Retracted when compared to other algorithms

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 493

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Figure 12 Root mean square of Decision tree regressor

A Decision Tree is one of the most commonly used algorithms for supervised learning. In the form of a tree structure, a

decision tree generally generates regression models or classification models. It breaks down a dataset into smaller subsets

and, based on the subsets, a decision tree is created. A tree containing decision nodes and leaf nodes is the final product.

There are mostly two or more branches of a decision node, each representing values for the checked attribute. An option

for the final numerical goal is represented by the Leaf node. The topmost node in the tree corresponds to the root node,

which is the best node. Both continuous and categorical data can be processed by decision trees.

Machine learning prediction has the following steps:

 Step 1: Initialize a dataset containing information on rainfall and wholesale price index.

Step 2: From the dataset select all the rows and columns 1,2,3 to “X” Which is the independent variable.

Step 3: From the dataset select all of the rows and column 4 to “y” Which is the dependent variable.

Step 4: Fit the x and y variables with a decision tree regressor. Step 6: Update the UI with predicted values

2.2.6 Web application

The Predicted WPI data is converted into Price per Quintal using the formula (WPI x Base Price)/100 and displayed in a

visually understandable web application created using the Flask framework. Flask is one of the popular, extensible web

micro-framework for building beautiful web applications with Python. An Index page is created and from there we can

navigate to 20 different crops and see their forecast in detail.

Figure 13 Crop price prediction web app

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 494

ISSN (O) 2278-1021, ISSN (P) 2319-5940

EXPERIMENTAL RESULTS

3.1 Result analysis for Yield Predictor:

3.1.1 Result Analysis:

The core aim of our research was to establish a model that will efficiently predict a particular crop based on a set of

features. During the course of this research, we have also successfully created a model that can predict the possibility of

a particular crop to be able to be grown, given a set of features. In order to do this, as mentioned above, we have

implemented 6different machine learning algorithms. Amongst them, The SVM was done using 3 different aspects, and

the KNN was done using 2. This ensured us the ability to bring a comparison between varieties of different algorithms.

Our target was to establish the best performing algorithm for this field of work, based on our data.

3.1.2 Accuracy Analysis:

As mentioned before, we have extracted accuracy from 9 different processes. Only the ANN was run on one instance

only. Apart from that, all the other algorithms were tested on a variety of instances of the same dataset. We took 5 samples

of our primary dataset. The samples had an increasing number of rows starting from 2000 and ending at 11000. We ran

each algorithm on these samples in 2 separate train test splits. Initially, we used the 60%-40%train test ratio. Eventually,

we changed that to 80%:20%. Both gave us fair results, but the latter gave us a better accuracy, which led us to finalize

the model on that. Two separate outcomes were extracted from our algorithms with slight tweaking. We could both predict

a particular crop and the percentage chance of a specific crop to be able to be grown, given a particular set of features.

However, the former method fetched bad accuracy levels, which we found highly unconvincing. The highest accuracy

we got was from the KNN (K=optimal) algorithm, which was 81.3%, on a set of 11000 features. In similar features, but

with a specific crop as the dependent variable, all the algorithms gave strong accuracy levels. The lowest accuracy was

given by Random Forest Classifier which was still 92.30%. The highest accuracy was again given by the KNN

(K=optimal) algorithm. The ANN was tested only once with 11000 features, and only for the specific crop model.

We trained and tested the network up to 1000 epochs. The accuracy that we obtained was 96.95%. All the accuracy levels

in this part of the thesis indicated to a strong viability of our research in this field. In the (Table.1) and (Table. 2) below

we have shown the comparison among all the classifiers we have implemented for specific crop possibility prediction and

crop prediction respectively.

Table 1 Accuracy comparison for crop possibility

Table 2 Accuracy comparison for crop prediction

Data GNB SVM Linear

SVM

RBF

SVM

KNN

(k=1)

KNN

(k=optimal)

LR RF

2000 70.18 70.50 65.44 67.13 65.44 66.01 62.58 30.04

4000 70/88 49.92 49.64 58.34 38.84 48.80 57.50 44.37

6000 55.97 63.12 67.50 62.92 54.02 56.46 52.52 45.41

8000 58.79 63.52 58.90 64.79 57.33 60.0 43.75 45.84

11000 56.2 63.7 56.8 68.8 61.38 81.3 66.46 55.0

Data GNB SVM Linear

SVM

RBF

SVM

KNN

(k=1)

KNN

(k=optimal)

LR RF ANN

2000 80.61 95.07 92.97 94.38 90.44 95.50 95.22 95.07

4000 84.26 94.95 96.35 94.53 93.26 95.65 96.07 95.16

6000 89.04 97.28 97.09 97.84 96.16 96.44 95.78 95.78

8000 85.36 95.27 95.59 95.74 95.59 96.81 95.31 93.71

11000 95.5 97.0 97.2 96.23 96.38 97.70 97.38 92.30 96.95

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 495

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Figure 14 Graphical representation of accuracy among all classifier’s comparison for crop prediction.

