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Abstract: Data is the driving force behind the power of modern-day Machine Learning or Deep Learning algorithms. 

Accuracy and efficiency of these algorithms are largely dependent on the quality of the data that they are trained on; 

consequently, data poisoning poses a significant threat to these models. Data poisoning attacks present a significant 

challenge in maintaining the integrity of machine learning models. Currently automated methods and human inspection 

techniques often fail to identify clean subsets with high precision. In this paper target class of samples for this study’s 

layer-wise feature analysis includes both poisoned and benign samples. It discovers that the key layer-which is frequently 

overlooked by existing defences is what distinguishes dangerous from innocuous substances. Key layer analysis of 

characteristic differences between suspicious and benign samples suggests a simple yet effective approach to filter 

poisoned samples. Effectiveness of the defences has been verified by in-depth experiments on two benchmark datasets. 
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I. INTRODUCTION 

 

Data poisoning causes poor performance in security issues and inaccurate predictions in machine learning. Deep learning 

models are malicious alteration of training data. Monitoring datasets using anomaly classification algorithms and putting 

in place rigorous training protocols are just a few methods for detecting data poisoning. Introduction of adversarial 

instances which are constructed inputs intended to deceive the model is one kind of data poisoning. Due to large 

dimension and non-linear nature of models, detecting data poisoning in deep learning could be difficult. Furthermore, to 

strengthen the model's resistance against poisoned assaults, adversarial training techniques may be used. A thorough 

understanding of issue domain and future attack vectors are essential to detect threats properly. 

 

Although Deep Neural Networks (DNN) have been successfully applied to a variety of tasks, training them requires a 

significant amount of computing power and training data. A small number of training samples can be contaminated by 

backdoor attacks on DNNs, allowing it to erroneously categorize data with predefined trigger patterns into a target class 

chosen by adversary. In backdoor detection defenders attempt to ascertain if a suspicious object (model or sample) is 

malevolent and is one of the most important defensive paradigms. Assuming that poisoned samples have different feature 

representations than benign samples, majority of backdoor detectors now in use often focus on layer that comes before 

completely connected layers.  

 

In order to classify images, this research focuses on backdoor attacks and countermeasures. Initial backdoor assault called 

BadNets picked a few innocent samples at random stamped a trigger patch onto their pictures and then changed their 

label to target label for creating poisoned copies of those samples. In Clean-label assault paradigm, label attached to the 

target is congruent to ground-truth labelling of poisoned samples, were offered as a way to get around the issue. Attacks 

targeting certain samples were added and image warping was chosen as the backdoor trigger. The three primary types of 

backdoor defences now in use are Input filtering, Input pre-processing, and Model mending. 

 

Input pre-processing seeks to lower the incidence of false positives whereas input filtering seeks to distinguish between 

benign and poisonous samples according to their specific behaviours. The goal of model repair is to lower the incidence 

of false positives. This study concentrates on input filtering a practical method for securing deployed DNNs. In order to 

enhance spectral signature of poisonous samples, a robust covariance estimate of feature representations are offered. It 

also suggests filtering inputs in response to knowledge that poisoned photos frequently contain certain high-frequency 

artefacts. Before submitting each input sample to the deployed DNN input pre-processing alters it to obstruct possible 

trigger patterns and avoid backdoor activation. By adjusting DNNs using benign data, model mending tries to close 
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backdoors in attacked DNNs. Backdoors can be removed by model pruning and competitive model unlearning has been 

proposed as a way to fix damaged models. Input filtering are used to safeguard deployed DNNs is the main concern of 

this study. 

 

Feature Analysis by Layers 

With an emphasis on identifying poisoned samples, DNNs are examined which are utilized as C- classifiers. Each layer 

in DNN architecture has weights, biases and functions for activation. To derive class probabilities, softmax is used to 

calculate DNN output. Observation illustrates attacked DNNs, leveraging class-relevant features for benign data and 

trigger-related features for poisoned samples predict target label for both benign and poisoned samples.  Variations are 

investigated through layer-wise analysis. 

 

II. RELATED WORK  

 

Model verification with Convolutional Neural Network and Word Embedding’s (MOVCE) was created to combat data 

poisoning attacks on deep learning vision systems. Advances in cancer detection and auto production have been made 

possible by deep learning systems, but their improved capacity for learning also leaves them more open to such attacks 

[1].  Deep neural networks may be exposed to malicious assaults [2] that introduce false information while they are being 

trained. Algorithm suggested in this study compares parameter distribution calculated using maximum entropy and 

variational inference to determine network attack. As an illustration, it employs a CNN model from MNIST dataset.  

