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Abstract: Cloud service providers are adopting AI-based systems to efficiently offer data services. A data platform 

combines data management systems, serving storage, and compute infrastructure. A data service is the result of the careful 

orchestration of these services, with a set of users on the right-hand side and their data and knowledge requests on the 

left. The data service is typically composed of microservices with data as an object. Each microservice then offers APIs 

and SDKs for users to submit tasks and queries to the data platforms. The cloud-scale data platforms and the data service 

architecting and planning should be automated so that users can focus on describing their workloads without worrying 

about the underlying architectures. Data service design is extremely challenging. The workloads are broad and 

horizontally scaling. All the architectural components are stateful, dynamic, and performance-sensitive. The architectural 

complexity is huge due to the vast design space and requirement sets. The trade-offs on diverse metrics and concerns are 

crucial. The aforementioned challenges are further magnified in cloud-scale systems. A simulation-based framework is 

built to facilitate performance- and power-accuracy exploration across heterogeneous hardware implementations. The 

framework is employed to explore the design space of big data analytics written in a high-level domain-specific language 

for reconfigurable systems. An architecture transformation framework is presented to transform plain applications into 

efficient hardware blocks. The framework performs automatically instruction-level optimization on a petascale 

simulation kernel, achieving speedup over state-of-the-art toolchains and domain-specific compilers. 

 

Keywords: Real-Time Data Processing, Cloud-Native Architecture, Scalable Data Pipelines, AI-Driven Insights, End-

to-End Data Integration, Data Lake House Architecture, Streaming Analytics, Machine Learning at Scale, Event-Driven 

Architecture, Unified Data Platform, Low-Latency AI Inference, Big Data Orchestration, Cloud Data Warehousing, 

Predictive Analytics in Real Time, Automated Data Engineering. 

 

I. INTRODUCTION 

 

Artificial Intelligence (AI) and data science’s rapid adoption has transformed numerous industries. AI technologies—

including machine learning, deep learning, and natural language processing—extract insights from vast amounts of data. 

This fuels a data-driven economy where Data Science helps companies make informed business and operational 

decisions. The foundation of many successful AI/DS business use cases is a cloud-scale data platform capable of handling 

data volume, velocity, and variety efficiently and effectively. 

 

High levels of automation are required to ensure that a cloud-scale data platform is robust, reliable, and managed 

effectively 24/7 in a cost-efficient manner. Few technology companies have invested heavily to automatically manage 

their internal data platforms. This naturally raises the question of whether this effort is possible in an open-source field 

within a few years. The increasing interest in strong cyber-attack protection treatment has led many major service 

providers to apply large amounts of engineering effort into such a system to manage the data platform. 

 

The design of a data platform at cloud scale involves many different technologies. For cost-effective bulk storage and 

fast processing, a normal data platform utilizes a hybrid storage engine consisting of high-latency hard disks, fast random-

access solid-state drives, and memory. In the cloud, log-structured storage systems with a cloud-scale nature are a reliable 

option. In the cloud, open-source alternatives with a guarantee of high availability are usually a better option for stream 

processing. This new design requires many technologies to be integrated more deeply to achieve better overall 

performance and efficiency. 

 

More than 60% of the Fortune 100 companies are routinely using multiple data stores to run their missions’ most critical 

applications, but the increasing heterogeneity and distribution of the resulting systems are posing more difficult 

challenges for City and event data management. Nevertheless, there are still fundamental problems in data consistency, 

availability, and partition tolerance. Considerable research has gone into resolving such problems, producing, for 

example, the proof of the CAP theorem, which states that no distributed data store can simultaneously provide all three 

guarantees. 
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1.1. Background and Significance                                    

Applications that require continuous monitoring and analysis of rapidly evolving event flows have become prevalent 

across various sectors. This has led to growing interest in developing frameworks and systems for processing continuous 

data streams. Several initiatives have centered on building software systems for real-time streaming data analytics. 

Research has concentrated on devising scalable, high-throughput architectures and algorithms as efficient stream 

processing and data mining engines to achieve a cluster-centric framework. The complexity and size of many applications 

make it difficult to design a single, monolithic real-time processing or learning system to accommodate all the envisioned 

functionalities. During runtime, different resources dynamically evolve in terms of volume, velocity, or complexity. 

These developments could be a result of emergent needs of higher-level tasks as well as noise, anomalies, or a change of 

characterization in the underlying data sources. The notable rise of ubiquitous, interconnected services has quickly 

broadened the range of potential applications. Frequent spikes in the frequency of transactions and their execution 

volumes are usually met with technological advancements in high-performance data stream processing. It is equally 

important that caution is taken to scrutinize the validity and integrity of key input data, service parameters, and models 

utilized in these automatic processes when it comes to safety- or reputation-critical business-critical tasks. Knowledge 

extracted from high-frequency time series or event streams may need to be interpreted differently due to long-lasting, 

gradual changes in behavior. Another fundamental requirement is to produce interpretable, trustworthy insights instead 

of “black boxes” for continuous processes, which would otherwise only be utilized by a few experts. 

 

 
 

Fig 1: Cloud-Scale Data Platforms for Real-Time AI. 

 

II. UNDERSTANDING CLOUD-SCALE DATA PLATFORMS 

 

Cloud-scale data platforms are responsible for managing mission-critical data of organizations of all sizes and shapes. 

To succeed in the new dynamic landscape, cloud service providers are introducing a new generation of cloud-scale data 

platforms that are autonomous, intelligent and real-time. They want to realize the vision of cloud-scale data engineering 

and analytics, where cloud services can fully automate themselves and enable two orders of magnitude faster analyses of 

fresh data. However, this is a prohibitively challenging problem. While it is possible to build either cloud-scale data 

services or autonomous data services based on existing technologies, the overall solution is much harder. This problem 

is viewed as an extreme optimization problem in the distributed and asynchronous data platform ecosystem. 

 

Several advancements are outlined to understand the challenges in attaining closed-loop optimization on cloud-scale data 

platforms and the recent developments towards an autonomous data services architecture. While it is a long and hard 

journey ahead, it is equally exciting as it has the potential of bringing autonomous data services across the world ten 

years earlier. For a cloud service, especially at scale, the service can be a very complex system with multiple closely 

interacting components, each of which may consist of multiple complex sub-parts, and may rely on other technology 

stacks or off-the-shelf systems. It’s impractical to create a massive optimization problem that simultaneously optimizes 

all components that involve too many considerations across multiple dimensions and layers. 

 

A challenging problem is that in real-world systems, there are interactions between co-designed components that have 

common data, goals, and business KPIs. However, to address the problem, this is to focus on optimizing a selection of 

related components that work together in a coordinated way.  
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On one hand, it is not possible to minimize the whole system as one single optimization problem due to the scale and 

complexity. On the other hand, improving the joint optimization of these selected, tightly coupled components, which 

are captured and modeled in the respective solvable, smaller optimization problem, can indeed lead to improvement in 

overall performance. However, it is equally important to expose only a small and discriminating set of tunable parameters 

to the customer at the end. There is a responsibility to ensure that the solutions provided to customers, both online and 

offline, are insightful and safe for them. 

 

Equ 1: Real-Time Data Ingestion Throughput. 

 
 

2.1. Definition and Key Features                                               

The autonomous orchestration of cloud-scale data services requires resolving configuration choices, controller 

parameters, and the mapping of the services to compute and storage capacity. Any substantial cloud service that ingests, 

processes, and serves out data requires multiple components to work together. For example, a data ingestion service 

logging raw data to files can consist of a data stream messaging system, worker nodes capable of reading and labeling 

those files, and databases storing indexed events. 

 

The architecture is further complicated by cloud applications being continuously deployed and updated. Existing cloud 

services run on multiple clusters in multiple cloud regions for availability, durability, bursting capacity, disaster recovery, 

capacity for increasingly engorged data, and the further distillation of products. A cloud service must not only operate 

well in isolation but also interact with its many neighbors. Adding a shard of a database must not degrade performance 

beyond tolerable timeouts. Migrations, crushes, failovers, failbacks, and performance fluctuations can frequently disrupt 

a multi-service cloud or data platform. 

 

Multi-cloud service tiers or products within a cloud have different operational requirements. Vertical multi-cloud stacks 

must ensure consistent and coherently good QoS levels for all customers. The high performance of one service 

independently of the others may not equate to overall high performance or a good customer SLA. 

 

2.2. Architecture Overview                                                     

The architecture of the proposed cloud-based data platforms consists of an Oan T-Capacity Layer that supports massively-

parallel processing of multi-dimensional parallel spatial RDDs on the cloud with performance isolation guarantees; Log-

Capacity Layer for compressing, indexing, and caching indexed logs to augment the originally-source logs; Querying 

Layer with scalable data access decomposers to fetch and merge the needed compressed and indexed logs; Processing 

Layer that provides advanced stream and batch graph operators that are optimized to leverage the underlying OT-Capacity 

Layer; and an automated query optimizer that provides effort-based strategy selection for jobs that involve generic 

stream/batch operators. The cloud platform is built upon an RDD-based streaming and batch graph processing framework 

on a cloud cluster that provides performance isolation at the OT level and supports executing multi-dimensional parallel 

RDD workloads. 

