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Abstract: Blockchain is one of the most advanced technologies that play an important role in many different fields such 

as healthcare, capital markets and logistics. Among the many existing blockchain platforms, the integration of the Turing-

complete virtual programming engine with the blockchain makes the Ethereum blockchain one of the most paramount 

infrastructures for various types of applications, including but not limited to cryptocurrency trading, smart contracts, 

decentralised finance and metaverse. Nevertheless, Ethereum like many other computing systems, has fallen victim to 

vector attacks that exploit its vulnerabilities and have catastrophic consequences. Out of the need to protect Ethereum 

from such attacks, this paper proposes a novel deep learning model based on convolutional neural networks. The proposed 

model treats the transaction, which is the atomic entity in this platform, as a stochastic time series and then develops two 

specific task layers that are compatible with the traditional CNN architecture. The first layer is responsible for detecting 

the seasonal characteristics of the transactions, while the second layer is used for detecting the trend. These two layers 

are integrated with the traditional architecture to form a powerful temporal CNN architecture that can classify different 

types of attacks. The performance of the proposed model was evaluated from a different perspective using real 

transactions collected from the Ethereum main-net network. The results of the comprehensive evaluations show the 

ability of the proposed model to perfectly identify malicious transactions in the Ethereum blockchain. 
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I. INTRODUCTION 

 

A blockchain can be abstracted as a chronologically linked list of cryptographically secured elements called blocks 

that are replicated on a collection of devices connected via a peer-to-peer network [1]. The content of the blocks varies 

depending on the purpose the blockchain serves: in cryptocurrency-based blockchains such as Bitcoin [2] and Ethereum 

[3], the block contains transactions that take place between parties, while in smart contract-based blockchains such as 

Ethereum and Tezos[4], the blocks stores pieces of code, while in non-fungible token (NFT) based blockchains such as 

Ethereum, the block content is metadata of the intellectual property of the assets. This great diversity, combined with the 

lack of need for a trusted third party, immutability to change, transparency and a high degree of fault tolerance, facilitates 

the use of blockchain in various sectors, including healthcare, capital markets and logistics[1,5]. 

Ethereum is one of the most prominent blockchain platforms, that was devised to offer more than just a trading 

platform for cryptocurrencies. Specifically, Ethereum equips the traditional blockchain architecture with a Turing-

complete programming virtual machine dubbed Ethereum Virtual Machine (EVM) that can store and execute pieces of 

code. This in turn ushers in a new era of applications, including smart contracts, Decentralized autonomous applications 

(DAOs), Decentralized Finance (DeFi) and Metaverse[1,2,5]. Ethereum analytics show its prominence; according to[5-

6], there are around 120 million Ethereum tokens in circulation, with a market capitalisation of $123.90 billion. In the 

first quarter of this year, 105.58 million transactions were made, with an average growth rate of 308.0%, while the total 

number of smart contracts created in the same period was 1.45 million, an increase of 24.7% over the number of smart 

contracts created in the fourth quarter of 2021. As for the number of users, several works report that the average daily 

number of active addresses on this blockchain is 329,900, while the number of active traders of Ethereum NFTs reached 

354,000. The market analysis of DAO shows the dominance of Ethereum compared to its other platforms; about $8.2 

billion out of $9.5 billion held in DAO Treasuries is based on Ethereum. Inspired by these readings this paper uses 

Ethereum as an example for the proposed algorithm. 

One of the important security countermeasures defined by the legacy version of Ethereum is to associate each 

transaction (a transaction is an atomic entity of a block that requests a change to the Ethereum state machine) with a fee 

called a gas. In principle, this fee is defined based on the computational complexity of the codes contained in the 

transaction and is paid by the account from which the transaction originates to the miners (accounts with hash power that 

can append the new blocks to the Ethereum chain). From a theoretical perspective, the proportional relationships between 

the computational complexity of transactions and monetary costs make sending computationally intensive operations 

(such as hostile infinite loops) extraordinarily expensive, which in turn reduces the possibility of triggering DoS attacks. 
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Moreover, paying fees encourages miners to include new blocks as quickly as possible, not only accelerates blockchain 

convergence but also mitigates sybil attacks.  

However, it has been evident from several incidents that the simple transaction fee scheme defined in the legacy 

version is incapable to achieve the desired goals. Omnipresent sandwich attack [7] is one such attack that exploits the 

relationships between the gasPrice and the transaction order to sandwich the victim transaction be-tween front-running 

and back-running fake transactions that aim to seize the trading opportunities. According to [8], at least 64217 ETHs 

worth USD 189,311,716 were syphoned from Uniswap, one of the largest decentralized exchange platforms (DEX), 

between May 2020 and May 2021. The impact of the attack becomes even more serious when dishonest miners are 

involved in such attacks. Basically, dishonest miners attempt to make illegal profits by scanning the outstanding 

transactions and then changing the order and/or inclusion of other transactions by inserting self-profitable transactions 

with higher gasPrice. The term Maximum Extractable Value (MEV) was coined to measure the amount of profit made 

in this way. The value of MEV since 1 January 2020 has been estimated at $664,003,762[9], while [10] shows that more 

than 90% of the total amount of MEV is spent in gas fees. Worth still, some work shows that miners can tamper the 

blockchain by conducting a hard fork to make more profit, as in the case of the fee-based forking attack[11] , or rewrite 

the blockchain history to steal funds from previous smart contracts, as in the Time Bandit attack[] . Another class of 

attack vectors, in which miners collude together or are even bribed by other users to work to their own advantage, has 

been described in some papers [12]. 

To defend against this type of attack, there is a need to develop a robust model that can identify the malicious 

transactions as soon as adversaries submit them and before they are validated and mined. However, developing such a 

model is a multi-faceted challenge. One of these challenges is the large volume of transactions submitted to the Ethereum 

main-net; according to [5], about 1.048 million transactions were submitted every day this year. The second challenging 

aspect is related to the stochastic nature of transactions and their high temporal correlation. In fact, most of the most 

severe attacks, such as sandwich attacks and time bandit attacks, are mainly based on manipulating the time at which 

transactions are executed. The last aspect to consider when developing a predictive model for malicious transactions is 

the rapid evolution of the techniques used to carry out such attacks; some examples are sniper bots that scan the 

transactions, DUSTBot that floods the blockchain with fraudulent transactions, or crypto-jacking bots that compromise 

victims' devices and use them to mine transactions in favour of the adversary. 