Deep learning is an artificial intelligence technique that uses a structured layer of algorithms to process data and produce 

categorization abilities. Despite its success deep learning is susceptible to security risks such as poisoning attacks. Further 

study can be done on data poisoning techniques for deep learning, as well as on the synergistic effects of both adversarial 

examples and data poisoning [3].  

 

How data poisoning can be used to target federated machine learning was first investigated in [4]. A bi-level data 

poisoning attack formulation that includes three distinct attack types was provided. Future studies of federated transfer 

learning and vertical (feature-based) learning federation examined data poisoning attacks. Distributed machine learning 

[5] (DML) can train on enormous datasets when none of the nodes are able to quickly produce reliable findings. As 

proportion of remote employees rises, security flaws appear making attackers more hazardous. Ana Lucila Sandoval 

Orozco altered the training results and polluted the dataset in advance of publication. An approach for identifying harmful 

data [6] makes use of context-specific knowledge about the origin and transformation of data points in the training set. 

This was the first way to locate causal attacks that include provenance information. The process was presented in two 

distinct iterations, one intended for data sets that may be partly trusted and the other for untrusted data. This is the first 

strategy for a defence that makes use of data provenance. They now assume the objectivity of data sources. A Python 

toolkit called BackdoorBox is created for backdoor learning. It offers a complete set of functions and tools to make it 

easier to design and analyse backdoor attacks in machine learning models. A deeper knowledge of potential security 

threats in machine learning systems is made possible by the use of BackdoorBox. It enabled researchers and practitioners 

to quickly experiment and investigate vulnerabilities and defence mechanisms associated with backdoor attacks [7]. 

Ahmed et al. [8] examined the dangers and types of data poisoning assaults that pose a threat to development of artificial 

intelligence and smart technologies. Study explored how such attacks are susceptible and suggested ways for defence 

and detection. Authors concluded that techniques for detecting anomalies in system behavior are the most effective means 

of detecting attacks. Recent innovations like the Wasserstein GAN and StyleGAN show potential development in the 

future. 

 

An effective statistical defence against backdoor assaults on machine learning systems was done in [9]. Models are trained 

to behave maliciously in backdoor assaults under specified circumstances. The suggested defensive strategy concentrates 

on identifying and reducing the effects of such attacks by utilising powerful statistical tools. These methods assist in 

locating and eliminating the influence of tainted training data, allowing the model to operate dependably in the presence 

of backdoor triggers. The article includes experimental findings that show how the suggested defence mechanism works 

to strengthen the resistance of machine learning models to backdoor attacks. Case study in [10] presented a black-box 

attack and assessed its outcomes using realm of medicine. It was observed that mean squared error (MSE) of the regressor 

increases by 150 percent with just 2% of poisoned samples. Better protection was suggested for nonlinear regression 

learners like kernel SVR and kernel regression. Regression learning is being used more frequently in mission-critical 

systems including drug research, financial forecasting and predictive analysis for hedge funds, predictive maintenance 

and quality assurance. The idea of physical backdoor attacks, where real-world things are altered to trick machine learning 

models was explored in [11]. These assaults entail changing or adding particular patterns to objects which were noticed 

by sensors caused the models to behave maliciously. Study addressed all possible dangers and difficulties posed by these 

attacks including their covert nature and difficulty in being discovered. In order to prevent backdoor attacks on physical 
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systems, it emphasised the necessity for strong defences and counters urging additional study and development 

cybersecurity field. Machine learning could be a security system's weakest link, according to researchers at the University 

of Bristol [12]. Security of Drebin, an Android malware detector was examined through definition and execution of 

related evasion attempts. Machine learning has been widely used in the last 10 years for security-related jobs to combat 

increasing complexity of contemporary assaults.  Machine learning approaches weren't initially intended to deal with 

adaptive attacks. Study aimed to demonstrate how an antagonist-aware approach to machine learning might enhance 

system safety. 

 

Data poisoning attacks aim to compromise security and functionality of machine learning models [13]. Data poisoning 

assaults come in a variety of forms including label Model update attacks, feature injection attacks, and flipping assaults 

all have various effects. To identify and eliminate malicious data samples or strengthen the models, researchers have 

suggested a number of protection measures. Machine learning systems that have been trained using user-provided data 

are susceptible to data poisoning attacks. Worst-case loss of defence against a determined attacker is still not fully known, 

despite recent work proposing a number of attacks and defensive tactics. Empirical findings demonstrate that both 

Modified National Institute of Standards and Technology database (MNIST-1-7) and Dogfish datasets are resistant to 

attack even when simple defences are used. Internet Movie Database (IMDB) sentiment dataset [14] can experience a 

test error increase of up to 23% with just 3% poisoned data. However, most important component in the field of machine 

learning namely training data originates directly from outside sources.  

