
ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 CertifiedImpact Factor 7.918Vol. 12, Issue 2, February 2023

DOI: 10.17148/IJARCCE.2023.12253

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 243

Smart Contract Using Solidity

(Remix –Ethereum IDE)

Dr. Santosh Kumar Singh1, Dr. Varun Tiwari2, Dr. Vikas Rao Vadi3

Assistant Professor, Department of CS & IT, DBIT, New Delhi, India1

Associate Professor, Department of CS & IT, DBIT, New Delhi, Indi2

Professor, Director, DBIT, New Delhi, India3

Abstract: Smart contracts are programs organized in blockchain surroundings, which manage the performance of

accounts inside the Ethereum state. It is the algorithmic explanation of a prescribed business deal procedure that is

spontaneously executed and composed of the data delivered by its parties. Solidity is an object-oriented, high-level

language for applying smart contracts. It is impacted by Python, C++, and JavaScript, and is intended to aim at the (EVM)

Ethereum Virtual Machine. This article mainly emphasizes how a smart contract is written in the programming language

Solidity. Smart contracts are an outstanding approach to generating contracts that can be placed out concretely without

human sentiments. This article clarifies what smart contracts are and how to write a contract by displaying the Solidity

programming language syntax, i.e. known as the smart contract language. The extension of this article, beginning with

the description of smart contracts, also comprises in which regions and in which schemes smart contracts are used. The

article also emphasizes the Solidity programming language syntax, which is a statically typed (characteristic of a

programming language in which various types are explicitly declared and thus are determined at compile time)

programming language considered to generate smart contracts executing on the EVM. The article ends by displaying

showing steps to execute a simple solidity smart contract using Remix IDE. Finally.

Keywords: Blockchain, Ethereum, Remix, Solidity, Smart Contracts

I. INTRODUCTION

Blockchain has progressively been commercialized by its impartiality, transparency, and equality. To the development

of Ethereum, Blockchain machinery has unlocked the gate. A blockchain platform along with smart contracts that could

hold and spontaneously send the tokens. The word smart contract constructing Blocks (like a page of a ledger or record

book) for virtual markets was developed through Szabo in 1994 that defines a computer program simplifying the terms

and circumstances of an actual domain contract [1]. These discussions are displayed as “if-else” declarations.

For instance, “if (X) sends money to (Y), (X) possibly will gain entree to (Y’s) studio apartment”. Once the predefined

conditions are satisfied smart contracts automatically enforce these negotiations, without the interference of an authorized

notary or a trusted third-party whereas this is not found in normal contracts.

We can understand this with one more example, let’s assume

⮚ My grandson is to be given twenty percent (20%) of my property.

⮚ On the other hand, I have some situations i.e. condition, for instance, if my grandson is twenty-five years or

older, he will be capable to take over this property.

⮚ If we include this condition in the smart contract, then without the requirement of any third-party smart contract

will grip the transactions.

Wherever a business deal wants to happen between two parties, you should practice a smart contract that provides you

complete control and computerizes those business dealing transactions. This is the objective of smart contract logic. Since

the early 90s supposing this idea has been existed, because of a misplaced precondition, specifically, a distributed

platform, until the birth of blockchain technology smart contracts could not come into use. It is seen that smart contracts,

which were put forward in 1994 by Nick Szabo is computer scientist, lawyer, and cryptographer have become extensive

with Blockchain machinery nowadays.

In 2008, Nakamoto [2] presented the idea of blockchain, a huge extent of consideration has been rewarded to this

noticeable machinery. At present, Nakamoto characterized his concept over and done with an implementation form called

Bitcoin. Many interesting properties of blockchain technology are demanded to have, containing impartiality,

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 CertifiedImpact Factor 7.918Vol. 12, Issue 2, February 2023

DOI: 10.17148/IJARCCE.2023.12253

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 244

transparency, and equality. Due to being developed and running on top of blockchain infrastructure, smart contracts

inherit certain interesting properties. The bytecode of smart contracts is immutable i.e., cannot be tampered with once

deployed. Moreover, the results returned after smart contract execution are irreversible and permanently recorded inside

the blockchain database.This paper is structured as follows: Section 2 presents a general review of smart contracts.

Section 3 explains Blockchain basics, Solidity, and EVM, as well as what smart contracts are and how to write a contract

by showing the syntax of the Solidity programming language. Section 4 shows steps to execute a simple solidity smart

contract using Remix IDE. Finally, Section 5 reports the conclusion.