Motivated by the importance of identifying malicious transactions in ensuring the stability and security of blockchain 

networks; this work uses an artificial neural network (ANN) to develop deep learning model that can predict malicious 

transactions. Amongst the widely used ANN architectures that appear in the open literature, such as MultiLayer 

Perception (MLPs), Recurrent Neural Networks (RNNs), Graph Neural Networks and Convolutional Neural Networks 

(CNNs)[13], the CNNs architecture is used in this work to develop the proposed model. This choice is justified in two 

ways: firstly, by the ability of CNNs to automatically extract the patterns required for predictions from the raw input data 

(i.e., the transaction stream) without the need to a priori match the dimension of the CNN input layer to the dimension of 

the data, as is the case with other ANN architectures such as MLP. Specifically, the foremost layer in a CNN, i.e. the 

convolutional layer, applies a filters bank of predefined dimensions to the inputs to determine their common 

distinguishing features. Moreover, in CNNs, multiple convolutional layers can be superimposed to intensify feature 

extraction at deeper levels. This is of tremendous importance for the development of an effective malicious transaction 

detector, as it facilitates the detection of temporal features of transactions (e.g. seasonality, trends and/or stationarity) 

under different temporal variations without the need to recreate a special feature extractor for each type of transaction or 

to use a preprocessing mechanism. Albeit RNNs can also function as feature extractors and are widely used in the field 

of temporal prediction, the sparse number of connections of the CNN is the second reason for choosing the CNN in this 

study. The sparse connections of the CNN result from the ability of each layer to concisely pass on its results to the next 

layer using smaller parameter spaces. That is, the convolutional layer summarises the most important features found in 

the input into a smaller dimension known as the feature map; similarly, the next layer, known as the pooling layer, further 

summarises the feature map before passing it on to the subsequent output layer. On the other hand, the core concept on 

which RNNs are built is to recurrent the results of one layer into other layers so that the temporal relationships of the 

input can be revealed sequentially. This in turn increases the parameter spaces relative to the depth of the network and 

introduces the possibility of the vanishing gradient problem, making the model impractical for large data sets, as is the 

case with Ethereum transactions. However, considering the fact that the traditional CNN architecture was designed to 

process image data and not time-series data, it is clear that this architecture needs to be fundamentally changed in order 

to take full advantage of this architecture for the development of the malicious-transaction identification model. The main 

contribution of this work can be summarised as follows:  

 

1- Developing a novel CNN-based architecture that suits the temporal characteristics of Ethereum transactions. The 

main assumption in developing these layers is that transactions are stochastic and therefore the best technique for 

predicting their future behaviour is to decompose them into elementary components. Inspired by the principles of 

time series decomposition, which shows that a time series can be decomposed into two main components: seasonal 
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and trends, two different layers are proposed: (i) the seasonal-detect layer, whose main responsibility is to detect 

the fractal parts of the time at which malicious transactions occurred. (ii) the trend-discovering layer, which is 

used to reveal the bias that dominates the underlying process by which the transactions originated. All these layers 

are built according to the principles of the CNN architecture, which in turn allows them to interact and interleave 

to form deep networks. 

2- Conducting comprehensive evaluations of the proposed model from different angles using real 

transactions collected on the Ethereum main-net and then validating them against various datasets published in 

peer works. These evaluations are measured using standard statistical metrics such as True Positive, False Positive, 

True Negative False Negative, Accuracy, Recall and F1-Score. The results of these evaluations show that our 

proposal is able to predict malicious transactions with a high level of accuracy. 

 

The reminder of this paper is organised as follows: Section 2 reviews related works that have appeared in the open 

literature, and Section 3 describes the underlying transaction fees that is used in the Ethereum block chain as well as the 

structure of the datasets used in this study. The detailed structures of the proposed model are described in Section 3, while 

the results and discussion are presented in Section 4 and Section 5 concludes the work. 

 

II. RELATED WORKS 

 

The work presented in [14] uses a rule-based heuristic approach to identify the following types of frontrunning 

attacks: Displacement, Insertions and Suppression. In this work, the displacement attack is assumed to occur when two 

or more transactions with similar contents but different gas price coincide. The insertion at-tack takes place when a token-

transferring transaction is sandwiched between two trans-actions whose aim is to trade approximately the same amount 

of tokens but whose gas prices are higher and lower than the gas price of that transaction respectively. Finally, it is 

assumed that the suppression forntrunning attack happens when the same account initiates a large number of highly 

computationally intensive transactions that are spread across multiple blocks. This work, uses a combination of Bloom 

and linear filters as a means to apply these rules to a dataset containing 11 thousand blocks with about 1 billion 

transactions from a five-year period starting in 2015. The results reported by the authors show that their model is able to 

identify about 200,00 incidents with more than USD 18.41 million in profit for the attackers, of which USD 300,000 goes 

to the miners in the form of transaction fees. In addition, this work points out that due to the need to maintain the 

traceability of the proposed model, some rules describing the attacks are relaxed, which in turn leads to some cases being 

overlooked. 

Motived by the benefits that can be reaped from employing a data-driven approach to detect frontrunning attacks; the 

work appeared in [15] proposes a binary classifier based on artificial neural networks. This model uses the Long Short-

Term Memory (LSTM) architecture to predict the gas price of the nor-mal transaction based on the gas price of the 

previous 12 normal transactions. The output of this architecture, along with another 6 statistical features describing the 

historical characteristics of the gas prices, are fed into the multilayer perceptron (MLP) architecture, from which the class 

of the transaction is obtained. In order to demonstrate the suitability of the proposed model for the real environment, the 

weighting matrices of this model are extracted and then used to develop the so-called attack detector smart contract. The 

accuracy of the proposed model was evaluated by measuring its ability to classify different types of attacks presented in 

the dataset developed by [14]. The results of these evaluations show that the displacement, insertion and suppression 

front-running attacks can be identified with an overall accuracy of 88.85, 89.08 and 85.53, respectively. It also shows 

that the time taken to invoke the attack detector smart contract is about 3 seconds. However, the main drawback of this 

model is that it is a supervised learning approach, which means that it can only detect the types of attacks whose behaviour 

has been previously identified. 