 

According to a new survey of industry experts’ data poisoning is the most annoying threat to machine learning models. 

Other threats include model theft and adversarial attacks. A benchmarking and assessment framework for various poison 

attacks on image classifiers was developed in [15]. Attacks that alter training data to change the behavior of the system 

are increasingly sophisticated. Meta Poison is a first-order method for approximating bi-level optimization using meta-

learning. It has been demonstrated to be more efficient than currently used clean-label poisoning techniques. Meta Poison 

can also be used for degenerate purposes such as mislabelling one class as a different one of your choice. Study raised 

awareness of this important threat vector and establishes a benchmark for future data poisoning research [16]. 

 

Data poisoning attacks can affect machine learning systems employed in high-stakes situations like autonomous driving, 

biometrics and cybersecurity. Attacks like these take place when a tiny percentage of tainted data points are added to the 

training set which can significantly alter the decision boundary. With only 3% poisoned data, it could produce 

considerable test errors for databases like Enron and IMDB. Our findings highlight the need for stronger defences against 

data poisoning assaults. Solutions were based on two concepts, it coordinated attacks to put poisoned points close together 

and structures each assault as a limited optimization problem with constraints designed to ensure that poisoned points 

remain undetected [17]. The surge in processing power and data accessibility have been credited with recent 

developments in machine learning.  

 

However, malicious intervention with training data can compromise validity of models. [18] discussed data poisoning 

assaults and preventative methods before discussing open questions regarding testing models for data poisoning. [19] 

checks whether task-independent web-scale prior training in NLP might be applied to other domains with results. We 

discover that using this equation leads to the emergence of comparable behaviors in the discipline of machine vision and 

talk about the societal ramifications of this field of inquiry. CLIP models acquire a wide range of skills during retraining 

in order to maximize their training aim. Then, by using natural language prompting, this task learning may be used to 

enable reset-shot translation to several existing datasets. Although there is still considerable space for improvement, the 

performance of this technique may, at the appropriate scale, compete with task-specific supervised models. 

 

III.        METHODOLOGY 

 
 

A. Data Pre-processing 

 

Collect a dataset that includes both benign and potentially poisoned samples. The benign samples represent normal, clean 

data, while the potentially poisoned samples may contain hidden malicious patterns. Pre-process the data by removing 

any irrelevant or noisy samples. This step ensures that the model focuses on relevant patterns and avoids being misled by 

outliers or irrelevant data points. Perform data normalization or scaling to bring the features of the samples to a similar 

range. This step helps prevent certain features from dominating the learning process due to their larger magnitudes. We 

split the dataset into training and validation sets. The training set is used to optimize the model's parameters, while the 

validation set is used to assess the model's performance and prevent overfitting. 
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B. Model Training 

 

Design a Deep Neural Network (DNN) architecture suitable for the task at hand. This involves determining the number 

and type of layers, activation functions, and other hyper parameters. Figure 1 shows the DNN architecture. Initialize the 

model's weights and biases randomly or using pre-trained weights if available. Feed the training data into the model and 

calculate the predicted outputs.  Compare the predicted outputs with the actual labels of the samples to compute the 

training loss, which represents the model's error. The goal is to minimize the training loss and improve the model's ability 

to learn patterns and make accurate predictions. Repeat the training process for multiple epochs, where each epoch 

represents a complete pass through the entire training dataset. This repetition helps the model refine its parameters and 

learn more complex representations.  
 

 
 

Fig 1: DNN Architecture 
 

C. Feature Extraction 

 

After training the DNN model, relevant features are extracted from each layer. This process involves obtaining the outputs 

or representations of the intermediate layers. Deep neural networks extract features at different abstraction levels. Early 

layers capture low-level features like edges, while deeper layers capture high-level concepts. Features can be obtained 

by accessing intermediate layer outputs or using techniques like activation maximization. Analyzing these features helps 

understand underlying patterns. In the process of estimating layer-wise centroids, the mean or centre points for each layer 

of interest in the trained DNN model are calculated. These centroids serve as reference points, capturing the typical 

features found in benign samples. By computing cosine similarity between the features of an incoming sample and the 

estimated centroids at each layer of interest, we can quantitatively measure the degree of similarity or alignment between 

sample's features and centroids. This cosine similarity metric helps determine how closely the features align with the 

centroids, providing insights into the sample's resemblance to benign patterns. By utilizing an algorithm or metric, we 

can identify the layer of interest where the feature differences between benign and potentially poisoned samples are most 

pronounced. This analysis involves analyzing the cosine similarity values across different layers and selecting the layer 

that exhibits the largest discrepancies or most significant differences. Identifying the layer of interest allows us to focus 

our further analysis on the layer that is most likely affected by potential poisoning or backdoor attacks. 

