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Abstract: Research has shown that erratic human behaviour such as impaired driving, drugged driving, unbelted vehicle 

occupants, speeding and distraction are factors in as much as 94% of the crashes in roads today. Automation in this field 

has the potential to enormously reduce the incidence of such crashes. Higher levels of autonomy mean that the problem 

of driving is no longer one that human drivers have to solve. This is an area that has gained considerable traction in recent 

years. The modus operandi in the research community is to understand human driving behaviour and build autonomous 

units that can imitate this behaviour. This complicated issue domain calls for elaborate solutions that frequently involve 

numerous modules operating in unison. Each of these modules deals with a particular issue and transmits its solutions to 

the succeeding modules for processing. The vehicle's controller component, which carries out the predetermined 

behaviour, receives the ultimate outcome. Additionally, since everything must occur in real-time, prediction speed is just 

as crucial as underlying accuracy.  

This sophisticated modular design has been discovered to be inefficient, and deep learning has been found to be a good 

replacement. Deep learning involves automatically learning complex mathematical functions that characterise a specific 

domain. Understanding human drivers is a complex task. It involves emotions rather than logic, and these are all fuelled 

with reactions. It becomes very uncertain what the next action will be of the drivers or pedestrians nearby, so a system 

that can predict the actions of other road users can be very important for road safety. The car can observe, gather all the 

information it requires, and interpret it thanks to a 360-degree vision of its surroundings. Once the data is loaded into the 

learning system, it can think of every possible move those other drivers could make. It resembles a game in which the 

player must choose the best move from a limited number of options in order to beat the opposition. In this issue area, an 

autonomous unit's functions include localising the vehicle in its environment, enhancing perception, and actuating 

kinematic motions in self-driving cars. This guarantees both easy commuting and road safety. 

 

I. INTRODUCTION 

Self-driving technology is arguably the most contentious subject in the automotive sector right now, and several 

businesses are working to create features for production automobiles that would allow for autonomous driving. The goal 

of this technology competition is to increase vehicle efficiency and safety. More than 1 million people die on the roads 

each year as a result of automotive accidents, according to the World Health Organization, and the C2ES (Centre for 

Climate and Energy Solutions) estimates that automobiles account for nearly 60% of all energy used in transportation. 

These figures demonstrate that automobiles are a significant source of greenhouse gas emissions and serious casualties. 

Although attempts have been made to address these issues, none of the remedies have proven to be especially successful. 

Self-driving technology, however, has the power to solve all of these issues. Self-driving cars could save precious lives 

and protect the environment if they are operated more safely and effectively. The ability of autonomous vehicles (AVs) 

to provide driverless mobility to a wide variety of individuals from door to door has the potential to make a substantial 

impact on society. This new technology will have an impact on both those who can currently operate a vehicle and those 

who can't because of medical, psychological, or other issues. As experts predict that AVs can significantly cut travel time 

due to less traffic congestion, this new technology has the potential to help society in a variety of ways. Additionally, 

anyone travelling in the AV who doesn't drive can be productive while doing so because it is a much safer vehicle. The 

likelihood of an accident occurring will be lower in AVs than in vehicles driven by humans. Public transportation may 

become obsolete because AVs will be more affordable, safer due to a reduction in accidents, and more comfortable in 

terms of privacy and hygiene. In fact, autonomous vehicles might even be a way to maintain economic activity in the 

event of a global pandemic where public transportation is scarcely used any more while lowering the risk of viral 

transmission.  

Artificial neural networks, a class of algorithms inspired by the structure and operation of the brain, are the focus of the 

machine learning discipline known as deep learning. The machine equivalent of experience, it enables software to learn 

from data, but in order to be useful, it needs a tremendous amount of computing power. However, recent advancements 

in the field of GPU-based processing have made the use of Deep Neural Networks possible in a variety of fields. With 
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approximately 89% of accidents being due to human errors, autonomous vehicles will play a vital role to significantly 

reduce this number and ultimately to save human lives. Artificial Intelligence (AI) will play a crucial part in achieving 

this objective by enabling the task of explicitly establishing rules to create a system that is able to learn those rules. Older 

and disabled persons will have more mobility thanks to autonomous vehicles, which may also use up to 90% less energy 

overall. Additionally, decreased traffic congestion and accompanying air pollution will result. Thus, it is crucial to 

comprehend and replicate the capability of steering a vehicle using visual cues within an AI system. To the authors' 

knowledge, Pomerleau [1] completed the first work in this area in 1989 and used a multilayer perceptron (MLP). Since 

then, considerable parallelization in contemporary GPUs has allowed for a significant increase in computational capacity. 