The work presented in [16] proposes an unsupervised deep learning model to detect anomalous transactions on the 

Ethereum blockchain. The proposed model uses a sequence-to-sequence re-current autoencoder (RAE) architecture, in 

which the encoder network is trained to capture the intrinsic patterns of normal traffic and then compress them into a 

lower dimension space. The output of the encoder is then fed into the decoder network, which attempts to generate the 

full resolution samples from the compressed patterns. The anomaly score is then assigned by comparing the actual input 

with its regenerated version. The proposed model uses 32 Long Short Term Memory (LSTM) cells to perform the 

encoding and de-coding processes, and the median of the regenerated errors as the threshold for the anomaly. In this 

work, the transactions and gas values of the blocks are used as the main input for the encoder network. These features 

are extracted from the Ethereum Classic Block-chain (ETC), which spans a period of four years from 2015. The authors 

of this work later improved this approach by adopting the sequence-to-sequence ensemble with snapshot training scheme 

in the lieu of the conventional autoencoder architecture[17]. This improvement was justified by the need for a more 

flexible architecture that can codify the concept drift and progressively in its learnable parameters. The results reported 

in the two papers show that they are able to predict the DAO[18] and 51% attacks that occurred in 2016 and 2019, 
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respectively. However, no quantitative measure of performance in terms of standard statistical metrics is provided in 

these papers. 

Using Graph-based Deep Learning (GDL) models to predict anomalies in the Ethereum network is one of the research 

directions that has been appeared in the open literature. Most of these works adopt the account-centric representation, in 

which Ethereum's accounts are abstracted as vertices of a attributed graph, while edges are used to de-note transactions. 

Depending on the purpose of the model, these edges can be weighted by the volume or frequency of transactions, or even 

a combination of both. Once this graph is constructed and populated with the raw data, it is processed using graph 

embedding algorithm whose main function is to map each vertex into a low-dimensional space in such a way that makes 

similar vertices have relevant mappings. These mappings are then manipulated by a deep learning algorithm to derive 

different variants of the original graph. These variants form the baseline of the normal operational regions and are 

therefore used to assess anomalies. The model presented in [19] is one such work that was developed based on the above 

approach. It uses the One Class Graph Neural Network as the graph embedding algorithm and Graph Convolutional 

Networks to generate the variants of the inputted graph. The dataset used to validate the proposed model was obtained 

by extracting all transactions that took place over the Ethereum Mainnet network from 2016 to 2017. These records are 

then processed manually to separate the transactions that cause or are affected by attacks from the rest using 34 features, 

out of 7.3 million transactions 50,422 transactions are used to assess the model. The performance readings reported by 

the authors underline the advantages of their proposal over the One class SVM (OCSVM) and Isolation Forest (IForest) 

models, however the highest accuracy reading was given as 90.75. The model of [20] follows the same approach as [19] 

to detect the phishing nodes. This model uses message passing as a graph embedding algorithm and uses a dataset with 

100,000 la-belled accounts and 250,000 transactions to train and test the model. The results reported in this paper show 

the model's ability to detect phishing nodes with an overall precision of 0.935, a recall of 0.904 and an F-score of 0.919. 

However, the authors of this work point out some limitations, such as the inability of the static graph model to thoroughly 

account for the dynamic nature of transactions and the need to use a multi-attribute graph to improve prediction 

performance. 

 

III.  OVERVIEW OF ETHEREUM TRANSACTION FEES MECHANISM AND DATASET 
 

The idea of blockchain is dated back to 1991 when authors of [21] were looking for as a new technology by which 
distributed documents can be handled securely and identified chronologically. They proposed to use a one-way hash 
function to morph the original documents into a cryptographic format so that the content of the documents remains secure, 
and a trusted time-stamping service to certify the linked records so that the creation of documents can be tracked 
historically. A year later, the authors of [22] propose using Merkle trees as a means of grouping multiple documents into 
a block and linking them in a chain-like fashion. In this way, a new block can contain a history of the entire chain. 

In the last decade, a proposal to use the blockchain concept as an infrastructure for building distributed monetary 
systems has appeared in [2]. This work introduces a new form of currency called Bitcoin, which can be coined and traded 
without the intervention of a central authority. Bitcoin assures transparency as every user of this system keeps a copy of 
all transactions that have taken place on the Bitcoin blockchain and synchronises it whenever a new change. Furthermore, 
the validity of the data is enforced by a mechanism that allows the parties to agree and verify the content of the blocks 
(called consensus) before they are registered on the blockchain. The integrity of transactions is ensured by the fact that it 
is almost impossible to change the content of a block once it has been attached to the blockchain. In addition, Bitcoin 
uses various cryptographic primitives such as asymmetric hash functions, symmetric cryptography, digital signatures and 
public key cryptography to ensure confidentiality and authentication. Besides the aforementioned, Bitcoin accounts for 
the stability and attractiveness of its system by offering an incentive system whereby participants who contribute to the 
expansion of the blockchain (so-called miners) receive financial compensation for the use of their computing resources. 