 

D. Finding the Potentially Poisoned Inputs 

 

When an incoming sample is suspicious or flagged as potentially poisoned, compute the cosine similarity between the 

sample's features and the estimated centroids at the layer of interest and the preceding layers. 

 

IV. PROPOSED SYSTEM 

 

The proposed approach uses layer-wise feature analysis to protect the backdoor attacks by comparing DNN characteristics 

for benign and poisoned samples. It identifies the critical layer with the greatest feature variations, which is often 

overlooked in existing defences. The system uses a simple backdoor detection method, comparing suspicious samples 

with benign samples. Extensive testing using benchmark datasets demonstrates its efficiency in recognizing and filtering 

poisoned samples. 
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V.          IMPLEMENTATION 

 
A. Estimating Layer-wise Centroids 

Model mending attempts to seal backdoors in exploited DNNs by modifying the DNNs using innocuous data. Model 

pruning can get rid of backdoors, and competing model unlearning was suggested as a technique to correct broken models. 

Input filtering is the primary focus of this study since it helps protect deployed DNNs. 

 

B. Computing Cosine Similarities 

  We calculate the cosine similarity between the predicted centroids at every layer of interest and the features retrieved 

via the incoming sample (xs). In order to provide helpful data for subsequent analysis, this phase measures the degree to 

which The centroids' characteristics resemble those of the input sample. 

 

C. Identifying the Layer of Interest (LOI) 

Layer of Interest (LOI) is determined using the below mentioned algorithm in order to concentrate our investigation on 

the layers that are the most useful. Once found, compute a per-sample sum of the cosine similarity in the LOI and both 

layers that come before it. This enables to observe the behavior of the layers as a whole and gain an understanding of the 

patterns displayed by both healthy and possibly poisonous samples. Algorithm for loi is as represented below. 

 

Input : Similarities of Cosine {csₜL/2 , …… csₜL}for potential target class t 

   maxdiff csₜL/2+1 - csₜL/2 ; LOIₜ  [L/2] +1; 

   for l €{L/2} +2 

       ldiff   csₜ  - csₜl-1 ; 

          if  ldiff > maxdiff  then 

              maxdiff ldiff ; LOIₜ l; 

         return  LOIₜ 

 

Algorithm identifies LOI using cosine similarities for target class 't'. initializes 'maxdiff' and 'LOIt', with 'maxdiff' being 

set as the difference in cosine similarity between layer 'bL/2c+1' and 'bL/2c' for target class 't'. '. The algorithm loops 

from 'bL/2c + 2' to the final layer 'L'. After the loop ends, the algorithm returns the final 'LOLt' value, representing the 

layer of interest for the target class 't'. Main goal is to determine the layer with the most notable difference in cosine 

similarities for a given target class. 

 
D. Detection of Potentially Poisoned Inputs 

Two actions are considered for every suspicious incoming input (xs) the trained model (fs) categorizes as belonging to 

class t. Then, at the three layers previously indicated, compute cosine similarity between the input sample and the 

estimated centroids. Then, using the mean determined in the preceding step, compare total similarities. Consider the input 

to be possibly tainted if the total of similarities is below the mean by a certain threshold or number of standard deviations. 

Algorithm for Layer wise feature analysis to detect backdoor attack is as shown below 

 

Input : Suspicious trained DNN fs ; validation samples Xval ; Threshold T ; Suspicious input xs 

Output : Boolean value (True/False) tells id xs is poisoned 

for each potential target class t  €{1,…..C} do -> An offline loop conducted for one time only  

 

Xtval  Split t’s benign samples from Xval 

Layers features generated by fs for {xi for all Xtval} 

Estimate t’s centroid at layer l €{[L/2],….L} 

Cosine similarity (ail,atl)   similarity of ail to its centroid 

Aggregate computed benign similarities at layer l 

LOIt  IdentifyLayerOfInterest({cst[L/2], ….., cstL}) 