II. SMART CONTRACT

Szabo [3] has been done initial effort on smart contracts, projected the primary idea and ideologies of smart contracts and

examined the opportunities and benefits of building smart contracts by utilizing the Internet, workstations, and additional

innovative technologies. Mark S. Miller [4] in 2000, deliberated an arrangement on Szabo’s contract basis that is a

protected dispersed determined semantic for competence-founded smart contracting. As a new technology, it is in

computational rule, has very significant features- once convinced circumstances to come across, contracts will perform

suitable movements spontaneously. On the other hand, this story has been functional in related machinery in different

applications. For instance, in the 1980s knowledge-based systems had this feature. The rule-based system is the first one

where once definite circumstance are encountered, the equivalent rule will be activated. If at the same time more than

two rules are triggered, there will be equivalent resolve machinery to organize the implementation of these guidelines.

Blackboard architecture is the second one where various representative are observing all together. The equivalent

representative will trigger its possess rule and implement the appropriate procedure, once an exact circumstance is

encountered. These representatives can be clustered this is another point of the rule-based system, and these

representatives who are in the identical cluster will be sharing the identical facts on a similar platform.

A database trigger is the third one where, an alteration in the information in the databank fulfills the circumstances for

the databank trigger, and the equivalent program will be triggered to implement. The final one is the service-oriented

system in which if the service caller encounters a convincing situation, then the system will deliver the equivalent facility

to the service caller.

The improvement of smart contracts has been gentle since there were no confidence implementation surroundings to

encounter the requirement for noticeable, confirmable, and self-imposed. The contracting party is not able to perceive

and authenticate the enactment of other contract parties openly, before the blockchain. It frequently includes reliable

third parties which is the most exclusive part, they are involved in the enactment stage of contracting. Therefore, we want

a contract mechanism that agreements with contract handling spontaneously according to the enactment of contract

parties, ho,wever the mechanism will not be exaggerated by any of them. The blockchain is a protected dispersed

databank, everything in blockchain could not be altered by any of them however be able to be checked by all of them [5].

Ethereum [6] meaningfully encouraged the improvement of smart contracts to encounter the elementary necessities of

smart contracts by Nick Szabo. States of contract in blockchain will not be altered short of accurate transactions, and

every alteration of state on it requires to go over the Blockchains dependability set of rules. Ethereum stocks the contract

itself as well as its status inside the blockchain.

The contract code kept in the blockchain will be accomplished once the terms and conditions circumstances of the contract

are fulfilled. In Ethereum from the time when dispersed terminals finish the implementation of smart contracts, as a result,

there is no particular terminal letdown, plus the smart contracts’ accomplishment will be unchallengeable and

confirmable. For that reason, to combine smart contracts and blockchain there is much room for improvement. A lot of

businesses emphasize the exploration of smart contracts and blockchain, for instance Codius (which is a platform for

securely executing smart contracts), IBM, SmartContract, Eris, and so on. To be implemented spontaneously Smart

contracts need to be surrounded into hardware, software, hence the semantics of smart contracts must be paid

consideration. But a program writing semantic must not be like the semantic in day-to-day life that is rich in semantics.

The competence of the programming language will be reduced due to the semantically rich language of the contract.

Furthermore, languages such as difficult and high-level programming languages are accompanied by possible safety

dangers, susceptibilities, and numerous other problems. Several restricted ways out have been projected to discourse

exact safety matters, on the other hand over smart contracts there is a lacking of systematic research. Singh et al. [7]

examined the existing validation methods for smart contracts in huge aspects and recognized open problems with

conceivable resolutions to alleviate these problems. To resolve the smart contract security issues Huang et al. [8]

suggested a software development viewpoint by distributing studied investigation into improvement stages.

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 CertifiedImpact Factor 7.918Vol. 12, Issue 2, February 2023

DOI: 10.17148/IJARCCE.2023.12253

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 245

III. SOLIDITY, BLOCKCHAIN, ETHEREUM VIRTUAL MACHINE

A. Solidity

Solidity is a statically (variable types are explicitly declared and are determined at compile time) typed programming

language aimed to improve smart contracts executing on (EVM) the Ethereum Virtual Machine. For implementing smart

contracts best language is Solidity which is a contract-oriented, high-level language. The behaviour of accounts state

within the Ethereum is governed by programs i.e. Smart contracts. It is inclined through Python, C++, and JavaScript and

was aimed to target the (EVM) Ethereum Virtual Machine. [[Solidity is compiled as bytecode executed in the EVM.