The success of Bitcoin in decentralising money and payment spark attention towards the enormous benefits that can 
be reaped from adopting blockchain in various sectors. As a result, countless new blockchain platforms have been 
introduced, some of which aim to improve various aspects of Bitcoin, such as Monero, which was developed to allow 
users to hide their private transactions, or Dash, which aims to minimise transaction costs. Other innovations aimed to 
add further functionalities to Bitcoin. Ethereum is the first blockchain platform that aims to allow users to develop 
decentralised applications (DApps) over blockchain. Ethereum achieves this goal by equipping its blockchain with the 
Ethereum Virtual Machine (EVM), which is able to store, validate and execute programming tasks, just as Bitcoin does 
with monetary transactions. Some references interpret Ethereum as the second generation of blockchain, i.e. blockchain 
version 2, while others see it as a complete ecosystem through which both tangible and intangible assets can be 
represented as smart properties. 

Ethereum's founder has provided a comprehensive formal description of its internal operations and key concepts 
underlying it in the Yellow Paper[3] and several monographs have devoted their entire contents to describing its internal 
structures and how to develop applications on it. In the remaining of this section, an overview of for the mechanism that 
are most relevant to this work is provided and then the dataset used in this study is described.  
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A. Overview of Ethereum Transaction Fees Mechanism  
A transaction is the atomic data structure of the Ethereum blockchain which is a sequence of instructions that can be 

executed by the EVM, such as depositing/crediting ETH (the Ethereum cryptocurrency) to a beneficiary or 
deploying/calling a code (smart contract). Each transaction is identified by several fields, including, among others: (i) a 
counter for the number of transactions carried out by the user, (ii) the recipient, which is used to identify the address of 
the account for which the transaction is intended. It is worth noting that Ethereum considers the reusability of smart 
contract codes by regarding each smart contract as an account, called a contract account(CA) and assigning it a unique 
address in a different way than accounts managed by human and controlled by private keys ,called External Owned 
Accounts (EOA) obtain their addresses[22]. (iii) Gas information, which specifies the fees required to execute instructions 
on the EVM (more on this shortly). (iv) The value field contains the amount the sender wishes to pay in this transaction, 
hence if this transaction is addressed to a CA, the value of this field is set to zero. (v) The data field contains the 
information required for the execution of the smart contract and 0 if the transaction is not destined to CA. Once a 
transaction is initialised, it is signed with the originator's private key and then broadcasted to the peer nodes. Ethereum 
specifies a special protocol called Recursive Length Prefix (RLP) to ensure compact encoding and consistent serialisation 
of transactions across the network. When this transaction is received by a peer nodes, its verifies it from various aspects, 
such as whether the creator's signature is valid, whether the transaction size is less than 32 KB, which serves to mitigate 
DoS attacks, and whether the creator has sufficient fees to use the EVM. If the transaction meets these intrinsic 
verification criteria, it is propagated further to other nodes and when transaction is received by a miner, it is added to the 
node's mempool. This making the transaction publicly visible even though it is not yet attached to the blockchain.  

Before describing the mechanism by which the transaction is added to the blockchain (the so-called mining 
mechanism), it is important to introduce the concept of gas. Gas is a dimensionless metric that quantifies the 
computational effort imposed on EVM to execute a given operation. The yellow page specifies the gas requirements for 
all possible Ethereum-defined low-level operations (i.e., opcodes) in such a way that reflects their complexity. For 
example, the integer addition costs 3 gas units, while modulo addition costs 8 gas units. It is worth noting that opcodes 
prices play an important role in securing Ethereum. Therefore, they are constantly reviewed and updated whenever a 
security vulnerability is discovered; [23] provides an updated list of opcodes and their corresponding gas prices. An 
example of exploiting the underpricing of some opcodes to carry out an attack was in 2016, when the creation of the 
blockchain was reduced by 2-3 times and causes hard-fork because EXTCODESIZE opcode (the code that reads the 
information of the contracts from storage) was repeatedly called. Subsequently, the Ethereum Improvement Proposal-
150 (EIP) was ratified to increase the price of EXTCODESIZE by 35 times to 700 gas units. Theoretically, the total 
amount of gas units required to execute a given transaction can be calculated as the sum of the gas units of its opcodes. 
While this is true for some classes of simple transactions (e.g., moving some ETHs between accounts or performing some 
arithmetic operations), applying this calculation approach to more sophisticated transactions (e.g., retrieving EVM 
environmental information or deploying a new smart contract) does not always result in accurate gas units. Several papers 
investigating gas characteristics of transactions e.g.,[24] have suggested some reasons for this inaccuracy such as 
throwing an undecidable halting exception during the execution of some opcodes, the discrepancy amongst miners' EVM 
versions and the changes in blockchain states during the execution of transactions. Interestingly, Ethereum attempts to 
mitigate the negative impact of miscomputation of gas units by letting a transactor to set the maximum amount of gas 
units they are willing to spend to execute their transaction in the gasLimit field.   

In the legacy version of Ethereum, i.e., before the enforcement of EIP-1599, the originator of the transaction must 
also specify the price she/he is willing to pay for each unit of gas in the gasPrice field of the corresponding transaction. 
The value of gasPrice is defined in gwei, where 1 𝑔𝑤𝑒𝑖 = 10−9 𝐸𝑇𝐻. Hence, multiplying gasPrice by gasLimit yields 
the amount of gewi that the creator of a transaction is willing to pay to execute thier transaction. The importance of setting 
an appropriate gas price stems from the fact that Ethereum's incentive mechanism relies heavily on this value. More 
specifically, the reward that miners receive for including and mining a transaction in the next block is the sum of the gas 
units used to execute each opcode, charged at the gasPrice (also called the transaction fee). Although Ethereum allows 
each miner to set a lower limit on the value of gasPrice, beyond/below which a received transaction can be ignored, there 
is no constraint on the upper limit of gasPrice. This approach sounds good in that it allows a transactor to prioritise its 
transactions by setting a high gasPrice for transactions that are subject to fierce competition (e.g. participating in a 
Metaverse property auction or deploying new NFTs during network congestion). However, the absence of a cap on 
gasPrice has led to several monetary losses and attacks. Omnipresent sandwich attack[25] is one such attack that exploits 
the relationships between the gasPrice and the transaction order to sandwich the victim transaction between front-running 
and back-running fake transactions that works to seize the trading opportunities by manipulating of the victim 
transactions' execution orders.  