combined with contemporary network topologies and recently developed ideas like Convolutional Neural Networks 

(CNN). These developments made it possible to develop systems that use CNN for frame-by-frame classification of 

driving scenarios to learn how to steer autonomous vehicles. 

II. LITERATURE SURVEY 

Autonomous cars have been a topic of increasing interest in recent years. More and more research is being done with a 

focus on developing hardware and software technologies for fully capable autonomous driving units requiring no human 

intervention. The following section briefly summarizes the salient points of some of the most prominent work in this 

domain. In [1], the authors proposed a complete software stack for autonomous driving based on a neural network system 

that could automatically determine which elements in the road images most influence steering decisions. Road tests 

demonstrated that the model proposed can successfully perform lane keeping in a wide variety of driving conditions, 

regardless of whether lane markings are present or not. The model learns all the obvious features and the more subtle 

ones that would be hard to anticipate by human engineers. The exact applicability of deep learning in this domain has 

been studied by the authors in [2] as they highlight the power of deep learning architectures in terms of reliability and 

efficient real-time performance. They also overviewed state-of-the-art strategies for safe autonomous driving, with their 

major achievements and limitations. Furthermore, this survey includes measurement, analysis, and execution, with a focus 

on road, lane, vehicle, pedestrian & drowsiness detection, collision avoidance, and traffic sign detection through sensing 

and vision-based deep learning methods. For the purposes of testing deep neural networks for autonomous driving in a 

safe emulator environment, the authors in [3] collected artificial data and simulated the process of moving a car using the 

emulator built by the Udacity team. Furthermore, it aimed to check if this approach is effective for rapid data collection, 

modelling, training and testing. In [4], the authors show that a convolutional network can be designed which uses the real 

driving data obtained through the vehicle’s camera and other sensors. The response of the driver during driving is recorded 

in different situations, by converting the real driver’s driving video to images and obstacle detection is carried out with 

the best accuracy and speed using the ‘Yolo’ algorithm. This way, the network learns the response of the driver to 

obstacles in different locations. As is the case in any machine learning model, some more so than others, Deep Learning 

models are susceptible to adversarial attacks during training. In [5], the authors conducted research into the safety 

implications of these attacks in the self-driving domain that have been shown to be of vital interest. The proposed system 

in [6] is attempting to find a function that directly maps raw input images to a predicted steering angle as output using a 

deep neural network. The CNN model parameters were trained by using data collected from a vehicle platform built with 

a 1/10 scale RC car, Raspberry Pi 3 Model B computer and front-facing camera. The training data were road images 

paired with the time-synchronized steering angle generated by manually driving. The experimental results demonstrate 

the effectiveness and robustness of the autopilot model in lane keeping tasks. In [7], it was shown that deep neural 

networks have the capability to learn highly nonlinear functions. Furthermore, they don’t require explicit hand-generated 

algorithms for object detection, lane detection and path planning. Testing of networks is a crucial aspect of the model 

building process as it ensures reliability and robustness. Offline and online forms of testing in the context of autonomous 

driving systems were studied in [8]. The authors concluded that while online testing is a highly optimal manner of testing, 

constructing vivid and accurate simulations of the environment is a difficult task. 

III. DATA PREPARATION 

For the purposes of testing, the CarND Udacity Simulator, built in Unity, was utilized. With this simulator, driving an 

automobile may be practiced in both manual and autonomous modes. The software is quite adaptable and enables card 

customization. In manual mode, a few distinct driving styles were simulated over the course of an hour.  

