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Abstract— Machine learning models are increasingly being integrated into critical decision-making processes across 

various domains. However, these models are susceptible to adversarial attacks, where malicious actors deliberately 

manipulate input data to deceive the models and induce incorrect predictions. In this paper, we present an overview of 

state-of-the-art techniques that aim to enhance the explainability and reliability of machine learning models in the face 

of adversarial attacks. We begin by discussing the fundamental concepts and motivations behind adversarial machine 

learning, emphasizing the need for models that can provide explanations for their predictions while maintaining 

robustness. 
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I. INTRODUCTION 

Machine learning algorithms have achieved remarkable success in various domains, including image recognition, 

natural language processing, and decision- making systems. However, their vulnerability to adversarial attacks poses a 

significant challenge to their reliability and trustworthiness. Adversarial attacks involve manipulating input data in a 

subtle manner to deceive the machine learning model and induce incorrect predictions. 

We explore explainability techniques that enable machine learning models to provide transparent and interpretable 

insights into their decision-making processes. These techniques include feature importance analysis, rule extraction, and 

attention mechanisms, which help users understand the factors influencing model predictions. By providing 

explanations, these models increase user trust and allow for the identification of potential vulnerabilities. 

 

A. eXplainable AI: 

 

The main motivation behind Explainable AI is to address the "black box" nature of complex machine learning models. 

Explainable AI techniques aim to bridge the gap between the internal workings of machine learning models and human 

understanding. By providing explanations, XAI enables users to gain insights into the factors influencing model 

predictions, understand the rationale behind decisions, detect potential biases or vulnerabilities, and ensure fairness and 

accountability in AI systems. Relaiable AI: 

Reliable AI focuses on developing machine learning models and algorithms that consistently produce accurate and 

dependable results in a wide range of scenarios. By ensuring trust, safety, consistency, and resilience, reliable AI 

enables the adoption of AI technologies in critical domains and enhances their overall effectiveness and impact. 

Material handling. 

 

B. Adversarial Machine Learning: 

 

The main objective of adversarial attacks is to cause the machine learning model to make incorrect predictions or 

decisions, leading to potential security breaches, privacy violations, or system failures. Adversarial attacks can be 

categorized into different types, such as evasion attacks, where adversaries manipulate input samples to evade 

detection or mislead the model, and poisoning attacks, where adversaries inject malicious data during the training phase 

to compromise the model's performance. 

 

II. ADVERSARIAL ATTACKS CONSIDERED 

 

A. Fast gradient sign method: 
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In FGSM, the goal is to add imperceptible perturbations to the input data in order to cause misclassification by the 

targeted model. The attack utilizes the gradients of the model's loss function with respect to the input data to determine 

the direction in which the perturbations should be added. The key idea is to take a single step in the direction of the 

gradient, but instead of using the actual gradient, the signs of the gradient are used to control the direction. 

 

Step by step overview 

 

 Compute the gradient of the model's loss function with respect to the input data. 

 

 Determine the sign of the gradient at each input data point. 

 

 Multiply the sign of the gradient by a small epsilon value to control the magnitude of the perturbation. 

 Add the scaled perturbation to the original input data to create the adversarial example. 

 

 The resulting adversarial example is slightly perturbed, but visually similar to the original input. However, it 

can cause the targeted model to misclassify the example. 

 

B. Jacobian based saliency map 

JSMA specifically targets models that use a neural network architecture, and its goal is to find the most salient 

features in the input that, when modified, will cause misclassification by the targeted model. The attack utilizes the 

Jacobian matrix, which represents the partial derivatives of the output class probabilities with respect to the input 

features. 

 

Step by step overview 

 

 Compute the Jacobian matrix for the targeted model with respect to the input features. 

 Select a target class to which you want to misclassify the input example. 

 Initialize a saliency map, which represents the importance of each input feature in influencing the target class 

probability. 