Using Solidity, developers can write Decentralized Applications (dApp) that implement a self-enforcing business

mechanism that is returned to smart contracts and leave an authoritative record of the transaction.

While discussing Solidity in this article, first the syntax is explained simply, then it is explained how to write an

Inheritance contract using this syntax and codes. Contracts in Solidity are very similar to classes in object-oriented

languages. They can contain state variables, functions, events, and struct types. When getting started with the Solidity

programming language, you don't need any prior experience with the language. However, having some experience with

Blockchain technology or at least understanding the basics of what Blockchain is and how it works will help you. You

can develop smart contracts on a Mac, Windows, or Linux using the Solidity programming language. In other words, the

environment you use will not have any effect on your language learning. And in most cases, you can use the web-based

Remix environment, which we will review below. If you want to discover what others are doing, you can check out the

link at stateofthedapps.com where you will see hundreds of games and apps created using Ethereum and Solidity [9].

pragma solidity >=0.4.16 <0.9.0;

contract Storage

{

 uint Data;

 function setdata(uint x) public

 {

 Data = x;

 }

 function getdata() public view returns (uint)

 {

 return Data;

 }

}

The first line tells you that the source code is licensed under the GPL version 3.0. Machine-readable license specifiers

The next line specifies that the source code is written for Solidity version 0.4.16, or a newer version of the language up

to, but not including version 0.9.0. This is to ensure that the contract is not compliable with a new (breaking) compiler

version, where it could behave differently.

A contract in the sense of Solidity is a collection of code (its functions) and data (its state) that resides at a specific address

on the Ethereum blockchain. The line uint stored data; declares a state variable called stored data of type uint (unsigned

integer of 256 bits). You can think of it as a single slot in a database that you can query and alter by calling functions of

the code that manages the database. In this example, the contract defines the functions set and get that can be used to

modify or retrieve the value of the variable.

To access a member (like a state variable) of the current contract, you do not typically add this. prefix, you just access it

directly via its name. Unlike in some other languages, omitting it is not just a matter of style, it results in a completely

different way to access the member, but more on this later.

This contract does not do much yet apart from (due to the infrastructure built by Ethereum) allowing anyone to store a

single number that is accessible by anyone in the world without a (feasible) way to prevent you from publishing this

number. Anyone could call set again with a different value and overwrite your number, but the number is still stored in

the history of the blockchain. Later, you will see how you can impose access restrictions so that only you can alter the

number.

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 CertifiedImpact Factor 7.918Vol. 12, Issue 2, February 2023

DOI: 10.17148/IJARCCE.2023.12253

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 246

B. Blockchains Basics

Blockchains as a concept are not too hard to understand for programmers. The reason is that most of the complications

(mining, hashing, elliptic-curve cryptography, peer-to-peer networks, etc.) are just there to provide a certain set of features

and promises for the platform. Once you accept these features as given, you do not have to worry about the underlying

technology - or do you have to know how Amazon’s AWS works internally to use it? Transactions - A blockchain is a

globally shared, transactional database. This means that everyone can read entries in the database just by participating in

the network. If you want to change something in the database, you have to create a so-called transaction that has to be

accepted by all others. The word transaction implies that the change you want to make (assume you want to change two

values at the same time) is either not done at all or completely applied. Furthermore, while your transaction is being

applied to the database, no other transaction can alter it. As an example, imagine a table that lists the balances of all

accounts in an electronic currency. If a transfer from one account to another is requested, the transactional nature of the

database ensures that if the amount is subtracted from one account, it is always added to the other account. If due to

whatever reason, adding the amount to the target account is not possible, the source account is also not modified.

Furthermore, a transaction is always cryptographically signed by the sender (creator). This makes it straightforward to

guard access to specific modifications of the database. In the example of electronic currency, a simple check ensures that

only the person holding the keys to the account can transfer money from it. Blocks - One major obstacle to overcome is

what (in Bitcoin terms) is called a “double-spend attack”: What happens if two transactions exist in the network that both

want to empty an account? Only one of the transactions can be valid, typically the one that is accepted first. The problem

is that “first” is not an objective term in a peer-to-peer network. The abstract answer to this is that you do not have to

care. A globally accepted order of the transactions will be selected for you, solving the conflict. The transactions will be

bundled into what is called a “block” and then they will be executed and distributed among all participating nodes. If two

transactions contradict each other, the one that ends up being second will be rejected and not become part of the block.