Calculate Mean, STD 

 ISPoisoned  False 

for each potential target class t €{1,……C} do 

     if ys = t then  

    Calculate cosine similarity (aSl,atl) 

         if css < (µt – T x σ t) then 

              IsPoisoned  True 

    return Ispoisoned 

Procedure IdentifyLayerOfInterest ({cs[L/2], ….csL}) 
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      max diff  cs[L/2]+1 – cs[L/2] 

      LOI- [L/2] +1 

         for l €{[L/2] +2,…., L}do 

               ldiff  cs – csl-1 

                if  ldiff  >maxdiff then 

                      maxdiff l diff 

                      LOI l 

          return LOI 

 

Algorithm detects if input sample `xs` is poisoned using the suspicious deep neural network `fs`. Initialize target class 

`t`. Loop through potential classes. Separate benign samples from `t` as `Xtval`. Compute DNN `fs` layer features for 

`Xtval` and store in `a`. Estimate class `t` centroid at each layer `l` using mean of `a`. Calculate cosine similarity between 

sample features and layer centroids, save in ̀ csl`. Compute ̀ csˆl` for benign samples in each layer ̀ l`. Find ̀ LOIt` through 

aggregate similarities. Calculate mean (`µt`) and standard deviation (`σt`) of ̀ csi` for benign samples `t`. Set `IsPoisoned` 

as `False`. Predict `yˆs` for `xs`. Loop through possible target class `t`. If `yˆs` matches `t`, compute cosine similarities 

for `xs` at `LOIt-2`, `LOIt-1`, and `LOIt`. Store in `csLOIts`, `csLOIt-1s`, and `csLOIt`. Calculate cosine similarity for 

`xs` (`css`). If `css` < (µt - τ × σt), it's poisoned. Set `IsPoisoned` as `True`. Check if `IsPoisoned` is true. Compare 

similarity of input sample to benign samples from other target classes. Suspicious inputs with dissimilar similarity 

patterns may indicate poisoning. 

 

E. Leveraging cloud computing to train DNN  

Cloud computing popularity for training Deep Neural Networks is due to its scalable and flexible resources, enabling 

efficient training through distributed computing and parallel processing. It is a pay-as-you-go model eliminates upfront 

infrastructure investments and allows cost optimization based on training requirements. Cloud-based environments 

provide accessibility, ease of use, pre-configured machine learning frameworks, and centralized storage and computing 

resources. This approach enables data sharing, model collaboration, and collective training efforts enabling researchers 

to overcome resource limitations, optimize costs, enhance cooperation and accelerate innovation in deep learning. Figure 

2 and 3 represents examples of benign and poisoned data. 

 

 
 

Fig 2:  Example of a benign data 

 

 
Fig 3: Example of a poisoned data 
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VI.      RESULTS 

 

GTSRB dataset evaluates current strategies and finds that their strategy exceeds cutting-edge techniques in identifying 

assaults that have low TPR or high FPR. The method's detection performs similarly to cutting-edge approaches and its 

TPR or FPR significantly beats them. Results confirm the detection's effectiveness. Figure 4 shows the identification of 

layer of interest (LOI) for the classes and Figure 5 depicts the impact of detection thresholds on TPR and FPR. 

 

 
 

Fig 4: Identify the layer the layer of interest (LOI) for the classes 

 

 
 

Fig 5:  Impact of detection thresholds on TPR and FPR 

 
VII.       CONCLUSION AND FUTURE ENHANCEMENTS 

 

Layer-wise feature analysis is used to study the behaviour of healthy and poisoned data produced by attacked DNNs in 

this article. Crucial layer is observed which is easily spotted based on the behaviours of benign samples, is likely to be 

where the typical contrast between benign & poisoned samples is largest. Based on this observation, the proposed scheme 

is a simple yet effective backdoor detection method for determining if a suspected diagnostic sample is poisoned by 

comparing its properties to those of a few neighbouring benign samples. Experiments utilising benchmark datasets 

demonstrated the effectiveness of detection. Study benefits in gaining a better understanding of DNN attack strategies in 

order to develop backdoor defences and more secure systems. 

 

Enhancing robustness against advanced attacks ensures transferability of defence mechanisms across domains, datasets 

and network architectures. Development of real-time detection algorithms, improved interpretability, exploration of 

collaborative defence strategies, continuous monitoring networks for backdoor attacks, and deploying the defence 

mechanism in practical environments like financial institutions and healthcare systems are essential steps to be 

considered. Continuous monitoring and adaptation are also crucial for ensuring the effectiveness of the defence 

mechanism. 
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