It is worth to note that since the London Hard fork an improvement prosal EIP-1599 was enacted in August 2021. 
This proposal not only changes the way a transaction fee is specified but also the beneficiaries to whom it goes. The new 
transaction fee is divided into two parts: Base Fee per gas unit (𝑏𝑎𝑠𝑒𝐹𝑒𝑒𝑃𝑒𝑟𝐺𝑎𝑠) and Tip Fee per gas unit 
(𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐹𝑒𝑒𝑃𝑒𝑟𝐺𝑎𝑠). The former is defined as the minimum price per unit of gas that is required to be paid for each 
transaction to be included in the new block. The base fee is controlled by the protocol itself to reflect network usage, and 
it is burnt by sending it to a verifiably un-spendable address. The tip, on the other hand, is set by the originators of 
transactions to control the execution priority of their transactions and paid to the miner. In addition, EIP-1599 allows the 
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user to specify the maximum amount of fees per unit of gas that they are willing to pay (𝑚𝑎𝑥𝐹𝑒𝑒𝑃𝑒𝑟𝐺𝑎𝑠). This value 
serves as the fee cap for the transaction. 

Another radical change introduced by EIP-1599 is the use of a variable block size instead of the fixed block size used 
in the legacy version. More specifically, prior to EIP-1599, the Ethereum protocol required that each block not exceed a 
certain amount of gas units (𝐵𝑙𝑜𝑐𝑘𝑀𝑎𝑥). This was 12.5M+0.0976% before the Berlin Hard Fork in April 2021 and 15M 
gas units thereafter. The main purpose of setting 𝐵𝑙𝑜𝑐𝑘𝑀𝑎𝑥 was to prevent the network from being overloaded with very 
computationally intensive blocks that could otherwise increase propagation delay. However, when transaction demand is 
high, imposing such limit can delay the inclusion of transactions to the block, impoverish the user experience and increase 
the possibility of bribery attacks. The EIP-1599 replaces this static threshold with the definition of a dynamic target value 
(𝐵𝑙𝑜𝑐𝑘𝑇𝑎𝑟𝑔𝑒𝑡, currently set at 15 million gas units) and allows the value of BlockTarget to be increased or decreased it 
in consistency with the number of outstanding transactions, provided that the maximum amount of gas units in each block 
(𝐵𝑙𝑜𝑐𝑘𝑀𝑎𝑥) is less than or equal to 2*𝐵𝑙𝑜𝑐𝑘𝑇𝑎𝑟𝑔𝑒𝑡. 

Based on the above the above, the base fees of a block can be computed as: 
 

𝐵𝐹𝑡 ≔ 𝐵𝐹𝑡−1 (1 +
1

8
 
𝑆𝑡−1 − 𝑆𝑡𝑎𝑟𝑔𝑒𝑡

𝑆𝑡𝑎𝑟𝑔𝑒𝑡

) (1)  

 
where 𝐵𝐹𝑡 is base fee of the block at time instance t, 𝐵𝐹𝑡−1 is base fee of the predecessor block, 𝑆𝑡𝑎𝑟𝑔𝑒𝑡  and 𝑆𝑡−1 are 

the size of the target and predecessor blocks respectively. The main principle sought by the equation (1) is to stabilise the 
fluctuations of the base fee in a suitable ratio (in this case, one-eighth). For example, if there are lots of outstanding 
transaction then the 𝑆𝑡−1 will be set to 2 × 𝑆𝑡𝑎𝑟𝑔𝑒𝑡  which in turn leads to increase the base fee of the new block a factor 

of 12.5%, on the other hand, under idle demand, i.e. if st-1 is 0, then the base fee will be reduced by the same percentage. 
Table I summarizes the main differences between the gas-related parameters before and after enforcing EIP-1599.  

 
TABLE I   Transactions Fees parameters before and after EIP-1599 

Parameters Before EIP-1559 After EIP-1559 

Mechanism First-price auction posted-price mechanism 

Block size policy fixed-sized blocks Variable sized blocks. 

𝐵𝑙𝑜𝑐𝑘𝑇𝑎𝑟𝑔𝑒𝑡 (gas unit) - 15 million  

𝐵𝑙𝑜𝑐𝑘𝑀𝑎𝑥 (gas unit) 15 M  2 × 𝐵𝑙𝑜𝑐𝑘𝑇𝑎𝑟𝑔𝑒𝑡 

𝑔𝑎𝑠𝑃𝑟𝑖𝑐𝑒 
The amount of gewi per gas unit that user is 
committed to pay in order to execute 
transaction. 

- 

𝑔𝑎𝑠𝐿𝑖𝑚𝑖𝑡 
Maximum amount of gas units a transactor is 
willing to spend to execute their transaction. 

- 

𝑔𝑎𝑠𝑈𝑠𝑒𝑑 
The actual amount of gas unit the is used to 
execute the transaction on EVM. 

Same as before. 

𝑏𝑎𝑠𝑒𝐹𝑒𝑒𝑃𝑒𝑟𝐺𝑎𝑠 Not defined 

The minimum amount of gwei per 
gas unit required to include the 
transaction in the block(computed 
algorithmically as in equation XX) 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐹𝑒𝑒𝑃𝑒𝑟𝐺𝑎𝑠 Not defined 
The amount of gwei per gas unit 
that the transactor pays to miner 
directly as incentive. 

𝑚𝑎𝑥𝐹𝑒𝑒𝑃𝑒𝑟𝐺𝑎𝑠 Not defined 
The maximum gwei per gas unit 
that a user is willing to pay. 