These blocks form a linear sequence in time and that is where the word “blockchain” derives from. Blocks are added to

the chain in rather regular intervals - for Ethereum, this is roughly every 17 seconds. As part of the “order selection

mechanism,” (which is called “mining”) blocks may be reverted from time to time, but only at the “tip” of the chain. The

more blocks are added on top of a particular block, the less likely this block will be reverted. So it might be that your

transactions are reverted and even removed from the blockchain, but the longer you wait, the less likely it will be [10]

C. The Ethereum Virtual Machine

Ethereum is a system first introduced at the North American Bitcoin Conference by Ethereum founder Vitalik Buterin.

Although it is seen as an alt coin, Ethereum is an innovative system that aims to develop blockchain technology and use

it in more areas. Buterin has changed the certificate used by Blockchain. And he developed the blockchain-based software

Ethereum using the SHA-256 certificate. Ethereum made it possible to produce documents consisting of codes, called

smart contracts. To explain shortly and understandably; as a function, smart contracts are non-intermediary systems that

express the autonomous (so by itself) performance of the contractual acts without any additional discretion of the parties,

in the event that the contractual terms agreed upon by the parties are fulfilled. Smart contracts are a computer protocol

that enables the exchange of money, real estate, or any asset that can be traded without any intermediary. All transactions

performed in these contracts are converted into computer code, stored, and controlled by users on the blockchain network.

In addition, smart contracts provide accounting feedback of transactions such as money transfers, purchases, and sales of

products or services. E.g.; if an individual who wants to buy a house uses the smart contract protocol in this transaction,

the first thing to do is to create a digital contract with the seller on the blockchain network with the terms of purchase and

sale. When a trigger transaction (payment, expiration, etc.) is initiated that is coded into the contract, the contract runs

itself and the transaction is recorded in the blockchain network. At the end of the transaction, digital receipts are added

to be kept in the agreements of the parties and the shopping is completed [11]

The Ethereum Virtual Machine or EVM is the runtime environment for smart contracts in Ethereum. Code running inside

the EVM has no access to the network, file system, or other processes. Smart contracts even have limited access to other

smart contracts. There are two kinds of accounts in Ethereum which share the same address space: External accounts that

are controlled by public-private key pairs (i.e. humans) and contract accounts that are controlled by the code stored

together with the account. The address of an external account is determined from the public key while the address of a

contract is determined at the time the contract is created. Every account has a persistent key-value store mapping 256-bit

words to 256-bit words called storage.

Furthermore, every account has a balance in Ether which can be modified by sending transactions that include Ether. A

transaction is a message that is sent from one account to another account. It can include binary data (which is called

“payload”) and Ether. Upon creation, each transaction is charged with a certain amount of gas, whose purpose is to limit

the amount of work that is needed to execute the transaction and to pay for this execution at the same time. While the

EVM executes the transaction, the gas is gradually depleted according to specific rules.

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 CertifiedImpact Factor 7.918Vol. 12, Issue 2, February 2023

DOI: 10.17148/IJARCCE.2023.12253

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 247

The gas price is a value set by the creator of the transaction, If some gas is left after the execution, it is refunded to the

creator in the same way. If the gas is used up at any point (i.e. it would be negative), an out-of-gas exception is triggered,

which reverts all modifications made to the state in the current call frame.

IV. STEPS TO EXECUTE SOLIDITY SMART CONTRACT USING REMIX IDE

Remix IDE is generally used to compile and run Solidity smart contracts.

Step 1: Open Remix IDE on any of your browsers, select the New File and click on Solidity to choose the environment.

Step 2: Write the Smart contract in the code section.

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 CertifiedImpact Factor 7.918Vol. 12, Issue 2, February 2023

DOI: 10.17148/IJARCCE.2023.12253

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 248

Step 3: Click the Compile button under the Compiler window to compile the contract.

Step 4: To execute the code, click on the Deploy button under the Deploy and Run Transactions window. And After

deploying the code click on the method calls under the drop-down of deployed contracts to run the program, and for

output, check to click on the drop-down on the console.