 While the target class probability is below a certain threshold: 

a. Update the saliency map by increasing the saliency of the features that have the highest positive entries in the 

Jacobian matrix. 

b. Update the saliency map by decreasing the saliency of the features that have the highest negative entries in the 

Jacobian matrix. 

 Modify the input features corresponding to the highest saliency values to create the adversarial example. 

 Repeat steps 4 and 5 until the target class probability exceeds the threshold or a maximum number of features 

have been modified. 

 

C. Carlini wagner 

The CW attack is designed to be more powerful and effective compared to previous attack methods, as it introduces a 

novel formulation that takes into account both the misclassification objective and the imperceptibility constraint. The 

attack is formulated as an optimization problem, where the goal is to minimize the perturbation while maximizing the 

misclassification. 

One of the key features of the CW attack is its flexibility in handling different types of models, including deep neural 

networks. It does not rely on specific knowledge of the model architecture or parameters, making it applicable to black-

box scenarios where only input-output access to the model is available.  
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Fig: concept approach to execute adversarial machine learning attack. 

 

III. WORK FLOW 

 

1. Logic learning machine: 

LLM is a rule-based supervised method. Inputs: dataset X ; number of features NFR; 

Candidate perturbations ∆ = (δ1, . . ., δNFR ), δj = (δsj , δtj), j = 1, . . . ,NFR.
 

 

Algorithm: 

1. Apply LLM on X ; 

2. Select features fj from feature ranking 

3. Find [sj, tj] from value ranking 

4. Define logical OR: I =𝖴j=1
N FR [sj, tj]; 

5. Find hyper-rectangle: P(∆) = 𝖴j=1
N FR [sj ± δsj · sj, tj ± δtj · tj]; 

6. Find optimal perturbations ∆*. 

 

1.a Reliability from Outside 

As suggested by its name (‘‘ from outside’’), this method aims at finding the adversarial regions based on the opposite 

class to the target (which is the adversarial class, y=1, in our case). Hence, our focus is here on the LLM for the 

legitimate class, denoted with y=0. Start with performing the feature/value ranking base on legitimate class (y=0) . 

Find ∆* as: ∆*=arg min ∆:N0=D0 Ѵ(P (∆)). 

 

1.b Reliability from Inside 

This method performs the same search for adversarial regions with a conceptually similar approach to the previous 

method, except for that it starts with N FR most important features for the adversarial class, which is our target in this 

case. Start with the attack class (y=1) feature/value ranking. 

Find ∆* as: ∆*=arg max ∆:N0=0 Ѵ(P (∆)). 

1.c LLM with 0% error 

Differently from the two previous methods, in this algorithm we are interested in joining a number of entire rules, 

instead of single intervals, thus giving rise to a new predictorrˆ with more complex geometry. Our goal is always to have 

zero false positive rate (FPR=0):). 

2. SAFE SVDD 

It is a machine learning technique that is used for single-class classification and outlier detection. The idea of SVDD 

is to find a set of support vectors that defines a boundary around data. 

 

2.a zeroFPRSVDD : 

The zeroFPRSVDD algorithm performs successive iterations of the SVDD on the target initial region, found with a 

preliminary SVDD, until there are no more negative points inside it. The convergence is achieved when a fixed 

number of iterations is reached or when the condition on FPR is satisfied. Algoithm: 
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dataset X×Y is divided in training set Xtr×Ytr and test set Xts×Yts. A threshold of ε is set 

 

1. SVDD-cross-validation on Xtr×Ytr 

2. [a,R2]=SVDD(Xtr,Ytr,C−1,C+1, σ) 

3. Test SVDD on Xts×Yts 

4. maxiter=1000; 5. i=1; 

6. while (i<maxiter) 

6.1 .Xtri,Ytri = 4(Xts,Yts); 

6.2. SVDD-cross-validation on Xtri×Ytri 

6.3. [ai, R2i]=SVDD(Xtri,Ytri,C−1,C+1, σ) 

6.4. Test SVDD on Xts×Yts 

6.5. if(FPR< ε) 

6.5.1. return [a∗, R∗2] = [ai, R2i]; 

6.5. end 7 . i = i + 1; 

End 

 

2.b Explainable SVDD: 

It refers to an extension of the standard SVDD algorithm that incorporates interpretability into the model. It allows the 

user to gain insight into how the model makes decisions and which features are important in identifying anomalies. 