 

The system model of the cloud platform is illustrated. Each application submits a set of jobs to the Application Scheduler, 

which prioritizes each job according to the Completion Time Estimator. In the framework, each query operates on 

partitioned RDDs of logs and converts them to partitioned continuous data streams of history logs, and the logs are 

incrementally augmented to one or more OT-RDDs. The Log-Indexed OT-RDDs convert the OT-RDDs into OT-RDDs 

of indexes for the underlying compressed logs. The output of the Querying Layer can be indexes and batches of logs to 

be processed with one or more stream or batch processing query, and the processed results can be archived into 

compressed, indexed logs or output as analysis results. The Processing Layer is executed by a final processing engine 

according to the type of the output data from the Querying Layers. 

 

An online test with 80 cases of anomaly episodes in 5 weeks of 1-minute logs was conducted. During the test, a human 

operator is called to execute the faults or issues. The daily results of false alarms and missed alarms were gathered. The 

Recall/Precision is the ratio between the number of cases correctly detected and the number of total holes. New cases or 

falsely detected cases in the test data but not in the explanations are false positives. 
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2.3. Benefits of Cloud-Scale Solutions                                     

The world’s largest cloud services providers have deployed over 10 million servers worldwide and new servers are 

continuously added to support the explosive growth in the mobile-first AI-first world. The cloud services democratize 

access to computation, storage, and diverse services. Millions of developers and enterprises leverage the cloud to build 

rapidly innovative applications like social networks, e-commerce platforms, intelligent education systems, transportation 

networks, or healthcare solutions. To assist data scientists and software engineers in building production-ready AI 

solutions freighted with big data coming from the cloud services, it is important to automatically provision needed cloud 

service resources and construct out-of-the-box production-ready pipelines to serve big data for real-time insights. 

 

The enormous weight of big data introduces a huge latency budget for real-time AI inference pipelines. Typical online 

services adhere to a latency budget of a few milliseconds at the service provision end to ensure that insights are timely. 

There is a huge engineering overhead to ensure the low latency of big AI insights because of the complex structure of the 

AI models, large volumes of data, and diverse cloud services adopted for pipeline construction. Despite the rapid adoption 

of model-centric and data-centric AI methods, the leveraging of automated tools for effective and efficient pipeline 

provision remains under investigation. 

 

Creating production-ready AI services is a core aspect of the AI paradigm and a tough problem to address. Surprisingly 

little work is focused on the cloud service procurement and part of the infrastructure establishment over the cloud 

consumptions. This omission is a glaring oversight in the cloud-centric services of multi-cloud background and diverse 

edge services from large cloud service providers. The platforms in current cloud providers offer the option of defining 

users’ requirements by manually setting up constitutive components for part of the service. However, to procure a new 

service rapidly in the multi-cloud choice, there is an urgent need to automatically end-to-end provision data pipelines 

from the data ingestion on the edge with cloud services provisioned at the edge to batch or stream processing of the data 

at a cloud region and to visualize results. 

 

III. REAL-TIME DATA PROCESSING 

 

Big data is generated in a variety of dimensions, including space, time, and semantics. Aggregating the data in the three 

dimensions provides an alternative way for the decision-makers to comprehend and analyze the big data. The incremental 

computation of the cube is quite expensive when it comes to real-time data. Many applications query for just a few 

metrics simultaneously, which suggests the polynomial decomposition of the metrics. This paper proposes a few solutions 

for incremental algorithms, revealing the fine-tuning and challenging tasks on the other dimensions of big data.  

 

The last decade has witnessed an increasing amount of interest in big data among researchers, standard bodies, and related 

organizations such as cloud vendors. Big data mining focuses on discovering valuable knowledge from big data. The big 

data is stored in a variety of systems such as relational systems, key-value stores and HDFS. Recently, an emerging 

research area is flow data processing, in which data is generated continuously in a potentially unbounded stream. The 

diverse sources and stringent requirements of big data pose many challenges to traditional data mining models, which 

inspires the research of big data processing, mining, and analysis. This paper surveys the existing frameworks, systems, 

algorithms, and recent advances in the above aspects. Enhancing the dimensionality of big data (also known as high-

dimensional big data) has also been an active research topic. 

 

A key assumption made by the majority of existing works on dimensionality reduction is two-fold: (1) the data to be 

embedded into the lower-dimensional space is well represented by the original high-dimensional space, and (2) they are 

in a typical stream model. The one with the increasing number of dimensions is significantly harder to analyze and 

process, and it has become an increasingly popular research topic due to the great significance of big data and many 

practical applications across many domains including search engines, text analysis systems, and machine learning. These 

applications raise new challenges, and opportunities for scalable, efficient, reliable, and accurate algorithms and systems 

for processing real-time intelligent big data, which have not been adequately studied and have from the prerequisite 

understanding of the characteristics. 
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Fig 2:  Real-Time Processing. 

 

3.1. Stream Processing vs Batch Processing                          

Stream Processing is regarded as one of the upcoming technologies with high market potential. The power of SP and SP 

systems can be leveraged to provide solutions to emerging classes of Big Data problems. The ideal application is data-

centric systems involving large-scale and complex, dynamic data that need to be analyzed and transformed in real-time. 

SP technologies such as Storm, Spark Streaming, and S4 are implementations of these ideas. SP technologies were also 

introduced as commercial products running in a cloud environment, which offered a combination of some desired 

features. It is important to understand some of the fundamental research issues in massively distributed stream processing 

that cannot be addressed by existing tools and products. 

 

The need for continuous processing of real-time data has resulted in the emergence of a new group of data processing 

systems referred to as stream processing (SP). The ongoing massive growth of data motivated a switch from traditional 

data processing solutions toward systems that can continuously process a stream of real-time data. SP systems can provide 

solutions to a variety of emerging classes of problems in areas that include social networks, infrastructure monitoring, 

stock market predictions, fraud detection, logs analysis, transportation and traffic monitoring, meteorological monitoring, 

sensor networks, and telecommunications. Such systems have a broader scope than earlier event-processing systems. 

These stream processing solutions must scale by an order of magnitude and involve massive amounts of computations 

and data. 

 

Existing research on SP systems has predominantly focused on performance and scalability. A massive SP system 

requested the design of architectures, data flow models, and principles of system resilience to hardware and software 

failures. Performance issues include latency, queueing, complexity of optimization, inter-node communication, and node-

level scheduling issues. These topics are of high theoretical merit. However, the cloud is a reality, and thus, it is time for 

measurements of real-life SP systems that include. Research into performance issues must also include Internet-scale 

measurements of internal nodes. A potential research direction would be a quantitative investigation into architecture and 

software trade-offs on the performance metrics stated above. 

 

3.2. Technologies for Real-Time Processing                      

Real-time streaming data is characterized by the need to respond to the data converging on a system while it is still 

arriving. Stream data is inherently different from traditional data, as it is continuous and the volume is usually 

exponentially larger than that of conventional data. For this streaming data, the first question that comes to people’s 

minds is querying. Stream data itself does not hold any value if there is no level of intelligence embedded in the same. 

To extract knowledge from such a diversified and huge amount of streaming data, the need for smart analytics is on the 

rise. Stream data has diversity in multiple forms, and capturing heterogeneity is a new challenge in the data analysis field. 

Consequently, stream analytics itself should have different layers of intelligence. The major progress of stream processing 

(SP) is to provide sweet tools for data scientists to craft knowledge from raw streaming feeds. Thereby, a stream 

computing (SC) system to extract structures from diverse data is described. 
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The key component in SC systems is stream processing engines (SPEs), which have heavily focused on rules or patterns 

to filter streaming data. To fill this gap, the DataAna system is designed to denotation modeling choice sets with a context-

sensitive pattern mentioned in a division. It records the behavior state of data in a tree structure and exploits the powerful 

operation of choice sets over this compact structure. Simultaneously, streaming processing based on an entire graph is 

acknowledged to forget cognition and get rid of temporal requirements. Profile-Stream, a scalable and low-latency 

platform based on auto-regressive integrated moving average for context modeling over time. The stream graph is 

structured by node-batch and edge-batch to handle graph evolution, and sketches are integrated to efficiently and robustly 

resolve the graph capture participative nodes. 

 

3.3. Use Cases for Real-Time Data                                         

Timely information processing provides various benefits across diverse domains, e.g., in economic areas, timely detection 

of fraudulent transactions prevents a huge amount of money loss; in social domains, timely detection of fire tweets may 

save many lives; in mobile computing environments, timely monitoring of users’ context changing may better serve them. 

Given a growing number of applications that process real-time data streams at a large scale, cost-effective cloud 

computing is becoming important for real-time data processing. A cloud stream processing framework should provide 

technologies from servers, databases, and streaming systems, to data management models. This enables users to quickly 

deploy their cloud-scale real-time data processing applications. 