Amount of gas paid to 
miners (gewi) 

𝑔𝑎𝑠𝑃𝑟𝑖𝑐𝑒 × 𝑔𝑎𝑠𝑈𝑠𝑒𝑑 𝑔𝑎𝑠𝑈𝑠𝑒𝑑 × 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐹𝑒𝑒𝑃𝑒𝑟𝐺𝑎𝑠 

Amount of gas burned 
(gewi) 

Not applicable 𝑔𝑎𝑠𝑈𝑠𝑒𝑑 × 𝑏𝑎𝑠𝑒𝐹𝑒𝑒𝑃𝑒𝑟𝐺𝑎𝑠 

Total amount of gewi paid 
by transactor to execute 
transaction  

𝑔𝑎𝑠𝑃𝑟𝑖𝑐𝑒 × 𝑔𝑎𝑠𝑈𝑠𝑒𝑑 
𝑔𝑎𝑠𝑈𝑠𝑒𝑑
× min(𝑚𝑎𝑥𝐹𝑒𝑒𝑃𝑒𝑟𝐺𝑎𝑠, 𝑏𝑎𝑠𝑒𝐹𝑒𝑒𝑃𝑒𝑟𝐺𝑎𝑠
+ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐹𝑒𝑒𝑃𝑒𝑟𝐺𝑎𝑠)  

 

B. Dataset 

To evaluate the performance of the proposed model on a real dataset, all transactions of Ethereum Minnet since 

1/6/2016 were extracted. Each transaction is characterised by the following attributes: Transaction hash, which serves as 

a unique identifier. Status, which describes the current situation of the transaction. This attribute can take the following 

values: success, pending or failed, corresponding to the following cases: when the transaction has been successfully 

executed and added to a block, when it is waiting to be executed and finally when the execution of the transaction results 
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in errors respectively. Block is the block number comprising the transaction, the timestamp at which the block was mined, 

From and To attributes are used to describe the originator and recipient of the transaction respectively. Besides the above 

these attributes contains all the above parameters that are used to signify the transaction fees. Figure 1 illustrates the 

correlation matrix of these attributes whereas table II summarises the main types of attacks that have been extracted from 

these dataset along with their number of transactions.   
 

 
Fig. 1  Corrleation Matrix of the transaction’s attributes  

 
 

TABLE II   Number of transactions of different types of attacks  

Attack name Description Number of 

transactions  

front-running Snip the profitable transactions, copy them but with higher gas prices, 

and send the copied versions to miners. 

112541 

Sandwich  Same as above, but sandwich the victim transactions are sandwiched 

between front-running and back-running malicious transactions. 

125415 

Block Stuffing Fill up the block with many transactions to prevent others from 

inclusion their transactions. 

325141 

Time-Bandit Rewrite the blockchain history to steal funds from previous transactions 54142 

Transactions 

manipulating   

Change the transaction orders or inclusion either to get self-benefits or 

for others in front of bribing.  

6984471 

fee-based 

forking attack 

Tamper the blockchain by conducting a hard fork to make more profits.   11428562 

Soft forking Repeat the mining process of the previous blocks with the aim to 

duplicate the rewarding and then fork the block chain to hide the 

duplicated blocks. 

2212211 

Normal Not falling within the above attacks 112297112 

Total 133539595 
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IV. THE PROPOSED MODEL 

 

In cases where CNN models are designed to process image data, many similar layers (e.g. Inception Unit in 

GoogLeNet and Residual Block in ResNet) are placed in the model and then one or more pruning techniques (e.g., 

dropping out some layers or skipping some connections of a layer as in ResNet) are applied when overfitting occurs. This 

design approach is based on the assumption that instances of image data are hierarchically contextualised. Therefore, 

running multiple identical layers can gradually reveal these features. More specifically, most current CNN models are 

constructed from multiple identical tuples of "convolutional layers, non-linear layers and pooling layers". Typically, the 

earlier tuples are dedicated to extract the primitive features of objects in the image, such as object edges and contours. In 

contrast, the later layers are used to extract more latent features within discovered objects. However, the significant 

differences between the transaction dataset considered in this study and the image dataset make it difficult to use the 

same design approach. Therefore, we propose to use more specific layers instead of general identical layers. By this 

means, we can use the layer that is appropriate for identifying the features we are looking for instead of blindly adding 

many identical layers. 

Based on the fact that a transaction is a generic type of time series, typically composed of different patterns, and that 

decomposing the transaction into elementary patterns greatly facilitates its interpretation. This in turn leads to an 

improvement in predictive performance, we use time series decomposition approaches [26] as a framework for 

developing our task-specific layers. Time series decomposition approaches are among the well-established statistical 

methods used to analyse time series in various disciplines; they substantiates that an instance of a time series can be 

projected onto two fundamental components: the seasonal component and the trend. The seasonal component is used to 

describe the behaviour of a time series that recurs at regular intervals, while the trend component quantifies the persistence 

behaviour that the time series exhibits. Correspondingly, we propose two novel layers: the seasonal detecting and the 

trend-discovering layers. The following subsections describe the design philosophy of these two layers, while subsection 

xx presents the overall model. 

 

A. Seasonal-Detecting Layer 

The recent studies devoted to analysing and modelling Blockchain transactions, e.g., [27] reveal that most of them 

possess some sort of seasonality, ranging from a naïve short-term correlation up to more sophisticated long-term 

dependencies and/or fractals. Therefore, several hypotheses have been put forward to reveal the root causes of such a 

phenomenon. Some works claim that seasonality is a natural result of several monetary phenomena that dominating the 

cryptocurrency markets such as crowdfunding or occurrences of NFT drops. The mainstream technique that is usually 

used to detect the seasonality of a time series is to divide it into several subintervals and then apply a similarity metric to 

quantify to which extent an interval is rhythmic to other(s); autocorrelation function, chi-square periodograms, Hurst 

exponent and Durbin–Watson statistic are some examples of such technique.  Nevertheless, the primary aim here is 

neither to identify whether or not a given time series possesses some degree of seasonality nor to quantify the seasonality 

degree. Rather, our aim is to design a CNN-compatible layer that can extract the seasonal features presented in the 

intended traffic and then encode these features into the model's parameter space. Thus the model can take seasonal 

characteristics into account when making a prediction for future readings. To achieve this aim, we employ dilated 

convolutional in the lieu of standard convolution; in dilated convolution, one or more zero-valued cells interleave(s) the 

kernel's adjacent cells at regular intervals; this yields a larger yet hollow kernel. Applying such kernel over a time series 

enables each receptive field of the resultant features map to capture several behaviours of the traffic at non-consecutive 

temporal steps. Inasmuch as these features maps are part of the hypothesis space of the model, the relations that might be 

existing within the receptive fields of the same features maps or even across several features maps can be revealed as the 

learning proceeds, which in turn leads to encoding the seasonality features onto the model's parameters. Figure 2 provides 

a schematic diagram for a dilated convolution that takes place between time series comprises 𝑇 time steps and a kernel 

of length 3 with dilation rate, denoted here by 𝐹𝑅𝑘

(𝑙,𝑘)
, of 1.  

