
ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 CertifiedImpact Factor 8.102Peer-reviewed / Refereed journalVol. 12, Issue 5, May 2023

DOI: 10.17148/IJARCCE.2023.125225

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 1397

InterpretML: A Unified Framework for Machine

Learning Interpretability

Kiran Bandu Donge1, Lovelesh N.Yadav2, Neehal B.Jiwane3

Student, Computer Science & Engineering, Shri Sai College of Engineering &Technology, Bhdrawati, India1

Head Of Department, Computer Science & Engineering, Shri Sai College Of Engineering & Technology,

Bhdrawati, India2

Asst.prof, Computer Science & Engineering, Shri Sai College Of Engineering & Technology,

 Bhdrawati, India3

Abstract: InterpretML is an open-source Python package which exposes machine learning interpretability algorithms to

practitioners and researchers. InterpretML exposes two types of interpretability – glassbox, which are machine learning

models designed for interpretability (ex: linear models, rule lists, generalized additive models), and blackbox

explainability techniques for explaining existing systems (ex: Partial Dependence, LIME). The package enables

practitioners to easily compare interpretability algorithms by exposing multiple methods under a unified API, and by

having a built-in, extensible visualization platform. InterpretML also includes the first implementation of the Explainable

Boosting Machine, a powerful, interpretable, glassbox model that can be as accurate as many blackbox models. The MIT

licensed source code can be downloaded from github.com/microsoft/interpret.

Keywords: Interpretability, Explainable Boosting Machine, Glassbox, Blackbox

I. INTRODUCTION

As machine learning has matured into wide-spread adoption, building models that users can understand is becoming

increasingly important. This can easily be observed in high-risk applications such as healthcare (Ahmad et al., 2018;

Caruana et al., 2015), finance (Hajek, 2019; Chen et al., 2018) and judicial environments (Tan et al., 2018; Soundarajan

and Clausen). Interpretability is also important in general applied machine learning problems such as model debugging,

regulatory compliance, and human computer interaction.

We address these needs with InterpretML by exposing many state of the art interpretability algorithms under a unified

API. This API covers two major interpretability forms: ”glassbox” models, which are inherently intelligible and

explainable to the user, and ”blackbox” interpretability, methods that generate explanations for any machine learning

pipeline, no matter how opaque it is. This is further supported with interactive visualizations and a built-in dashboard

designed for interpretability algorithm comparison. InterpretML is MIT licensed, and emphasizes extensibility and

compatibility with popular open-source projects such as scikit-learn (Pedregosa et al., 2011) and Jupyter Notebook
environments (Kluyver et al., 2016).

II. PACKAGE DESIGN

InterpretML follows four key design principles that influence its architecture and API. Ease of comparison. Make it as

easy as possible to compare multiple algorithms. ML interpretability is in its infancy, and many algorithmic approaches

have emerged from research, each of which has pros and cons. Comparison is critical to find the algorithm that best suits

the users’ needs. InterpretML enables this by enforcing a scikit-learn style uniform API, and providing a visualization

platform centered around algorithmic comparison. Stay true to the source. Use reference algorithms and visualizations as

much as possible. Our goal is to expose interpretability algorithms to the world, in their most accurate form. Play nice

with others. Leverage the open-source ecosystem, and don’t reinvent the wheel. InterpretML is highly compatible with

popular projects like Jupyter Notebook and scikit-learn, and builds off of many libraries like plotly, lime, shap, and

SALib. Take what you want. Use and extend any component of InterpretML without pulling in the whole framework.

For example, it’s possible to produce a computationally intensive explanation on a server, without InterpretML’s

visualization and its related dependencies. The code architecture and unified API is best expressed in Figure 1, providing

an overview and relevant example code.