 

Cloud-based stream processing solutions have proliferated recently, driven by the market interest of IT companies. From 

the platform view, Google Cloud Dataflow allows dynamic resource allocation and global auto-scaling. Amazon Kinesis 

provides a suite of services for ingesting, storing, and processing streaming data. Microsoft Azure Stream Analytics 

focuses more on connecting data sources. Open-source distributed stream processing systems also attract lots of attention, 

e.g., Apache Flink, Apache Storm, Apache Samza, Apache Spark Streaming, etc. These systems are appreciated for better 

flexibility and wider compatibility with diverse tendering frameworks and message queuing platforms. 

 

Real-time data analytics is the “online” analysis of data that were previously captured in “offline” processing. With the 

advent of modern applications that generate various data streams ranging from fine-grained digital trading transactions, 

GPS location updates from smart vehicles, social network status updates, and snapshots of sensor data in IoT systems, 

data analytics has been shifting from “offline” batch processing, which focuses on mining usually static relational 

datasets, to “online” real-time analytics on data streams that usually arrive in incompleteness and continuous nature. 

Real-time insights delivered in a timely fashion in time meters are expected, which significantly differ from traditional 

offline batch processing systems that focus on revealing deeper yet retrospective insights but at greater times (in minutes 

to hours or even days). As a result, streaming data platforms differ in architecture, query execution model, underlying 

programming framework, and real-time analytics functions adopted. 

 

IV. AI AND MACHINE LEARNING INTEGRATION 

 

Data platforms are expected to scale to 1000s of concurrent data consumers like mobile applications, business dashboards, 

AI and ML pipelines, etc. Data systems at this scale are expected to ingest petabytes of data daily and process terabytes 

of data per second. Such data platforms also need to ensure the quality of data and computations, and they should be 

accessible to end users as user-friendly SQL interfaces.  

 

With recent advancements in modulations and algorithms, AI and ML are now critical workloads for businesses. There’s 

a growing need for a technology stack that can easily integrate data pipelines and AI and ML pipelines on the same 

platform for better insight generation. 

 

In this paper, the design of a data platform powered by end-to-end cloud-scalability, flexibility with open architecture, 

and real-time data processing pipeline streaming, batch, AI and ML pipelines is proposed. With the data platform 

providing the necessary data readiness for insightful generation, the user-friendly environment with SQL interfaces and 

accessibility for diverse groups of end users to generate insights are built. 

 

The technical details for building end-to-end cloud-scale data platform on data ingestion and storage, data pipeline on 

real-time stream processing and batch processing, AI and ML cherished by friendly SQL interface, and orchestration on 

deployment of these pipelines are all covered. Data engineers can define complex data ingestion jobs without writing any 

pipelines or meta-programming. On the data consumption side, end users, such as data analysts, data scientists, and 

business interpretation officers, can directly use SQL to query on the dashboard and BI tools and to deploy data analysis 

or AI and ML pipelines as well. 
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Equ 2: Latency of Real-Time AI Pipeline. 

 

 
 

4.1. AI Models and Data Requirements                                 

The AI community has addressed a broad range of problems, and AI models have been developed in numerous areas 

based on many machine learning and deep learning algorithms, which have enabled unprecedented advancements and 

commercial adoption. AI models for CAPTCHAs, financial forecasting, traffic analytics, photo labeling, auto-captions, 

personalized ad recommendation, speech recognition, and many others have been developed and made available to a 

broader user community through cloud services. The current solutions regard these models as stand-alone components. 

A considerable amount of effort is still needed to adapt the data to the model, including model selection, hyper-parameter 

tuning, and full-fledged parameter training before it can be served and used to make online or near-real-time predictions 

on a new data/feed. Furthermore, these broader applications require one or more of the following kinds of data processing 

tasks to be performed before the model invocation to enable full-fledged end-to-end, real-time use at scale. 

 

The data preprocessing tasks include extraction, cleaning, normalization, filtering, and transforming the incoming input 

data from various sources before being served into the model running components, which can require real-time processing 

of large volumes of streaming data. In addition, feature engineering is usually needed on the original data features/schema 

to derive additional features with enhanced information content or redundancy so that the model can make more accurate 

predictions, which is usually an offline batch task over the new historical data. To conduct this end-to-end online 

prediction service, a cloud-streaming architecture is often adopted. There is typically a data collecting service to obtain 

data from the original venues and various inter-process communications services to publish this data to end-user clients 

and/or application servers. With the current big question in AI of how to identify and argue the “success” of an insight, 

data, and insight authorship and provenance are set to become a key focus in both big data, knowledge, and privacy 

arenas, and new standards are needed here. 

 

4.2. Real-Time AI Insights Generation                                          

In recent years, more and more enterprises have deployed artificial intelligence (AI) systems for business intelligence 

(BI). In particular, AI-based real-time BI systems have attracted much attention, and are capable of providing a 

competitive advantage for modern enterprises. AI-enabled real-time BI systems gather enormous streams of rapidly 

changing data and generate actionable insights through a chain of data processing with real-time stream data technology 

and AI models such as machine learning. Existing systems, including platforms, solutions, and applications make 

progress in either real-time data processing or AI insights generation. 

 

Such two aspects of the production line are independently conducted and often disconnect, failing existing systems to 

deliver AI-based real-time BI to meet the growing demand. Meanwhile, a high convergence of real-time data processing 

and AI insights generation emerges: 

 

Real-Time Data as Input: The data stream for AI insights generation in real-time. The policing time of data input at the 

monitoring points is much less than the time the AI model runs on accumulated data. 

 

Real-Time Models as Output: Real-time AI insights are presented in the form of a model set. The model set contains a 

decision model for targeted data mining and a report model for visualized presentation. The former is often trained on 

data batches and with some latent period, therefore it is not fully real-time. Instead, only the coefficients of trained models 

are updated with the data stream. These models are called real-time AI models. However, the latter must drive from real-

time data output, that is, they change with the chances of important data. Finally, a new end-to-end cloud-scale data 

platform for AI-based real-time BI, termed AI Real-time Insight Platform (AI-RIP), is proposed to overcome the 

difficulties and challenges in existing engineering solution and meet both the requirement and convergence of AI-based 

real-time BI, finally cope with the massive stream data and the growing insight demand. 
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4.3. Challenges in AI Integration                                             

There are exciting opportunities for many companies across a variety of industries emerging from the rapid advances in 

artificial intelligence (AI) technologies. Adding intelligence where data and optimization are concerned is an effective 

path to effectiveness, efficiencies, differentiation, and profitability. It is imperative first though to access the data at a 

scale and quality necessary to support effective and scalable training and optimization of the machine learning algorithms 

(MLAs) that provide these capabilities. Additionally, data coming from a variety of sources is complicated and complex. 

The assurance of understanding, value, interconnectivity, and usability of these multi-tenancy data sources (and the 

management of the value it creates) becomes an equally important aspect of this intelligent opportunity space. 

 

This solution involves holistic data management, where raw (unstructured) and raw tagged (structured and time-stamped) 

data, ML input-output results, machine learning ideas, business outputs, display results, and end-user interaction, are 

finally managed like configuration, model, output, and transactional data. Learning, inferencing, configuration, model 

building, and transformation are all automatically applied and separated from raw data management because these core 

capabilities can create added (higher order and higher risk) value (vectors). They have an understandable data life cycle 

that starts with the raw data and ends when they and their added value go inactive or unavailable (deleted). This contrasted 

with raw data which can be tagged, and transformed, but not managed by configurations, models, and rules. 

 

V. DATA INGESTION STRATEGIES 
 

Ingesting live data streams for trending analysis or stock prices for predictions is the foundation of building end-to-end, 

real-time AI pipelines. Ingestion and storage environments can utilize either commercial cloud solutions or open-source 

systems. A continuous stream of tweets arriving from various sources is collected, pre-processed, and transported to a 

storage system, where it will be stored in raw format for both real-time predictions and offline training. Data modeling 

preparation in different formats is needed for each analytics framework. A standardized linguistic and structural model 

can streamline the subsequent services by making it easier to be reused. The ingestion side also includes the 

implementations of producers for streaming data sources and consumers for archiving both raw and processed data on 

storage. The streaming modeling could include GUI-based programming and visual-oriented programming approach for 

analysts with limited expertise in programming. 

 

Almost all emerging types of streaming data require some form of pre-processing. Filtering irrelevant information, and 

enriching data using reference information is critical for the efficacy of machine learning models. The current options 

offer limited choices for enrichment. The general approaches include native functions by distributed stream processing 

systems, connectors to professional data enrichment services and custom, external enrichment jobs. The rich pipeline 

options should also help with the maintenance, updates and composition of analyses. If any single pre-processing step 

required is too complicated to be user-configurable, an enrichment service that can be directly labelled on the pipeline 

regarding what pre-processing steps were conducted on what data is essential. Another interesting property is pipeline 

aggregation, i.e., compositional analyses where the enriched data is further processed. Intensive, batch and iterative 

processing are two additional analytical paradigms to be studied. The mature academic benchmarks used in the batch and 

offline processing. 