 

 
 

Fig. 2 A schematic diagram for seasonal-detecting layer 
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As it can be seen from this figure, each receptive field of the feature map is generated from processing three input elements 
(the width of the kernel) that are separated by one (the dilation rate); for instance, the input elements used to generate the 

receptive fields 𝑦(𝑡) is 𝑥𝑡
(𝑙) 

, 𝑥𝑡+2
(𝑙) 

and 𝑥𝑡+4
(𝑙) 

 or in general form: 𝑥
𝑡+𝑛(𝐹𝑅𝑘

(𝑙,𝑘)
(𝐹𝐷𝑘

(𝑙,𝑘)
−1))  

(𝑙) 
;  0 ≤ 𝑛 ≤ 𝐹𝐷𝑘

(𝑙,𝑘)
− 1 .   

Our aim here is to set the dilated convolution’s parameters (i.e., the width of kernel and dilation rate) to those values that 
allow the resultant features map to possess all possible seasonal features presented in the given input. This aim can be 

achieved readily if 𝐹𝑅𝑘

(𝑙,𝑘)
(𝐹𝐷𝑘

(𝑙,𝑘)
− 1) is set to the fundamental period of the given input, i.e., the fundamental period is 

the smallest interval at which the seasonal behaviour is repeated. Precisely, this setting leads to accommodate 𝑛 identical 
instances of the time series into each receptive field which, in turn, yields a features map with a broad view that covers 
the global seasonal behaviour presented in the time series. Interestingly, in this way the resulting feature map can be 
conceptualised as a long-term memory unit of equidistant input instances and the proposed seasonal-detecting layer as 
the foremost convolutional layers that are typically used in the CNN image-based models to detect information about 
contours and edges of objects within an image. 

B. Trend-discovering Layer 

The trend-discovering is the second specific-task layer that is proposed to improve the performance of the CNN model 

by allowing it to use a more specialised layer instead of nesting multiple layers of general structure as the case in 

conventional CNN models. The principal approach of this layer is to capture the persistence behaviour exhibited in 

transactions and then to encode them into the hypothesis space of the model in a similar way that the seasonal-detecting 

layer does for the seasonal characteristics. It is interesting to investigate the main causes of the trends in an transaction 

streaming and the importance of discovering them in improving the prediction performance of the CNN before discussing 

the design methodology used to devise the specific-task layer. Recalling that the transactions is not of deterministic 

nature; rather, it varies due to the interaction of several stochastic processes, e.g., volatility of market and redistribution 

of tokens. While some of these changes persist for a long interval (we refer to them here as here trend), others elapse for 

a lesser interval or even leave off soon (i.e., dubbed transient state). Hence, by discovering the persistence (trends) of the 

traffic, the CNN can avoid making a wrong prediction based on a transient state, which can leverage the CNN model's 

predictability.  

Most of the methods that have been proposed to discover the trend of a time series fall into two groups: parametric 

and nonparametric. The former is based on the assumption that the trend of the series follows a particular function. e.g., 

linear, quadratic and cubic; therefore, by computing the function's parameters from the dataset, the trend characteristics 

of the time series can be determined. Conversely, the nonparametric approaches impose no presumptions on the shape or 

form of the trends functions; rather, it filters out the striking variations by applying smoothing algorithms of a predefined 

window over the time series. Several smoothing algorithms, including unweighted sliding-average smooth [],  triangular 

smooth and Savitzky–Golay filter with or without predefined weights such as Binomial weights, spencer’s 15 points 

moving average, have been proposed to deal with trends. Considering the fact that most of the smoothing algorithms are 

based on the convolution operation facilitates (using standard convolutional layer as a trend trend-discovering layer) 

building a CNN compatible trend-discovering layer. 

C.  Overall CNN models 

Figure 3 shows the block diagram of the proposed overall model. It can be seen that this model consists of three branches, 

each of which has roughly the same structure. The first branch consists of a seasonal detection layer with 500 filters and 

a dilation rate of 365, followed by a non-linearity layer with a ReLU activation function whose objective is to smooth the 

feature map generated by the seasonal detection layer. The output of the first layer is a dropout layer with a probability 

of 0.1, which is used to eliminate the possibility of overfitting, and finally a max-pool with a width of 2, which is used 

as a dimension reduction algorithm. The number of layers was chosen to provide a sufficient number of filters to find out 

all possible combinations of latent patterns in the given transaction sequence. Interestingly, the dilation rate was set to 

365 as this represents the number of days in each year. This in turn facilitates the detection of the seasonal behaviour 

exhibited by the input data on each day of the year. The output of the Max Pool layer is then passed to the trend-

discovering layer, whose main objective is to determine the trends of each sub-interval generated by the seasonal 

detection layer. The seasonal-detecting layer of the second branch is designed in such a way that allows it to detect the 

seasonal features on a monthly basis. Therefore, the dilation rate of 30 is used instead of 365 as in the first branch; 

similarly, the rate of 1 is used in the seasonal detection of the last branch to find out the seasonal features on daily basis. 