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 CertifiedImpact Factor 8.102Peer-reviewed / Refereed journalVol. 12, Issue 5, May 2023

DOI: 10.17148/IJARCCE.2023.125225

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 1398

III. EXPLAINABLE BOOSTING MACHINE

As part of the framework, InterpretML also includes a new interpretability algorithm – the Explainable Boosting Machine

(EBM). EBM is a glassbox model, designed to have accuracy comparable to state-of-the-art machine learning methods

like Random Forest and Boosted Trees, while being highly intelligibile and explainable. EBM is a generalized additive

model

(GAM) of the form:
g(E[y]) = β0 +X fj (xj)

where g is the link function that adapts the GAM to different settings such as regression or classification. EBM has a few

major improvements over traditional GAMs (Hastie and Tibshirani, 1987). First, EBM learns each feature function fj

using modern machine learning techniques such as bagging and gradient boosting. The boosting procedure is carefully
restricted to train on one feature at a time in round-robin fashion using a very low learning rate so that feature order does

not matter. It round-robin cycles through features to mitigate the effects of co-linearity and to learn the best feature

function fj for each feature to showhow each feature contributes to the model’s prediction for the problem. Second, EBM

canautomatically detect and include pairwise interaction terms of the form:

g(E[y]) = β0 +X fj (xj) +X fij (xi , xj)

which further increases accuracy while maintaining intelligibility. EBM is a fast implementation of the GA2M algorithm

(Lou et al., 2013), written in C++ and Python. The implementation is parallelizable, and takes advantage of joblib to

provide multi-core and multi-machine parallelization. The algorithmic details for the training procedure, selection of

pairwise interaction terms, and case studies can be found in (Lou et al., 2012, 2013; Caruana et al., 2015).

EBMs are highly intelligible, because the contribution of each feature to a final prediction feature contributes to

predictions in a modular way that makes it easy to reason about the contribution These term contributions are simply

added up, and passed through the link function g to compute the final prediction. Because of the modularity (additivity),

term contributions can be sorted and visualized to show which features had the most impact on any individual prediction.

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 CertifiedImpact Factor 8.102Peer-reviewed / Refereed journalVol. 12, Issue 5, May 2023

DOI: 10.17148/IJARCCE.2023.125225

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 1399

ACKNOWLEDGMENT

 We would like to acknowledge everyone on our acknowledgements.md file for their support on this project. We also

depend on many amazing software packages and research: scikit-learn 1. All models were trained with their default

parameters. EBM’s current default parameters are chosen for computational speed, to enable ease of experimentation.

For the best accuracy and interpretability, we recommend using reference parameters: 100 inner bags, 100 outer bags,

5000 epochs, and a learning rate of 0.01.

REFERENCES

1.Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai. Interpretable machine learning in healthcare. In

Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health

Informatics, pages 559–560. ACM, 2018.

2.Chaofan Chen, Kangcheng Lin, Cynthia Rudin, Yaron Shaposhnik, Sijia Wang, and Tong Wang. An interpretable

model with globally consistent explanations for credit risk. arXiv preprint arXiv:1811.12615,

3.Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Ann.Statist., 29(5):1189–1232, 10

2001. doi: 10.1214/aos/1013203451. URL https://doi.org/10.1214/aos/1013203451

4.Trevor Hastie and Robert Tibshirani. Generalized additive models: some applications. Journal of the American

Statistical Association, 82(398):371–386, 1987

5.Jon Herman and Will Usher. SALib: An open-source python library for sensitivity analysis. The Journal of Open Source

Software, 2(9), jan 2017. doi: 10.21105/joss.00097. URL

https://doi.org/10.21105/joss.00097.

6.Sucheta Soundarajan and Daniel L Clausen. Equal protection under the algorithm: A legal-inspired framework for

identifying discrimination in machine learning

7.Xuezhou Zhang, Sarah Tan, Paul Koch, Yin Lou, Urszula Chajewska, and Rich Caruana. Interpretability is harder in

the multiclass setting: Axiomatic interpretability for multiclass additive models. CoRR, abs/1810.09092, 2018. URL

http://arxiv.org/abs/

1810.09092

https://ijarcce.com/