 

There has been great interest in cloud-based AI pipelines, which involve distributed processing on massively parallel 

clusters. Like the cloud, distributed model training and processing frameworks are being re-implemented. The analysis 

languages being studied also include SQL-like languages for stream and big data and domain specific languages on top 

of model processing frameworks. The hot topic of AI-based consumption demand prediction of videos is being looked 

at. 

 
                   

Fig 3: Data Ingestion Strategies. 
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5.1. Types of Data Ingestion                                                    

Today’s data sources are diverse: sensor and Internet of Things (IoT) devices, enterprise applications, social media, and 

e-commerce websites, to name a few. Such data is often far from the form required for analytics and needs to be ingested 

and enriched based on other static or reference data, dynamic metadata, or global models to support complex analytical 

queries. For instance, given a collection of recent tweets, enrichment operations may need to obtain their sentiment scores, 

identify the named entities in related news articles, determine where and when the tweets were broadcasted, or 

cluster/graphically map the tweet locations in real-time. 

 

The ingestion pipeline, which connects disparate data sources to both online and offline data stores, is one important 

component of data management systems. Real-time ingestion pipelines are expected to keep up with continuously 

changing data while producing a correct and up-to-date producer view of the sources. However, satisfying the above 

requirements is inherently challenging. For one, there is often a large volume and velocity of data to be ingested. For 

another, data changes in a variety of forms: news tweets being reposted, price data being uploaded or updated in a batch, 

or stock trending becoming available in a time-ordered stream. Moreover, frequently, based on the use case, enrichment 

operations can be compiled code, declarative queries in SQL, arithmetic expressions in Scala, or complex machine 

learning models represented in Dask or TensorFlow. These facilities may have completely different system environments 

and resource slots, as well as data formats. Lastly, furthermore, in many cases, the consumed data sources are in the 

public domain while the enrichment models and reference data should be kept private and need to be gradually enriched 

offline. 

 

To meet these steadily growing requirements, a new data ingestion framework called IDEA, which can ingest online data 

at scale and enrich it based on configured and adaptive enrichment models and reference data, is presented. 

 

5.2. Tools and Frameworks                                                        

 Deep Learning frameworks specialized for extremely large neural networks and intricating workloads. These 

frameworks can efficiently utilize a powerful computing environment by offering sophisticated execution scheduling 

algorithms, optimized communication schemes, and low-level resource-aware kernels. However, deploying DL pipelines 

running on these complex frameworks, especially in a multi-cloud environment, is a challenge. A unified abstraction is 

proposed to compose general resource-intensive workloads on cloud computing and an easy-to-implement execution 

framework for a wide range of workloads is introduced. Hyper-unified frameworks can employ multiple levels of data 

parallelism. A software framework is implemented to unify computation distribution and manage hyperparameters. Both 

sensitiveness to early stopping states and execution strategy are investigated. The performance study containing two large 

models on three machines demonstrates that 5.6x and 8.2x improvements in speedup are observed compared to widely 

adopted frameworks with consistent prediction accuracies. Nowadays, networks with huge computing and memory costs 

are surfacing, which would lead to a speed limit on DL frameworks using static task scheduling decisions defined in the 

compiled runtimes. Cloud frameworks empowered by computing resources could afford this heavy overhead, while data 

transport and tool incompatibility are challenges during the transformation. Advanced programming languages are 

proposed to unify and collaborate heterogeneous computing resources. In addition, based on new designs for the 

programming languages, live automation of resource allocation is studied. Compared with edge-cloud computing 

patterns, they can achieve a lower overall cost and guarantee the rapid growth of production results. Cloud workloads 

can consist of various scheduling patterns, from parallel map-based computing manufacturers with mandatory 

performance guarantees to a loose style of standalone models with soft consistency constraints. Hence, the computation-

device association granularity in cloud computing frameworks is essential for efficient execution. Initially in cloud 

architecture, computation modules specified fine sub-computation tasks in a unified framework, while these frameworks 

might not efficiently accommodate the granularity of scalable nodes, leading to data partitioning and transmittance 

overheads. High-performance white-box libraries for intermediate computations that can handle incrustation model 

architectures are employed in a fine-grained pipeline. These workloads can incorporate a numerical computing library, 

stateless complex operators, or on-demand data queries, which benefit the two-level scheduling run pipelines as both 

dynamic task partitioning and decentralized compiling in HPCs. The off-peak hyperparameter tuning status over 

execution history can also be leveraged to shrink the burden in hyperparameter tuning. 

 

5.3. Best Practices for Ingestion                                                     

To allow users to control data streams during ingestion, some ingestion systems offer the concept of "data stream 

management". Apache Pulsar is designed from the ground up to provide end-to-end Quality of Service guarantees, with 

storage as part of the technology stack. This allows Pulsar to act as a highly scalable persistent event log, supporting very 

high throughput applications where data delivery is crucial. Furthermore, as part of the answer to the “data is not enough” 

maxim, platforms like Apache Ignite and Apache Druid seek to accelerate data ingestion while enabling indexes over the 

data. 
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Although typically a part of the earlier W1 pipeline, the process of capturing data from applications and transforming 

them into a more usable format is equally important in the W2 search and exploration part of data platforms. Stream data 

capture via Change Data Capture (CDC) technology is gaining momentum for multiple reasons. For example, besides 

being (almost) generic in its input and output formats, it allows data to be obtained from previously unreachable data 

sources with minimal changes to the source applications, and it provides capabilities for near real-time analytics with 

ambiguity and containment of failures. The CDC technology stack comprises message brokers such as Apache Kafka or 

strongly typed streams such as Apache Beam that allow the composition of processing pipelines. On top of them, one 

can find transformation wheels implemented via custom programs servicing data consumers at production quality with 

failures recovery, data duplicity checks, etc. 

 

Concerning data transformation, there is a spectrum of systems catering to use cases of varying complexity. Event buses 

operating at exceptionally low latencies and offering guarantees of delivery are often foundational components in a data 

engineering stack. Atop these stream-based systems, SQL-oriented tools processing data with declarative SQL-like 

languages enable enriching the incoming event streams with selected metadata by foreign key lookups. At the highest 

level of the abstraction foreground (read compute-intensive), streaming applications can be programmed to process the 

event streams independently of the rest of the system where the code is tightly coupled with the application that authored 

the data. 

 

VI. DATA STORAGE SOLUTIONS 
 

The modern data architecture is undisputedly cloud-first, being developed and operated by today’s cloud data teams on 

hybrid and multi-cloud technologies. Partly to take advantage of their scale, and partly because many analytical 

algorithmic techniques developed are fundamentally accumulation based rather than point-update based. However, real-

time business intelligence is critically important to many enterprises doing online businesses. This insight led to the 

pioneering of an alternative cloud data architecture also capable of near real-time fast data processing, meeting immediate 

business intelligence needs. 

 

Big data analytics has to switch from pull to push — from batch querying to streaming data assembly, as evidenced by 

the emergence of streaming data platforms and specialized stream analytics engines. Real-time business intelligence 

demands radical shifts from batch querying on cloud data lakes backed by high-throughput object stores to the critical 

use of streaming data, aggregate materialized views or event stream features, and fast data processing. Distributed stream 

processing engines have become an indispensable part of modern analytical architectures. Cloud-streaming-based, on-

the-fly event-sourced data lakes and continuous analytics service solutions now seamlessly deliver end-to-end scalable 

data platforms. 

 

Moreover, cloud data processing, at minimum, demands three essential needs: massively parallel data and resource 

scalability, heterogeneous cloud services interoperability, and complete processing cycle — from data acquisition to 

workload allocation, filtering, batching, assimilating, processing, storage, and publishing. Existing cloud data platforms 

either provide highly integrated services feeding each other or are flexible with plug-and-play technologies. But very few 

tie up, integrating a total data processing cycle, catering for the compelling data cohesion and inter-operation across cloud 

services, and the extremely fragmented configuration complexity. 

 

6.1. Choosing the Right Storage Type                                           

In modern AI architecture, a solid foundation layer is required to collect raw data from diverse storage sources, clean, 

transform the data, and ingest it into a persistent storage repository so that it can be used for data training or batch 

computing. The foundation data systems are often referred to in AI architecture as the “Data Lake” or the “Data 

Warehouse” repository. In a data lake, streaming, quick, and event-based sensor data in original and semi-structured 

formats are ingested, queried, and analyzable. Batch data or historical data from traditional relational databases, CSV 

files, and enterprise applications are also converted, cleaned, and trained in this type of repository. Data Lake is the 

storage repository of both real-time and batch sensor data. Some data can be used for real-time machine learning (ML) 

and AI insight on the same query. For batch data, other methods are often used, such as Extract Transformation Load 

(ETL) approaches with offline analysis. 