V. CONCLUSION

The upcoming of civilization is virtual i.e. digital, how to transmit the physical society’s relationships into digital

relationships in the virtual domain is a huge challenge in IT technologies. The idea of the smart contract is one of the

simple concepts to resolve the code contract projected by Nick Szabo in 1994. The dealings in smart contracts are carried

out with computer codes. This is significant for the improvement and development of technology law to understand the

logic of smart contracts, where codes are law.

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 CertifiedImpact Factor 7.918Vol. 12, Issue 2, February 2023

DOI: 10.17148/IJARCCE.2023.12253

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 249

In this article, we have discussed the Smart contract, Solidity programming using REMIX, EVM, and the basics of

Blockchain. The main purpose of this article is to simplify the Solidity language so that everyone can understand it and

to write a contract in that language. We have demonstrated with a simple example that, how to write, compile and execute

solidity smart contracts using Remix IDE.

REFERENCES

[1]. Szabo, N. (1994). Smart contracts.

[2]. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 21260.

[3]. Szabo, N. (1997). The idea of smart contracts. Nick Szabo’s papers and concise tutorials, 6(1).

[4]. Miller, M. S., Morningstar, C., & Frantz, B. (2000, February). Capability-based financial instruments. In

International Conference on Financial Cryptography (pp. 349-378). Springer, Berlin, Heidelberg.

[5]. Swanson, T. (2015). Consensus-as-a-service: a brief report on the emergence of permissioned, distributed ledger

systems. The report is available online.

[6]. https://retreeb.medium.com/blockchain-and-csr-emergence-of-a-social-smart-contract-d14dd9aef8e4

[7]. Singh, A., Parizi, R. M., Zhang, Q., Choo, K. K. R., & Dehghantanha, A. (2020). Blockchain smart contracts

formalization: Approaches and challenges to address vulnerabilities. Computers & Security, 88, 101654.

[8]. Huang, Y., Bian, Y., Li, R., Zhao, J. L., & Shi, P. (2019). Smart contract security: A software lifecycle perspective.

IEEE Access, 7, 150184-150202.

[9]. https://docs.soliditylang.org/en/v0.8.9/

[10]. Singh, S. K., Manjhi, P. K., & Tiwari, R. K. (2021). Cloud Computing Security Using Blockchain Technology.

In Transforming Cybersecurity Solutions using Blockchain (pp. 19-30). Springer, Singapore.

[11]. https://remix.ethereum.org/#optimize=false&runs=200&evmVersion=null&version=soljson-

v0.8.7+commit.e28d00a7.js

BIOGRAPHY

Authors Dr. Santosh Kumar Singh is an Assistant Professor at Don Bosco Institute of

Technology, GGSIPU, New Delhi. He has done Ph.D. from Vinoba Bhave University, Jharkhand.

He has over 18 years of teaching experience and published more than 23 research papers in IEEE,

Springer, and Scopus-indexed journals. His research work has been listed in H-INDEX as well as

in I-INDEX also. His patent was published on 10th Feb 23 and the Title of the Invention is

"Improvement of an Intelligent Transportation System by Using Blockchain Technology". He has

written books on Data Structures, and Programming Using C. Also written guidebooks on Artificial

Intelligence and Web Based Programming (PHP) published by AKASH Books, New Delhi. He is also serving as an

academic counselor of (MCA/BCA) at IGNOU since 2006. In 2020 he was appointed as a reviewer at IGI Global Scopus

Indexed Journals. He has reviewed the syllabus course titled "Web Technology" Amity University Greater Noida, and

also reviewed the Springer Singapore book titled " Transforming Cyber Security Solutions Using Blockchain

Technology". He was the primary evaluator of Toycathon 2021, an initiative of the Ministry of Education's Innovation

Cell. He is a member of the (IAENG) International Association for Engineers, Hong Kong. His research interest areas

are Blockchain, Cloud Computing, & Parallel and Distributed Computing.

https://ijarcce.com/
https://retreeb.medium.com/blockchain-and-csr-emergence-of-a-social-smart-contract-d14dd9aef8e4
https://docs.soliditylang.org/en/v0.8.9/
https://remix.ethereum.org/#optimize=false&runs=200&evmVersion=null&version=soljson-v0.8.7+commit.e28d00a7.js
https://remix.ethereum.org/#optimize=false&runs=200&evmVersion=null&version=soljson-v0.8.7+commit.e28d00a7.js