Although much effort was made to avoid bumping into things and deviating off the track, it is still possible to model 

styles that in the actual world would only have limited applicability. After the ride was recorded and processed, a log was 

created with several modelling factors, the most important of which are simulated views from the left, right, and centre 

cameras as well as the steering angle.  
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Fig. 1. Histogram depicting distribution of steering angles in Track-2 

 

Roughly 30000 training examples were collected consisting of optimal driving behaviour in the terrain offered by the 

simulator (track-1). A further 15000 were collected consisting of recovery behaviour in the more complex track-2. This 

was done for the ‘Transfer Learning’ process. All data collected is of supervised type with the state of the vehicle (as 

noted by the corresponding images at that time-step) and the steering angle recorded at that time-step. This makes it 

possible to perform the recommended 70:30 training-validation split. The use of recovery data permitted the development 

of significantly better features with integrated safety procedures. The model gains knowledge of the problems of its 

previous iteration and becomes more adept at navigating sweeping turns. 

 

                         
Fig. 2. Tracks 1,2 & 3 

 

 

IV.  PIPELINE 

The state of the vehicle is monitored by way of its image vectors and its speed. Based on the current state of the vehicle 

and the learned policy, the appropriate control is passed to the controller to execute on behalf of the planning mechanism. 

In the simulator, this translates to deploying the model and passing on the appropriate actuator control values through an 

opened socket connection so that the car is driven in that environment. The figure below summarizes the salient features 

of this approach. More precisely, the state of the car is recorded as the combination of its current speed and 3 images 

captured at every time-step: front-facing, left-facing and right-facing. 

 

Fig. 3. Internal Design of the system 

 

Training the network as illustrated in the architecture section is done by posing the problem as one of supervised learning. 

The model is made to learn the optimal driving policy (steering angle) by continuously improving on its errors. This 

process is known as backpropagation. For the purpose of training, random shifts and transformations are applied on the 
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images obtained in the dataset generation process. This process is known as image augmentation. Optimal predictions are 

then made on the new terrain and passed on to the vehicle on the basis of the learned policy. In the case of the simulator, 

the controls are passed via socket to execute on the car. 

A. Model Architecture 

The suggested method makes use of the Nvidia-popularized "Pilot-net" architecture. This is an example of a 

"Convolutional Neural Network" (or CNN), where various characteristics of an input image (describing the condition of 

the autonomous vehicle) are given "importance," as seen in the illustration below (represented by learnable weights and 

biases).  

The Visual Cortex served as inspiration for CNN's architecture, which is similar to the connectivity network of neurons 

in the human brain. Only in this constrained area of the visual field, known as the Receptive Field, do individual neurons 

react to stimuli. These fields are grouped together and cover the whole visual field. 

 

 
Fig. 4. ‘Pilotnet’ - Architecture Diagram 

The model consists of the input layer (3D image vectors in the RGB space), a normalisation layer that makes the vector 

values more manageable, five convolutional layers that work with internal kernel filters which capture the salient regions 

of interest in the image and 3 dense layers that are used to help the model train via a method known as ‘Backpropagation’ 

(iterative gradient descent) followed by the output node.   

B. Methodology 

The figure below is a good illustration of the approach used in this project. As shown, the data (in the form of images) is 

collected and recorded in a folder with its corresponding log file (in the ‘.csv’ format). These files are then combined to 

produce the model (as described in the low-level design section). The model is saved in the standard ‘.h5’ format and 

reloaded later to make the predictions. The latter are passed into the simulator by way of opened socket connections and 

the car is driven based on these predictions. 
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Fig. 5. Steps involved in training and deployment of the model in simulator 

The architecture described, when deployed in track-1 of the Udacity simulator, generalizes quite well from the trained 

model on track-2. However, the model when deployed on track-2 performs quite poorly owing to the complex manoeuvres 

that have to be taken. In addition, the track is full of considerable inclines, declines and poor lighting.   