 

In cloud-based data platforms, a myriad of structured, semi-structured, and unstructured data should be collected from 

different data sources including NoSQL databases, relational databases, flat files, message queues, APIs, IoT devices, 

and data reservoirs. As the volume of data is massive, it is important to first compare different storage backends after 

collecting it. In general, cloud storage should be intelligent and seamlessly integrated with data pipelines. It should be 

able to take proactive actions and re-configure the architecture while system components might fail.  
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Furthermore, storage backends would change depending on the types of data, their flow, and the workloads utilized to 

consume this data. Finally, network and performance metrics should be monitored in such data systems. In similar 

scenarios where cloud-based data platforms collect unprocessed raw data from different data sources. Either a seamless 

data movement strategy is required or a complex data pipeline not only transfers data but also captures the type of data. 

 

Equ 3: Scalability of Processing with Parallelism. 

 
 

6.2. Data Lakes vs Data Warehouses                                         

The terms data lakes and data warehouses are commonly used today in the field of big data systems. Stakeholders can be 

easily confused by their different and overlapping meanings. For instantiating a cloud storage system, the choice might 

be between some cloud file system or a data warehouse. A careful analysis will reveal that the cloud storage systems 

provided by all these vendors share some common aspects. First, one can store and query data in a cloud data lake without 

knowing how the use cases will evolve in the future. Ones from the data warehouse family require prior knowledge of 

the types and formats of data and queries, and they perform best when those aspects are stable. The data lake is flexible. 

However, performance is low, and run-time evaluation is required to retrieve the data. Second, one can scale storage 

space and computation power dynamically on a cloud data lake. The former can be done almost instantaneously, and the 

latter in minutes. This is not the case for on-premises solutions. On-premises data lakes are more expensive since they 

require investment in hardware and computation in advance. The prices of resources for the former are also more 

economical. However, relying on a cloud platform also leads to serious risks and challenges, including data security, data 

provenance of pipelines, and fault tolerance of pipelines. In the cloud big data systems that are based on a data lake 

architecture, the term data lake describes an architecture, that consists of the following components: a cloud storage 

system to hold raw data in the cloud; a query language to implement pipelines; a computation framework to execute those 

queries; and connectors and clients for external experience. This architecture has been implemented as a collection of 

systems. One or several cloud storage systems are deployed using the cloud storage APIs of different vendors. A great 

number of early cloud data warehouse solutions can be used. Open-source frameworks are preferable for pipelines, but 

cloud-based services are also available. For languages and jobs, cloud protocols are used to access the systems. The big 

data network architecture can be seen as comprising three layers (i.e., data storage systems, applications, and data analysis 

systems), with the cloud integrated into the bottom two layers. 

 

6.3. Scalability Considerations                                          

End-to-End Cloud-Scale Data Platforms for Real-Time AI Insights. 6.3. Scalability Considerations. Data volume is a 

direct consequence of data quality in data platforms. Big-data systems (BD) and cloud systems (CS) ensure that high-

data volumes are effectively ingested, cleaned, processed, extracted, and served on demand for analytics workloads. In 

contrast, a multitude of future data-and-analytic-intensive workloads suggests an explosion of data volumes, requiring 

petabytes or more storage, processing capabilities, and cost-aware retention strategies. The Cloud-Scale Data Platform is 

responsible for these tuning considerations and comprises major scalable sub-systems on data management (i.e., batch 

processing, streaming processing, and serving) solutions, supplemented by cloud infrastructures. To ensure the scalability 

of the proposed system architecture, three aspects are elaborated: Hardware scalability, software scalability, and out-of-

scope scalability. At the hardware level, scalability concerning node scale and communication load is addressed. 

Therefore, sharing hardware resources among operators is avoided and specific operator-to-node scheduling is treated 

on-the-fly or based on preconfigured configurations. To prevent communication hot spots, operators on different nodes 

are assigned based on monitoring information on skewed workload and data volume after a static partitioning and 

deployment stage. For the software level, several software engineering solutions are followed to enable software 

scalability. In particular, almost all components of the system architecture can be horizontally scaled, Leave-One-Out 

(LOO) mechanisms are designed to maintain the high availability of the system, and a storage-efficient throughput-

awareness scheduling mechanism is passed across components to achieve load-balancing. The mechanism intelligently 
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controls task granularities and the pre-specified number of executions for each component. Out-of-scope scalability 

encourages other research endeavors. The extent of scalability and possible aspects of future research are addressed. It 

discusses tuning in regards to elasticity, reactiveness of future workloads, and upgrading/overhauling strategies of 

components. 

 

VII. DATA GOVERNANCE AND SECURITY 

 

Privacy breaches of data sources target sensitive details on persons, usually depending on which sectors they belong to. 

In this work, the users can consume data knowing that they remain entirely anonymous at the data sources or production 

level. The aim is to manage privacy breaches during queries targeting reidentification, correlation, compromise, and 

similar attacks. Therefore, all usual queries can be run and cannot be retrained to a specific user. The most promising 

approach is Relational Randomization, where all data is transformed by creating and working on encrypted tables. An 

example of this paradigm is the Perturbated Table, which is a single table with the same schema as its original and 

obfuscated by a nulling cascade. 

 

Data integrity is a vital aspect of this storage. Table contents must be checked for data manipulations, as well as for 

hardware component damage that could lead to lost data. For this, main paradigm here is MACs combined with hash 

values. In this logic, every data manipulation is run through a secure, isolated module that checks the integrity of source 

data and creates signed MAC and hash values for the new data. 

 

In this way, the process calms a flow of events, checks them at every point, and adds new test statements on the new 

objects added to the process. They are stored along with the table and checked every time a flow is queried. Therefore, 

corrupted or missing keys can be spotted, and the damage can be identified. Aside from the MAC, the resulting hash 

value is also stored along with the MAC to allow a basic check with minimal overhead when querying a table. 

 

 
                

Fig 4: Data Governance and Security. 

 

7.1. Importance of Data Governance                                          

Data is no longer just a synonym for Big. Data is diverse. Different data sources provide different types of datasets with 

diverse semantics. This data deluge can be both challenging and enriching for organizations. From a governance point of 

view, the research on smart and sustainable solutions to extract value from ‘All Data X’ is driven by business needs. The 

motivation to extract value from all company data is at the heart of data governance (DG) initiatives. Demand-side DG 

is concerned with identifying types of data, knowing what data is available, and making decisions on how to define, 

manage, protect, use, and share data across the enterprise. Data governance is a broad area covering several main aspects 

such as data definition, data management, and data accessibility. 

 

Before aspects of data cleansing, data integration, data exploration, data mining, data visualization, data retrieval, and 

data exchange can be tackled, data needs to be systematically identified with an adequate level of granularity and 
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characterized. This information is scattered across different types of users, processes, data formats, and systems. The 

challenge is to provide a global, complete, and trustworthy view of which data exists and how to create queries to retrieve 

only the types of data desired, taking into account that all this information may be wrong or out of date. In addition to 

the above challenges, many organizations are also dealing with excessive production of data that goes unused after 

delivery. This can be due to a lack of understanding of the data’s content, size, or quality. In due course, this accumulation 

can lead to data islanding, silent failure liability, data quality issues, or increased censorship and governance costs. Data 

governance for this data is low. 

 

A broad use case around the provision of adequate answers to the business question ’What does the Credit Facilities data 

provided by Bank X to Bank Y mean?’ is formulated. Using this question, the need for a business view of the Credit 

Facilities data is underlined which makes the answer understandable to business stakeholders. This business view 

contains a meta-representation of the Credit Facilities data in terms of business concepts. Furthermore, it allows for an 

easy understanding of the entities that this data source contains, the purpose of its creation, its owners, the last change 

made to it, and whether it is sufficiently governed. 

 

7.2. Security Best Practices                                                   

Artificial Intelligence (AI) based applications raise concerns for the underlying cloud or fog services. A successful attack 

against a cloud service, such as a successful authentication attack against an access control service, can lead to the 

complete impairment of other AI applications. Because most service attacks, and passive and active attacks against data 

storage services, can also apply in the cloud, these services must be secured. However, there are services where the 

requirements can be considered differently, such as for access control. Here requirements are introduced for this service, 

including the use of the cloud or physics-based methods, such as multimedia security. Similar models for ensuring privacy 

in AI environments are shown. Other attacks could be thought of against data itself due to faulty cloud or fog services. 

These include manipulative adversaries, an often neglected domain, especially in cloud applications. The manipulation 

can be successfully performed using AI-based approaches or by inexperienced users. 

 

Network-based services are an important part of AI-friendly applications, just as for any cloud agent. Denial-of-service 

attacks are not necessarily more clever and could either be indiscriminate network flooding or specific attacks against 

known machine learning algorithms. Similar to data-based adversaries, AI-based solutions could also be employed here 

against floods, which could learn the normal data rate and take action accordingly. Instead of preventing attacks, they 

could at least make them known faster and thus enable countermeasures. Fog computing as an extension of cloud 

applications also brings new attacks. The responsibility for security can be divided between more parties. With it, 

responsibility for security and auditing is spread across many parties. Security deficiencies at a lower level could affect 

other areas like social cloud, where shifts in user data could be problematic. 

