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Abstract: The increase in online services like medical consultancy on internet, business trades taking place in the web
so on and so forth, in many means have proliferated the need for abusive content detection and its prevention because of
the vast data flowing in the web. In addition to that, the multiplied cyber crimes have been concerning the communities
that are looking to enlarge their business by making it accessible to a wide range of communities by moving to the global
networks.

Abusive content is against humanity and might lead to mental disabilities like depression and many more severe issues
amongst the victims, so it is a basic need to prevent the abuse and make sure the data is secure that is provided by clients
belonging to various sections of the society.

This project involves detecting multiple cases of abuse in the comments, tweets, and messages. It detects positive and
negative sentences.

INTRODUCTION

The word Abuse means improper usage or treatment of a thing to gain benefit improperly. It is an action that intentionally
harms another person. Abuse can come in many forms, such as physical or verbal maltreatment, injury, assault, violation,
rape, unjust practices, crimes, or other types of aggression. Digital Abuse is using technologies such as texting and social
networking to bully, harass, stalk or intimidate a partner. Often this behavior is a form of verbal and emotional abuse
perpetrated online.
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Pre-processing: The given Input is pre-processed in 3 different phases
° Tokenizer: Tokenization is a technique to separate a piece of text into smaller units called tokens. Tokens can

be either words, characters, or subwords.

[
-0 ¢©-0-0
l l l l l
What time ?

In the Recurrent neural network architecture of Natural Language Processing, the tokens are received and processed at a
particular time step. Here word tokenization is done for abusive content detection.

° Lemmatization parts of speech tagging:
The process of lemmatization involves converting the words in a sentence to dictionary forms. The parts of speech tagging

are the process of identifying the parts of speech in a sentence. The POS tagging is a supervised learning approach in
which it checks for previous and next words in a sentence to identify the parts of speech. nltk Library is used in this
process. It extracts the stop words and they are removed to identify the words which are not frequently or commonly

used.
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Part Of Speech Tagging
Segmenter: It is the process of segmentation that involves dividing the sentence into segments for further processing.
. Political Entities: Political entities are identified in POS tagging.
. Segmentation rules: According to the identified segmentation the segmentation rules are applied and

segmentation of sentences is done. These segmented sentences are further sent for the feature extraction process.

Feature Extraction: It is the process of extracting features from input data and generating distinct properties (feature
vectors) which are informative and not redundant for improving the learning process of the system.

) Polarity Lexicon: Polarity Lexicons are associated with 3 numerical scores — positivity, negativity, and
neutrality. SVM is used for assigning the polarities.

. Tuning model: After extracting the features, a tuning model is made to control the overall behavior of the
system.

Polarity Classifier: For Polarity classification, all the object expressions are removed. The Training model consists of
all the subjective datasets which are re-labeled. The expressions are further classified into 3 categories - namely, positive,
neutral, and negative.

The complete data set consists of 24939 tweet expressions with around 15000 objective expressions and around 9000
subjective expressions. out of subjective expressions around 5000 are positive, around 3000 are negative and around 400
are neutral expressions.

Classified Outputs: The classified segments are given as outputs. The abusive content is returned with a negative
message.

RESULTS
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# Commented out IPython magic to ensure Python compatibility.
# Xsatplotlid inline
sns.countplot(datal "polarizy”])

<matplotlib.axes._subplots.AxesSubplot at ox7f2526685d18>
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# Removing the unnecessary columns.
data.drop([ ‘date’, ‘query’, ‘user’,‘word count’], axis-1, inplace-True)

data.drop( ' id°, axis-1, inplace~True)

Outputs of the analysis done using matplotlib.
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The training of the model is done and the epoch is 15.
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° sequence = wkcn&ur.uxtl_to_uqumcos((‘good'])
test = pad_sequences(sequence, maxlenemax_len)
pred = model2.predict(test)
if pred > 8.5:

peint('non abuse’)
else:
print(’abuse”)

non abuse

° ® print(pred)

model = kerss.models.load_model('rnn_model.hdfs”)

sequence = tokenizer.texts_to_sequences([ this data science article is the best ever’])
test = pad_sequences(sequence, maxlen=max_len)

pred -« model.predict(test)

if pred > 0.5:

oeintf " Positive)
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[25] sequence « tokenizer.texts_to_sequences{[ she is pretty’])
test « pad_sequences{sequence, maxlienssax_len)
pred - model2.predict(test)
if pred > 8.5:
print(‘non abuse’)
else:
print("abuse”)

non abuse

’ ° ® print(pred)

model = keras.models.load_model( 'rnn_model.hafs”)
sequence - tokenizer.texts_to_sequences{[ this data science article ls the bast ever’ ]‘
test = pad_sequences(sequence, maxlen=max_len)
pred = model.predict(test)
if pred > 0.5:
print(‘Positive’)
wlew-

“Good”, “She’s pretty” are appreciations, so the output is non-abuse.
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nodel « keras.models. load model(

“Fuck off dude”, “You’re stupid” are abusive, so the output is abuse
CONCLUSION AND FUTURE SCOPE

Abusive content detection problem is more complicated than it seems due to its unseemly, unstructured noisy data and
unpredictable context. The learning performance of neural networks attracts researchers to get the highest performing
output. Still there are some limitations to noisy data while training for a neural network. In our work, we have proposed
an approach that considers the assets of both machine learning and neural network to get the most optimum result. Our
approach performs with an F1 score of 93. In the future, this can be implemented on social media sites and block the
abusers. This way cyber crimes also can be reduced.
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