Algorithm : 

 

Get a ∗ , R ∗ from ZeroFPRSVDD algorithm. Fix ε. 

 

1. Sample uniformly a new dataset Xnew s.t. xi ∈ Xnew 

⇐⇒ | ||xi − a||2 − R 2 | < ε 

2. Classify Xnew in Ynew through optimal ZeroFPRSVDD (w.r.t. [a ∗ , R ∗2 ]) 

3. Solve a classification problem via LLM w.r.t. [Xnew,Ynew] 

4. The LLM rules defines an explained ZeroFPRSVDD region R 

5. return : 

 

IV. TESTS AND OBTAINED RESULTS 

 

The extensive performance evaluation corroborates the reliability of the threat detection, which is otherwise 

impossible through canonical ML and shows that at least one of the proposed algorithms finds a decision boundary 

with a good trade-off between false positives and false negatives. 

 

A. Canonical supervised learning and hyperparameter optimization 

Canonical Supervised Learning refers to the standard and widely used approach in machine learning where a model is 

trained on labeled data to make predictions or classifications. In this framework, the model learns a mapping between 

the input features (independent variables) and the corresponding output labels (dependent variables). The goal is to find 

a function that accurately generalizes from the training data to make predictions on unseen data. 

Hyperparameters are the configuration settings of a machine learning model that are not learned from the data but need 

to be set before the training process. Examples of hyperparameters include the learning rate, regularization strength, 

number of layers in a neural network, or the depth of a decision tree. Hyperparameter optimization refers to the process 

of finding the optimal values for these hyperparameters to improve the model's performance. 

As presented, we tested the ML algorithms on three different datasets: DNS tunneling, platooning and RUL estimation. 

The results obtained are reported by using metrics extracted from confusion matrices, in particular we decided to report 

false positive rate (FPR), true positive rate (TPR), false negative rate (FNR) and true negative rate (TNR). All results 

are shown in Table 1, divided by algorithm, attack and dataset. 

 

B. Detection through XAI-driven reliable AI Detection through XAI-Driven Reliable AI refers to the use of 

explainable artificial intelligence (XAI) techniques to enhance the reliability and trustworthiness of AI-based 
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detection systems. XAI focuses on providing transparent and interpretable explanations for AI models' decisions, 

enabling users to understand and trust the output of these models. By incorporating XAI into detection systems, we 

can improve their reliability, accountability, and ethical use. 

XAI-driven reliable AI enables users to understand and trust the decisions made by AI models, leading to improved 

detection outcomes, reduced biases, and increased user adoption. For all test cases, the first step was the training of the 

default Logic Learning Machine (with 5% maximum error allowed for each rule) on a 70% training set with a 30% test 

set (the same sets are used for all the detection algorithms. 

 
 

Table1:performance statistics of canonical machine learning 

 

 

Table 2: Statistical Analysis :Reliable AI 

 

Table 3: Statistical Analysis on Reliable AI 
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Table 4: :XAI-Based Reliable Results 

 

V. FUTURE SCOPE 

 

The future scope of explainable and reliable approaches against adversarial machine learning holds significant potential 

for advancing the security and trustworthiness of AI systems. The future of explainable and reliable approaches against 

adversarial machine learning lies in continuously pushing the boundaries of research, collaboration, and technological 

advancements. By combining explainability, reliability, and advanced defense techniques, we can build AI systems that 

are more resistant to adversarial attacks, provide transparent decision-making, and inspire trust in their outputs. 
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