The output of the three branches is passed to the flatten layer, whose main function is to convert the multidimensional 

data generated by all layers into a sequence before concatenating them together. The results of this last layer are then 

processed by two fully concatenated layers using the softmax activation function to generate the appropriate class for 

each input instance. 
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Fig. 3 Block diagram of the proposed model 

 

V. RESULTS AND DISCUSSION 

 

A. Performance Metrics  

The accuracy of the proposed model is evaluated by comparing its prediction results with the ground truth data 

obtained from the three datasets described above. The following statistical measures are used in this evaluation: Accuracy, 

Precision, recall, F1Score. The definitions of these metrics are given using the following terms: True Positive (TP), False 

Positive (FP), True Negative (TN) and finally False Negative (FN). TP is defined as the total number of transactions 

classified by our model as being within a given class in accordance with the ground truth; TN, on the other hand, has the 

same interpretation as TP, except that it groups together the transactions that fall outside a given class. TN counts the 

total number of transactions that are classified by the proposed model as belonging to a certain class, while this is not the 

case in the ground truth. FN finally, is used to describe the total number of transactions that are classified by the model 

as belonging to a class, while in reality they are not in that class. Accordingly, the Accuracy, Precision, recall, F1Score 

can be defined mathematically as following:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

F1 − score =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (5) 
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This study uses the latest version of the Python programming language, namely 3.10.6, to implement the proposed 

models as well as other benchmarking models. The Tensorflow library with Keras was chosen for its wide applicability 

in this field. All codes are deployed on a single machine with an Intel Core i7-11850HE processor running at 4.70 GHz 

with 8 cores and 128 GB RAM and an AD102 GPU (RTX 4090) GPU. The Adam algorithm is used as an optimiser for 

the proposed model with 𝛽1 = 0.91 and 𝛽2 = 0.99 momentum respectively, the number of epochs is set to 150, the batch 

size is set to 1024 instances and the learning rate is set to 0.0001. 

This study uses the 6-fold cross-validation strategy, in which each of the datasets considered in this study is randomly 

divided into 6 sub-datasets, 5 of which are randomly selected and then used to train the model, while the remaining sub-

datasets are used to validate the accuracy of the proposed model. 

The first evaluation of the proposed model is conducted by measuring how the normalised errors and the accuracy of 

the model change as a function of the number of epochs. The results of this evaluation are shown in the figure 4. From 

these two figures, it can be seen that the normalised error decreases exponentially with the number of epochs. This is due 

to the ability of the proposed model to acquire more knowledge over time and to anchor this knowledge firmly in its own 

parameter spaces. In particular, the use of multiple seasonal-detecting layers to recognise seasons facilitates the detection 

of patterns that repeat at different intervals. This in turn converts the long series of transactions into smaller intervals so 

that the model can easily capture the recurring patterns. In addition, by using the trend-discovering layers, the model can 

find out the characteristics of the underlying process that dominates the generation of the transaction. The combination 

of these two task-specific layers gives the model a powerful tool to interpret the various features of the transaction dataset 

without the need for significant learning effort. It is shown, for example, that the model reaches the zero-error range in 

less than one tenth of the predefined epochs. The normalised accuracy curves as shown in figure xxx demonstrates that 

the accuracy of the model increases as soon as the normalised error drops.  

 

 
 

Fig. 4 Normalised error and accuracy of the proposed model during training and testing phases 

 

From the confusion matrix shown in Figure 5, it is clear that the model can classify different types of attacks occurring 

in different transaction instances with a high degree of accuracy. These characteristics support the rapid learning curve 

discussed earlier, as you can see that the lowest value 0.98 corresponds to the sandwich attack. Should recalling that in 

this attack, requires to proceed and follow a victim transaction by two malicious transactions whose gas prices are lower 

and higher than the victim's gas prices, respectively. This in turn adds some challenges in figuring out the pairing of these 

transactions before deciding whether they belong to this type of attack or not. We found that the sandwich attack requires 

padding the block with many transactions to eliminate the possibility of others benefiting from the same opportunity 

seized by the attackers, hence some cases of sandwich attacks can be seen to have leaked to block stuffing attack. The 

second lowest value in this confusion matrix relates to the front-running attack, which is due to the fact that this type of 

attack is fast, i.e. as soon as the snipper bots realise that there is a chance to gain advantage, they are replicated with a 

higher gas price and sent back to the same mempool. Also, since most of these bots run publicly, it is possible that they 

will be repeated by other bots that snipe the last snipper, which in turn leads to a long tail attack and requires more effort 

to fully detect them. In addition, it can be seen that other types of attacks can also be classified at a rate of 1 true positive, 

as each of these attack types has its own characteristic patterns that can be easily identified.  
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Fig. 5 Block diagram of the proposed model 

 

Table III summarises the model's performance metrics recorded during the different training/testing folds. From these 

results, it is clear that the model is robust in terms of the size of the training and testing data. This is important because it 

allows the model to be used in different situations without having to be trained over a long period of time. These results 

also highlight the crucial advantages that the specific task layers offer in classifying the different types of attacks on the 

Ethereum blockchain. 

 
TABLE III   Performance metrics of the proposed model during different training-testing folds 

 

Number of folds Accuracy Precision Recall F1Score 

1 99.97 100.0 100.0 99.99 

2 99.99 99.99 100.0 100.0 

3 100.0 100.0 99.99 99.99 

4 99.99 99.98 100.0 100.0 

5 100.0 100.0 100.0 99.97 

6 100.0 100.0 100.0 99.99 
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VI. CONCLUSION 

In this paper, we propose a novel temporal convolutional neural network that can be used to detect malicious transactions 

in one of the most important blockchain infrastructures, namely Ethereum. The proposed model was developed out of 

the need to protect this infrastructure from the various types of attacks that target it and lead to catastrophic consequences. 

The underlying concept of the proposed model is to treat a transaction as a stochastic time series and then develop two 

specific task layers that are compatible with the traditional CNN architecture. The first layer is responsible for detecting 

the seasonal characteristics of the transactions, while the second layer is used for detecting the trend. These two layers 

are integrated with the traditional architecture to form a powerful temporal CNN architecture that can classify different 

types of attacks. The performance of the proposed model was evaluated from a different perspective by using real 

transactions from the Ethereum Main-Net network. The results of the comprehensive evaluations show the ability of the 

proposed model to perfectly identify malicious transactions in the Ethereum blockchain.   
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