The following is proposed to increase the accuracy of the final model: 

1. Proportional Integral Derivative (or PID) controller for speed manipulation 

2. Recovery data for specific badly performing manoeuvres 

3. Transfer Learning using a pre-trained model from an older track with similar features (sharp changes in direction, 

inclines and declines)  

PID stands for Proportional-Integral-Derivative in a PID controller. The best possible combination of these three elements 

results in the production of a control signal. The "proportional" component makes the vehicle react in a way that is 

opposite of and proportional to the inaccuracy in relation to the intended variable (in this case, speed). Instead of aiming 

to maintain a steady speed, the car therefore accelerates on an ascent and slows down on a downhill. When adjusting the 

speed, the "differential" component combats the P component's propensity to ring and overshoot. A bias in the P 

component is offset by the "integral" component so that the controller can reach the desired speed. 

The incorporation of recovery data facilitated learning of much improved features that have built in safety mechanisms. 

The model learns to avoid the pitfalls of its previous iteration and drives more effectively around sharp bends. 

 

Fig. 6. Histogram depicting distribution of recovery steering angles in Track-2 
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The basic premise of Transfer Learning is as follows: to utilize a different model with pre-trained weights for a similar 

but more general dataset and use it as a starting point for training. The model used for transfer learning is one that has 

been trained extensively on Track-3 shown in the previous section. The learned features are ‘transferred’ to the new 

model. Deploying this new model in the simulator shows considerable improvement over the earlier model as the vehicle 

is able to navigate the sharp bends, inclines and declines of Track-2. 

 

Fig. 7. Process of Transfer Learning 

C. Testing and simulation 

The problem domain in question is an example of a regression-based predictive domain. Here the objective is to predict 

numeric values like steering control and throttle and brake of the vehicle. It is different from classification-based 

predictive domain that involves predicting a class label. Therefore, unlike in classification, prediction accuracy is not a 

good or even relevant metric to measure the performance of the model. The skill or performance of a regression model is 

reported as an error in those predictions that measure how close they were to the expected values. Among error metrics, 

the ‘mean squared error’ (or MSE) is the most popular one. It is calculated as the mean or average of the squared 

differences between predicted and expected target values in a dataset. The system was tested by monitoring the training 

loss (predicted steering angles vs actual steering angles) and the validation loss (by running the trained model against the 

test set generated by the splitting process). The following plot was made for the loss tracked over the training and testing 

process: 

 

Fig. 8. Training and Validation (testing) loss – progression per epoch 

 

V. CONCLUSION 

It has been shown that Deep Learning is indeed a viable approach in developing autonomous driving units. This approach 

is simpler, while simultaneously providing good accuracy when trained with a reasonably sufficient amount of data. The 

incorporation of recovery data facilitated learning of much improved features that have built in safety mechanisms. The 

model learns to avoid the pitfalls of its previous iteration and drives more effectively around sharp bends.  

 

VI.      RESULTS 

The following graph illustrates the distribution of actual predictions made for a batch of input images and their 

corresponding expected values.  

 

https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

ISO 3297:2007 CertifiedImpact Factor 7.39Vol. 11, Issue 7, July 2022 

DOI:  10.17148/IJARCCE.2022.11789 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 478 

As can be seen from the illustration, the distributions are similar albeit with minor variations.  

 
Fig. 9. Final model – Predicted values vs Expected values 

 

The above posits Deep Learning as an effective tool in analysing input images for relevant features and making predictions 

regarding actuator controls on the basis of these learned features. However, the model is still quite simplistic to be directly 

deployed in actual roads. Testing must be carried out comprehensively to ensure that the vehicle understands recovery 

behaviour and proper road etiquette. Indeed, these deep learned features must be supplanted with further complexity such 

as planned routes and emergency safety mechanisms before the vehicle can be deployed in an active terrain. This Deep 

Learning approach can be contrasted with the ‘Hierarchical approach’ with many interacting modules as shown below. 

The latter is a complex model with immense overhead in terms of computation and feedback. Research is found to be 

more partial towards Deep Learning based architectures such as the ‘Pilotnet’ implemented in this project, because of 

their simplicity and understandability. Nevertheless, if Level-5 autonomy in driving is to be achieved, both approaches 

will have to be exhaustively studied and iteratively improved for the foreseeable future. 
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