 

For a network of private devices with a limited security model, physical access poses a different threat. Networks could 

be manipulated simply by taking control of devices or through data transmission. It is crucial to restrict access to a 

minimum. Automated fault detection mechanisms capable of detecting unusual activity are also conceivable, or devices 

from the same provider. Data encryption can be used when machines do not require tightly coupled data access. Tracking 

means should also be put in place to enable faster reactions. Since moving to the fog portion of a network may be a 

critical point in the outflow of private data, secondary user accounts can also be created. 

 

7.3. Compliance and Regulatory Considerations                    

Recent transformations in technology developed various machine learning (ML) models to carry out different tasks with 

increasing complexity, involving natural language processing or computer vision. Processing vast amounts of data with 

massive computing has made these models grow by orders of magnitude. Large Language Models, with tens of billions 

or even trillions of parameters, can generate human-like text, summarizing documents, and even programming code. 

Compliance and regulation are crucial in AI-enabled decision-making systems due to the risk of systematic discrimination 

and biases in technology. As machine-made decisions become more prevalent across various domains, the lack of 

explainability and transparency in algorithms can endanger fundamental rights and democratic values. However, 

compliance with these legal obligations is a challenge due to the intrinsically opaque nature of ML models. To handle 

accountability and compliance in AI systems, organizations submit algorithms to a trusted third party with sufficient 

domain knowledge and technical expertise, such as a special unit within a regulatory authority or an auditing company, 

to monitor their behavior on behalf of public authorities. By assigning decisions on who is supervised to semi-trusted 

entities that collect and store technical reviews and compliance evidence, only a symbolic representation of compliance 

in the form of digital signatures is publicly accessible. On the other hand, the specialized units of authorities have no 

access to the sensitive non-public data on which algorithms make decisions. Providing compliance evidence to authorities 

is complicated by both internal and external factors.  
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Compliance evidence is often non-standardized and consists of various artifacts that differ in format, language, or 

encoding. This heterogeneous nature of compliance evidence hampered the construction of a unified proof submission 

framework. Additionally, ML is often deployed as non-fungible model weights in docker containers, leading to difficult 

access to the model architecture, data processing, and training details. Before converting models to a translucent format 

to share proof submission with auditors, the absence of required infrastructure may prohibit compliance evidence sharing. 

Reputational risks, cybersecurity threats, and business losses are concerns constituents have in sharing compliance 

evidence. 

 

VIII. PERFORMANCE OPTIMIZATION TECHNIQUES 

 

In the past decade, there has been a significant increase in interest in designing end-to-end, cloud-scale, multi-tenant data 

platforms for providing real-time, AI-powered insights using large volumetric data. Nowadays, enterprises are collecting 

a massive amount of data, including video, audio, text, images, and more, at an unprecedented scale and in real time. At 

the same time, there has been a massive increase in the number and amount of compute- and storage-based services 

provided by the cloud. There are already hundreds of solutions and tools that can address different stages of the cloud-

scale processing pipeline, from data collection to big data processing frameworks, OLAP databases, web serving tools, 

dashboards, and MLOps systems. Therefore, this project will design an end-to-end architecture that brings together some 

of the most popular, state-of-the-art solutions into a fully automated streaming-based ETL and CD pipeline for providing 

real-time, AI-powered insights at a cloud scale. 

 

Today, data ingestion has become a priority for many organizations, regardless of shape or size. However, the ingestion 

process can be time-consuming, especially when datasets are very large, and estimates are needed on how long that will 

take. There is a rich history of developing algorithms that can efficiently estimate how long the ingestion process will 

take on traditional on-premise infrastructures, but the cloud contributes more additional and more diverse cloud services, 

which are not available in the traditional environment.  

 

There are systematic techniques that can provide ingestion time estimates on the cloud by writing queries on the main 

underlying cloud services, mainly changing their geographic locations. It thus allows cloud scaling before ingestion and 

will be evaluated on a popular cloud-based data platform. It opens the door for wider adoption of data ingestion and more 

innovative designs for approaching data analysis. 

 

Cloud scale has made agnostic bare-metal platforms and OS, bringing more scalable and cheaper cloud-based 

computation and storage engines popular. Systems originally designed for on-premise infrastructure, such as distributed 

pixel engines, graph engines, and multi-node databases, may require excessive adaptations to be able to run on cloud 

infrastructures, not only due to the lack of suitably flexible abstractions and interfaces on the cloud but also due to 

limitations in the design space of existing engines. 

 

8.1. Monitoring and Tuning Performance                             

Cloud applications built on modern data platforms need to conform to stringent customer performance expectations that 

include low service latencies, high throughput, and reliability. The performance of cloud-scale data platforms is 

conditioned by many interacting software and hardware layers. Customer-facing services operate with queues of 

incoming requests that need to be processed and responded to. Backfill services are needed to ingest external data and 

perform warm starts. Common performance problems include service queues growing too long, backfilling services 

ingesting data slower than it is written, and hot parts of data decreasing the performance of cloud services. This section 

describes how to monitor and tune the performance of cloud-scale data platforms for real-time AI insights. 

 

Modern data platforms monitor and visualize a multitude of performance metrics in a real-time UI console. Service 

queues of front-end servers are visualized alongside system topology diagrams. Performance alarms are triggered when 

the queue length of any front-end service is too long. Custom responses include executing built-in dashboards that provide 

real-time views of streaming ingestion latency and load-balancing history across ingestion servers. 

 

Monitoring alone does not deliver high performance. Scaling cloud services up and out can improve service performance 

but often leads to higher operational cost. For instance, adding more ingest pipelines can leave some ingest servers under-

utilized. Various monitoring and tuning techniques are needed to analyze ongoing performance problems and 

incrementally tune system-wide performance. Streamlining cloud customer jobs by re-distributing region graphs over 

servers can improve service throughput by 2-3X. Sophisticated stream trimming thresholds in data retention tuning can 

help improve ingestion performance by 30%. 
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8.2. Cost Optimization Strategies                                      

Enterprises engaged in critical cloud-based workloads tackle the dual challenge of keeping their workloads error-free and 

their cloud costs manageable. The ownership of cloud infrastructure inevitably affects the Cost of Goods Sold (COGS) 

of an enterprise. The COGS for cloud infrastructure is mainly influenced by cloud spending which has two parts – the 

Compute Cost and the Storage Cost. This section emphasizes various factors impacting cloud storage cost and discusses 

possible optimization strategies to minimize it. On a broad level, cloud providers offer a tiered form of storage with 

different expenditures. The pricing difference is due to the fundamental trade-off in the cloud between the level of 

redundancy and the accessibility of data. Cloud providers also charge extra costs for storing data having certain 

characteristics – large, out of tier, or rarely accessed. All these charges lead to substantial expenditures forcing enterprises 

to keep a closer watch on their storage requirements. 

 

Preserving historic customer orientations, service records, live product details, etc., helps in better decision-making in 

organizations but results in a huge amount of data stored on cloud platforms. As a result, the volume of data is increasing 

massively and so is the number of datasets cloud enterprises are working with. At one extreme, data generation is moving 

on to the cloud, and consequently, cloud storage providers are offering services such as storing data blobs, tables, and 

files. At the other extreme, with massive data growth, a significant number of companies withdraw from the cloud, since 

the costs of storing and later accessing data are getting enormous. Cloud providers charge extra costs for cold datasets 

based on usage patterns and this sudden increase in Cost of Goods Sold (COGS) forces enterprises to keep a close watch 

on their datasets. Correcting costs of cloud storage can be achieved via an appropriate selection of restrictions – Tier 

Selection Restrictions, Cost Restrictions, Usage Restrictions, and Time Restrictions that are mathematically framed. 

 

8.3. Scaling Solutions                                                                   

 In practice, AI applications of increasing size and complexity are often developed iteratively in stages. Most AI projects 

start with a Python notebook running on a single laptop without driving access to additional resources. After fine-tuning 

and validating a model, a data scientist may require more data but need quicker predictions. Such a need for speed may 

arise as a result of a new product rollout, data arrival, or the beginning of the holiday season, for example. In such 

scenarios, data preparation needs to be ramped up to daily or real-time processing. Raw data may have to be fetched from 

different sources, filtered and cleaned, combined, aggregated, or reshaped for analysis. On a larger scale, data pipelines 

need to be built to convert raw data into structured data pipelines analyzed, modeled, and optimized by a data science 

team. 

 

The cost of building such a data pipeline from scratch can be excessively high. Part of the pain is that previous AI 

applications written in Python are not compatible with other languages or with other cloud services and tools commonly 

used for ETL operations. AI applications require new data sources, modified probability distributions, new models or 

changed parameters, or different toolkits or frameworks applied. Turning an AI model into a valid production system 

requires a dedicated engineering effort. Meanwhile, there is also a need to augment current data, such as historical data. 