3.2 Result analysis for Price Predictor:

In the evaluation, we need to understand, several metrics, whether our decision tree model works well for the problem

statement. We calculate the crop price, its increase, and decrease percentage, and also its 12- month forecast.

Figure 15 Top gainers

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 496

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Figure 16 Top losers

Figure 17 Result for Barley

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 497

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Figure 18 Forecast Trends

5. CONCLUSION

We believe this model can play a very essential part in today’s world. Agriculture is a fundamental aspect of modern

civilization. With increasing world hunger and economy breakdown, the proper selection of crop emerges as a massive

factor in this. Our proposed model can predict the proper crop for a particular piece of land in a way that is very efficient.

We have implemented 6 different types of machine learning and deep learning algorithms in this research. All the

accuracy of the models was carefully obtained through various different methods, and compared with each other. Using

multiple algorithms helped to understand which algorithm is more suitable for this system. The crops can be predicted

based on a very suitable set of features included in the dataset used. From this research work, we found that, the cleaner

the data, the better the accuracy of the result. The entire length of this research was very enjoyable, as we were able to

work in the field of machine learning and deep learning. Some of the python library usage, algorithm fitting, and accuracy

checking methods were very interesting in practicality. We trust all our algorithms and research work to efficiently work

on any platform and any new type of data. The predictions made were solid and robust. Such strength in the model delights

us, and we hope this keeps working over the years without issues.

In this paper predicting the price of crops and forecast the price of the next 12 months is proposed. The data is presented

via a flask web page and runs on effective machine learning algorithms and technologies with an overall user-friendly

interface for users. The acquired training datasets provide ample insights to forecast the required price and demand in the

markets. Therefore, the scheme allows farmers to reduce their problems and raise their income. Various algorithms can

be used for crop price prediction such as decision trees, support vector machines, neural networks, deep learning, etc. Our

model used a supervised machine learning algorithm called Decision tree Regressor. It is trained on several Kharif and

Ragi crops (Paddy, Wheat, Cotton, Barley, etc.) providing better accuracy. The Model further can be trained with climate-

aware farming techniques, provide fertilizer suggestions, and identifying systems of crop monitoring, warning on pest

outbreak, disease outbreak based on advanced AI Models

REFERENCES:

[1]. Aggarwal Sachin (2001). Application of Neural Network to Forecast Air Quality Index. Thesis submitted in partial

fulfillment of requirements for a degree in Bachelor of Technology, April 2001.

[2]. B. J I ET AL Artificial neural networks for rice yield prediction in mountainous regions. Journal of Agricultural

Science (2007), 145, 249–261.

[3]. B.A. Smith et al Artificial Neural Networks for Automated Year-round Temperature Prediction. Computers and

Electronics in Agriculture 68 (2009) 52–6.

[4]. Cheng, B. and Titterington. D. M. (1994). Neural networks: A review from a statistical perspective Statistical

Science, 9: 2-54.

[5]. D.L. Ehret et al, Neural network modeling of greenhouse tomato yield, growth and water use from automated crop

monitoring data. Computers and Electronics in Agriculture 79 (2011) 82–89.

[6]. Enfield, D. B., 1996. Relationships of inter-American rainfall to tropical Atlantic and Pacific SST variability.

Geophysical Research Letters 23(23): 3305-3308.

[7]. Everingham, Y. L., R. C. Muchow, R. C. Stone, and D. H. Coomans, 2003. Using southern oscillation index phases

to forecast sugarcane yields: a case study for Northeastern Australia. International Journal of Climatology 23(10):

1211-1218.

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 7.39Vol. 11, Issue 5, May 2022

DOI: 10.17148/IJARCCE.2022.11590

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 498

ISSN (O) 2278-1021, ISSN (P) 2319-5940

[8]. Handler, P, 1990. USA corn yields, the El Niño and agricultural drought: 1867-1988. International Journal of

Climatology 10(8): 819-828.

[9]. Hansen, J. W., J. W. Jones, C. F. Kiker, A. W. Hodges, 1999. El Niño-Southern Oscillation impacts on winter

vegetable production in Florida. Journal of Climate 92-102.

[10]. Hansen, J. W., A. W. Hodges, and J. W. Jones, 1998. ENSO Influences on agriculture in the southeastern United

States. Journal of Climate 11(3): 404-411.

[11]. Haykin. S, 1999. Neural Networks: A Comprehensive Foundation (Second Edition). Upper Saddle River, NJ:

Prentice Hall.

[12]. Izaurralde, R. C., N. J. Rosenberg, R. A. Brown, D. M. Legler, M. T. Lopez, R. Srinivasan, 1999. Modeled

effects of moderate and strong, Los Niños‟ on crop productivity in North America.

https://ijarcce.com/

