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Abstract: InterpretML is an open-source Python package which exposes machine learning interpretability algorithms to 

practitioners and researchers. InterpretML exposes two types of interpretability – glassbox, which are machine learning 

models designed for interpretability (ex: linear models, rule lists, generalized additive models), and blackbox 

explainability techniques for explaining existing systems (ex: Partial Dependence, LIME). The package enables 

practitioners to easily compare interpretability algorithms by exposing multiple methods under a unified API, and by 

having a built-in, extensible visualization platform. InterpretML also includes the first implementation of the Explainable 

Boosting Machine, a powerful, interpretable, glassbox model that can be as accurate as many blackbox models. The MIT 

licensed source code can be downloaded from github.com/microsoft/interpret. 
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I. INTRODUCTION 

 

As machine learning has matured into wide-spread adoption, building models that users can understand is becoming 

increasingly important. This can easily be observed in high-risk applications such as healthcare (Ahmad et al., 2018; 

Caruana et al., 2015), finance (Hajek, 2019; Chen et al., 2018) and judicial environments (Tan et al., 2018; Soundarajan 

and Clausen). Interpretability is also important in general applied machine learning problems such as model debugging, 

regulatory compliance, and human computer interaction. 

 
We address these needs with InterpretML by exposing many state of the art interpretability algorithms under a unified 

API. This API covers two major interpretability forms: ”glassbox” models, which are inherently intelligible and 

explainable to the user, and ”blackbox” interpretability, methods that generate explanations for any machine learning 

pipeline, no matter how opaque it is. This is further supported with interactive visualizations and a built-in dashboard 

designed for interpretability algorithm comparison. InterpretML is MIT licensed, and emphasizes extensibility and 

compatibility with popular open-source projects such as scikit-learn (Pedregosa et al., 2011) and Jupyter Notebook 
environments (Kluyver et al., 2016). 

 
II. PACKAGE DESIGN  

 

InterpretML follows four key design principles that influence its architecture and API. Ease of comparison. Make it as 

easy as possible to compare multiple algorithms. ML interpretability is in its infancy, and many algorithmic approaches 

have emerged from research, each of which has pros and cons. Comparison is critical to find the algorithm that best suits 

the users’ needs. InterpretML enables this by enforcing a scikit-learn style uniform API, and providing a visualization 

platform centered around algorithmic comparison. Stay true to the source. Use reference algorithms and visualizations as 

much as possible. Our goal is to expose interpretability algorithms to the world, in their most accurate form. Play nice 

with others. Leverage the open-source ecosystem, and don’t reinvent the wheel. InterpretML is highly compatible with 

popular projects like Jupyter Notebook and scikit-learn, and builds off of many libraries like plotly, lime, shap, and 

SALib. Take what you want. Use and extend any component of InterpretML without pulling in the whole framework. 

For example, it’s possible to produce a computationally intensive explanation on a server, without InterpretML’s 

visualization and its related dependencies. The code architecture and unified API is best expressed in Figure 1, providing 

an overview and relevant example code. 
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III.    EXPLAINABLE BOOSTING MACHINE 

 

As part of the framework, InterpretML also includes a new interpretability algorithm – the Explainable Boosting Machine 

(EBM). EBM is a glassbox model, designed to have accuracy comparable to state-of-the-art machine learning methods 

like Random Forest and Boosted Trees, while being highly intelligibile and explainable. EBM is a generalized additive 

model 

 

(GAM) of the form: 
g(E[y]) = β0 +X fj (xj ) 

 
where g is the link function that adapts the GAM to different settings such as regression or classification. EBM has a few 

major improvements over traditional GAMs (Hastie and Tibshirani, 1987). First, EBM learns each feature function fj 

using modern machine learning techniques such as bagging and gradient boosting. The boosting procedure is carefully 
restricted to train on one feature at a time in round-robin fashion using a very low learning rate so that feature order does 

not matter. It round-robin cycles through features to mitigate the effects of co-linearity and to learn the best feature 

function fj for each feature to showhow each feature contributes to the model’s prediction for the problem. Second, EBM 

canautomatically detect and include pairwise interaction terms of the form: 

 
g(E[y]) = β0 +X fj (xj ) +X fij (xi , xj ) 

 
which further increases accuracy while maintaining intelligibility. EBM is a fast implementation of the GA2M algorithm 

(Lou et al., 2013), written in C++ and Python. The implementation is parallelizable, and takes advantage of joblib to 

provide multi-core and multi-machine parallelization. The algorithmic details for the training procedure, selection of 

pairwise interaction terms, and case studies can be found in (Lou et al., 2012, 2013; Caruana et al., 2015). 

 
EBMs are highly intelligible, because the contribution of each feature to a final prediction feature contributes to 

predictions in a modular way that makes it easy to reason about the contribution These term contributions are simply 

added up, and passed through the link function g to compute the final prediction. Because of the modularity (additivity), 

term contributions can be sorted and visualized to show which features had the most impact on any individual prediction. 
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