Before modeling, data must be cleaned by removing duplicate data entries, free text parsing, addressing missing values, 

or filtering out outlier points. Analysis data must be aggregated, and graphic functions considering data granularity are 

applied. Subsequently, an initial model is built to provide insights into the data. Performance metrics, regularization, 

hyperparameters, and ensemble methods are tuned by the data science team. Insights into the data may differ among data 

scientists due to different understandings of the data or groups of data. When deploying the model in a production system, 

the pipeline must be designed and implemented. When the results derived from the model must be serialized and 

displayed, new questions or further analysis may arise that require feedback from the pipeline. 

 

Unfortunately, building pipelines is a time-consuming and compositional task for data engineers due to the limited 

combinational capability of existing operators. Large-scale applications span data extraction, transformation, and load 

processes involving multiple distributed systems. Each system introduces heterogeneity and different programming 

paradigms. Current data-intensive workflows are designed for ad-hoc analysis of small, manageable data. Thus, they lead 

to low productivity and suboptimal resource usage. Distributed and cloud-resident implementations are difficult to 

environment engineer knowledge, resolve routing information, or efficiently control execution resources. For a machine 

learning engineer, the diffusion of different languages, platforms, and models requires more time to find fit solutions and 

less focus on modeling. 

 

IX. CASE STUDIES 

 

Data analysis applications have become more data-intensive and compute-intensive, driven by the unprecedented growth 

in data, the exponential increase in computing resources provided by Cloud / Cluster, and the rapidly evolving compute 

models from traditional Batch to interactive, streaming, and mixed. Multitude of choices for computation frameworks 
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with significantly different APIs and semantics to process the data, such as SQL, Workflow, MapReduce, Streaming, and 

AI/ML on Graphs, etc. However, the huge performance boost due to the fast growth in computing resources or the rapid 

evolution of computing frameworks could not be fully reaped by their users. Most computing frameworks are capable of 

hitting 80% or more performance potential in ideal computing environments for some simple compute workloads, 

however, it may take several months and a variety of skill sets or expertise for a data stream processing system to be 

configured to fully harvest the performance boost in real-world applications. C-Pipe with Smart Discovery and Intelligent 

Re-Optimizations can on-the-fly tune the data analytics applications. C-Pipe has been deployed and integrated as a drop-

in module to the MTA, using the system auto-recommendation and self-reconfiguration, the systems can be reconfigured 

automatically and on-the-fly to draw 10-fold overall performance. To address the performance gap in building, deploying, 

and maintaining end-to-end AI pipelines on top of Cloud-scale Data Platforms, it proposes a unified, deep, automatic 

end-to-end toolkit, Complexo, of which three key components and AI design principles are introduced. Key Components: 

A low-code Application Interface to build end-to-end AI pipelines through a programming-in-the-linguistic-action 

approach. It enables Data Scientists to easily configure or customize big data computation operations to deploy native 

applications or third-party workloads, A high-level Automatic Optimization Interface, on the other hand, intuitively 

optimizes the whole AI pipeline through a programming-in-the-interaction-action approach. The optimization is on the 

wide range of optimization models, including the “use” optimization strategy such as custom integration & tuning AI 

ops, configuration tuning, etc, on the one hand, and the “structure” restructuring, displaying, and even modifying AI ops, 

on the other. A sub-symbolic Deep Optimization Engine, taking the AI and AO as the input and generating an optimal 

distributed execution plan is the last key component. It enables a new paradigm in end-to-end automatic optimization 

toolkits by pursuing the discovery-exploration optimization philosophy and satisfying the usual deep learning 

requirements of robustness, generalization, and online learnability. The end-to-end optimization generative learning 

model, techniques, and implementation are introduced. 

 

9.1. Industry-Specific Implementations                                       

A comprehensive approach for building end-to-end cloud-scale data platforms has been outlined. Many industries are 

deploying cloud-scale data solutions on various platforms. Based on unique requirements, industries are proposing these 

solutions in their ways, which are unique to themselves. 

 

According to the needs of the service-based industry, architecture for cloud-scale data platforms is structured. In this 

effort, the need for cloud-scale data platforms is pointed out. A demand framework for cloud-scale data platforms is 

defined. Based on the demand framework, a cloud-scale data platform architecture is proposed and elaborated step-by-

step. In the end, use case examples are provided to validate the practicality and efficacy of the suggested architecture. 

 

Cloud-scale data platforms represent a comprehensive solution stack for cloud-scale data solutions. Such a solution stack 

provides a topology and set of working components for building cloud-scale data solutions. Cloud-scale data platforms 

can be structured by satisfying the individual needs of each particular domain. Tools and frameworks for each domain 

are of vital importance for building cloud-scale data platforms. As such, the need for framework-based cloud-scale data 

platforms comes up in many industries. In response, a well-structured approach is proposed to build cloud-scale data 

platforms by accommodating different requirements from various domains, which induces the idea of industry-specific 

implementations. Focus has been laid on the case study of the service-based industry, as an example of industry-specific 

implementations. Constructing the architecture of cloud-scale data platforms for the service-based industry is a nontrivial 

and challenging task inherently. This architecture has been investigated, defined, structured, and elaborated step-by-step. 

Cloud-scale data platforms have become the de facto solution for cloud-scale data analysis and management. By 

collecting, storing, managing, processing, analyzing, and visualizing cloud-scale data of various formats, they provide 

an environment for deriving insights and values from the raw data. In the past few years, many platforms for building 

cloud-scale data solutions have been developed, forming a solution stack that contains tools covering most of the phases 

of cloud-scale data analysis and management. All these platforms, which have unique and custom-specific 

implementations, are in the same format as plug-ins. As such, the development of a framework for organizing, integrating, 

managing, and orchestrating these tools is important for decreasing the cost and effort of adopting cloud-scale data 

platforms. 

 

9.2. Success Stories                                                       

E-commerce Recommendation Engine: Mastercard engineers built an end-to-end AI platform called Ace that easily 

integrates big data analysis and deep learning AI applications in a single environment. It includes data ingestion, 

preparation, training, model debugging, monitoring, and serving features. This platform, built on open-source 

technologies, scales from local laptops to distributed cluster data centers. It is first used in Lambda architecture to analyze 

transactions in near real-time and generate alerting events for potentially fraudulent transactions. As the weekly data 

volume grows to over 400TB, the multidimensional analysis demands on big data increase. These led to using Spark for 
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batch analysis of historical data for 30+ days and using streaming analytics engines such as Storm and Flink for real-time 

processing of transactions. Daily architectures now run on new TPC-DS data, but the interrogation can take days or 

prevent it from running entirely due to unexpected data distributions. 

 

Biological Activity Prediction for Drug Discovery: Deep learning for structured data problems is extensively applied in 

cheminformatics, bioinformatics, and in predicting certain biological activity through complex chemical and biological 

structures. With a passion for rapid drug discovery and development in the race to medicine, the goal of the project was 

to minimize the time and costs of drug discovery and development while maximizing safety and efficacy. This is 

accomplished through the application of deep learning to data-driven drug science with a focus on quantitative structure-

activity relationship models for predicting drug activity. This includes applying statistical machine learning methods for 

drug discovery together with chemoinformatics and bioinformatics domain knowledge by pharmaceutical scientists. 

Attempts to broaden the applicability of chemoinformatic representation and use deep learning methods are also made. 

This is completed through open-source development efforts in data science libraries and platforms that have already been 

well undertaken in industrial communities. 

 

9.3. Lessons Learned                                                              

Deep learning workloads can heavily use GPUs due to their acceleration for matrix multiplication and convolutions. 

Tasks can contain heterogeneous workloads including pre-processing steps, distributed training, hyper-parameter search, 

and batch inference, which are often implemented in various languages and frameworks. A computing environment can 

combine on-premise infrastructure and multiple clouds providing different resources with distinct pricing models. 

Managed solutions can provide ease of use and setup. However, they add complexity to dealing with multiple 

environments. Specifically, different cloud providers offer a variety of storage and compute resources priced differently 

and upon different usage conditions. A computing environment can combine on-premise infrastructure and multiple 

clouds providing different resources and distinct pricing models. Moreover, typically pricing costs stay the same, while 

on-demand resources are usually the most expensive and can change pricing models significantly. Preemptable or spot 

instances are significantly cheaper but less stable and can cancel a task at any point in time. 

Even when using a managed solution, there appears a problem with how to distribute tasks to different resources. Tasks 

can contain complex machine learning workloads with heterogeneous operations: pre-processing and batching inference 

utilizing CPUs while training, hyper-parameter search, and model retraining being executed on GPUs. Each workload 

can be cross-implementable across different languages and deep learning frameworks. Some computations hint at 

language, some are language agnostic while requiring an ML framework-specific compiler, and some are hybrid requiring 

both an ML compiler and deployment engine. Each workload requires specific resources and compute clusters. 

 

Cloud costs impose stronger restrictions, multiple clouds provide different resources and pricing models with additional 

charges for accessing remote resources. Exploit cheaper preemptible instances that cancel tasks or models can simply 

drop down in accuracy requiring remediation and fine-tuning. A remarkable approach can be using a narrow band with 

only one or two neighbors of each model, instead of a yield limit all neighbors can contribute to reducing overfitting. 

Each cloud provider can be weighed by many different parameters having a different impact depending on scale by 

market capital per cloud provider. This situation can be complex and too dramatic. Human management alone simply 

cannot deal with it. 

 

X. FUTURE TRENDS IN DATA PLATFORMS 

 

Real-time AI has become ubiquitous, generating insights in milliseconds within cloud-scale data platforms ingesting 

millions of events per second. Much progress has been made in building these real-time AI engines end-to-end, with a 

focus on enabling advanced mission-critical AI use cases while delivering cloud-scale performance and high availability. 

Modern cloud-scale data platforms comprise multiple components within each layer and span multiple layers of the 

architecture. Integration, scalability, performance, and operationalization are key focus areas that haven’t received 

sufficient attention in the literature. In the future, these challenges will be ever more prominent due to a dramatically 

growing range of use cases and a race to cloud and automation across industries. Via their unique perspectives, this covers 

forward-looking trends that will gather momentum over the next few years across both technological and business model 

fronts. 

 

Big players such as Meta, Microsoft, Google, Amazon, and Alibaba have been investing heavily in AI for many years 

with recent success. The big cloud providers have built a comprehensive set of end-to-end services over the years, 

covering every piece of the cloud. However, no one component is designed to work perfectly as a building blocks for 

scalable and affordable enterprise AI. There are many potential opportunities to evolve tools such as observability 

insights, data lineage, and automated data preparation powered by smarter, task- and resource-aware models.  
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New and improved service/functionality interfaces enabling efficient building and deployment of end-to-end data 

pipelines must also be developed. Open-sourcing cloud scale solutions/tooling, cooperation across companies, and 

machine learning efficacy enabled by extensive workloads will gradually normalize the offerings of new products and 

services. However, many entrenched technologies have become too sophisticated and normalized to ever host a new 

competition, such as graphics processors, tensor accelerators, and modern databases. 

 

A paradigm shift in how organizations view their data will take place over the next decade. Besides business intelligence, 

analytics shall significantly impact enterprise credibility and interactions with the world. Organizations will become 

smarter and build web insights and tools to simplify and automate interactions with customers, competitors, supply 

chains, and regulatory bodies. Cloud computing shall dramatically change the cost structure on ownership and usage of 

IT and data/insights pipelines. This shall incentivize the rapid emergence/exponential growth of new cloud-based firms 

and services embracing the multi-tenant model. Organizations historically large in size will either become bankrupt or 

gradually crushed by the cloud revolution, leading to disassembly to a confederation of cloud upstarts, and/or reinvention 

and rebuilding in the cloud. 

 

 
         

Fig 5: Future Trends in Data Platforms. 

 

10.1. Emerging Technologies                                                          

The ever-growing amounts of data generated, collected, and stored result in forms of data that challenge the current 

database management systems. Such voluminous data is commonly referred to as “Big Data”, and no single vanilla 

DBMS vendor can battle the climate of data complexity and its demands alone. To collect, store, and analyze rapidly 

increasing amounts of mostly distributed and heterogeneous data continuously is a huge, exciting, and challenging 

opportunity that needs to be addressed with new creative approaches. Such “Cloud-Scale” is achieved via joint multi-

faceted, multi-layered, and multi-dimensional optimization of diverse components of these multi-component data 

platforms. Work in this area will continue to emphasize the interplay between technologies to find the best design, 

scheduling, and configuration of these flexible components given various SLAs and diverse data workloads. 

 

Large Cloud Service Providers operate various forms of multi-component data platforms that integrate various kinds of 

data services. Such cloud-scale data platforms pose new challenges and exciting opportunities for research and 

innovation. Paramount research challenges include designing robust and flexible ambient microservices for the multi-

data services platforms, optimizing their designs under various multi-faceted, multi-layered, and multi-dimensional cost 

objectives, and regulating various aspects of operational practices of the platform and evolving and co-evolving their 

components in real-time. 

 

10.2. Predictions for AI and Data Integration                 

Significant progress has been made toward developing and deploying systems that embody these recommendations over 

the past few years. It is predicted that organizations will leverage it to build integrated systems that provide rapid 

evaluation and integration of alternative products based on complex data. As a result, organizations will be able to obtain 

higher-quality predictions through domain-guided search in any domains for which suitable models can be deployed. 

This integrated capability can be deployed in a data basin to protect the data collection processes from service 

interruptions, data corruption, and data loss. AI and data integration technologies will provide organizations with early 

signs of emerging inflection points as determined by sudden shifts in trends, changes in key features measured across 

large data sets, and changes in data quality or integrity. AI will be able to automate the majority of required product 

development tasks and suggest detailed reusable models that match the requirements of the new problem. A significant 

breakthrough in AI service quality and widespread adoption in many industries are expected. 

 

AI and data integration technologies will expedite the design of tailored data generation mechanisms that will replace 

deep learning models for a wide variety of data types. Noise will be automatically incorporated based on model and task 

needs. End-to-end systems for generating arbitrarily large data that comply with complex nonuniform constraints will be 
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developed. More image detail, wider video scene coverage, and new video product types will be provided. Text length 

and vocabulary types that were previously unthinkable for typical dialogues will be generated while adhering to the rules 

of natural human interaction. In addition, AI will design entirely new physical manufacturing processes to implement the 

above products and data generation screening and buying agents will be designed that understand target user 

requirements. AI and data integration technologies will enable real-time awareness of production environments, 

production stream characterization based on historical and real-time data, rapid identification of outliers and slow-moving 

streams, and development of refined models for finer quality predictions. Additionally, AI and data integration 

technologies will assist in automating product stream and production equipment management via expert and active 

learning, respectively. 

 

10.3. Impact of Quantum Computing                                  

Research in the field of quantum algorithms, machines, and simulators is likely to carry on quickly and gain significantly 

more recognition over the foreseeable future. Despite an often inherent hype, quantum computing has the potential to 

substantially impact the development of such applications and their prototype implementations on laser-chip or 

superconducting quantum hardware. The situation is similar to the first presentation of classical computers after World 

War II. A wealth of algorithms for direct applications such as crypto-breaking or realistic tasks like error-corrected 

simulation, large optimization problems or AI datasets have been presented, but the noise, limited connectivity, and 

connectivity mappings of such early classical machines pose enormous challenges to sizable implementations. 

 

Thus, several research avenues and still unsolved theoretical questions are open for discussion and exploration, for 

instance, the question of how to evaluate the efficacy of non-exponential speedup claims and to give guarantees on how 

quantum or classical solvers would perform on a given problem instance beforehand. These questions are especially 

pertinent for complex real-world simulation or optimization problems, which are often approximated or abstracted from 

large complex sets based on a reduced view. However, as can be seen from the PRIMES project, quite reasonable and 

often easily computable approximations or abstractions may greatly condense extremely large complex problems while 

staying NP-hard, and finding appropriate strategies may be as difficult as the original problem. 

 

Such efficiency bounds and complexity considerations would assist in understanding the advantages and limitations of 

classical and quantum solvers clearly. In addition, the exploration of other quantum-inspired schemes that endow classical 

algorithms with replenished coolness or other avenues to speed up classical algorithms or important and similar 

complexities for learning data pools are pointed to promoting discussions on the potential impact of quantum computing. 

 

 
 

Fig 6: Cloud-Scale Data Platforms for Real-Time AI Insights. 

 

XI. CONCLUSION 

 

This paper describes the latest work on building end-to-end cloud-scale data platforms for real-time AI insights. In the 

past few years, efforts have focused on cloud infrastructure and building data management services from the ground up 

on the cloud, with the experience of building and running machines with petabytes of storage to build general-purpose 

cloud database services and designing real-time analytics systems to analyze hundreds of terabytes of web data every 

day, as well as streaming data management platforms capable of ingesting and processing tens of millions of records 

daily. The idea of turning telemetry monitoring and data measurement into customer insights has also emerged. As data 

continues to grow in volume, variety, and velocity, there is renewed interest in building systems to extract useful insights 

from it. To address this challenge, an AI-augmented approach has been developed to build futuristic data service systems 

augmented by ML techniques that help manage data, speed up DB design, and enhance AI-assisted developer experience. 

These services allow intelligent data design, accurate choice of data engines, structured data programming, explanatory 

query diagnosis against time, and good input sampling selection among others. Scientific discoveries and engineering 
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breakthroughs have driven progress in many domains, including artificial intelligence, microbiology, robotics, 

observatory networks, and sensor paradigms. The advancement in computer or data-powered techniques has led to the 

state of the art machine learning or data management approaches. Advances in AI and machine learning have further 

allowed breakthroughs in domains such as drug discovery, healthcare, cell biology, image processing, and pandemic 

prevention. Such developments have led to more data being collected and exploited, introducing new challenges and 

opportunities to the data management community. 
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