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Abstract: Precision medicine seeks to provide individualized information-based care across a range of therapeutic areas, 

utilizing patient-specific clinical, biological, and lifestyle data. The clinical implementation of precision medicine 

remains nascent but has the potential to facilitate the discovery, development, and delivery of therapeutics that target 

disease subtypes and patient populations defined by their unique characteristics. It offers new opportunities for treatment 

at any stage of disease, from prevention in high-risk groups to rethinking indications for established products. 

Three interconnected developments enable the effective implementation of precision medicine: the creation of large and 

diverse biological, clinical, imaging, digital, and lifestyle datasets; the emergence of new transdisciplinary methods to 

derive knowledge from these datasets; and the establishment of new product development models that leverage the 

acquired knowledge to deliver more targeted, safer, and more efficacious therapeutics. The application of artificial 

intelligence (AI) to clinical, imaging, and lifestyle data, as well as new approaches to risk prediction and disease 

progression modeling, cohort assembly, and knowledge extraction from electronic health records are enabling more 

accurate stratification of complex diseases within oncology, rare diseases, cardio-metabolic conditions, infectious 

diseases, and neuropsychiatric disorders. 
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I. INTRODUCTION

 

Artificial Intelligence as a Catalyst for Precision Medicine presents an objective, evidence-based analysis of how 

advances in artificial intelligence are expected to streamline precision medicine and help usher in a new era of 

biomedicine. Precision medicine—tailored treatment for the individual patient, presented as one of the four revolutions 

of medicine along with gene therapy, robotic surgery, and telemedicine—seeks to address widely recognized limitations 

of the current “one-size-fits-all” biomedical model and is founded on the principles of patient externalization, risk 

stratification, collaborative care, and multi-omics analysis. Although the practical implementation of precision medicine 

could revolutionize the approach to treatment across multiple therapeutic areas, a comprehensive methodological 

framework that integrates the diverse and heterogeneous data sources required to realize such a paradigm shift is still 

lacking. 

 

Artificial intelligence (AI) provides an established foundation for precision medicine through a set of core capabilities 

that reduce friction in complex biomedical workflows. A wealth of clinical data— including electronic health records, 

pathology reports, lab results, genomic data, wearable data, and imaging—is being generated, creating a major need for 

the integration and assembly of biomedical cohorts to facilitate predictive modeling and risk stratification, genomic and 

multi-omics analysis, image and digital pathology interpretation, and the extraction of clinical information from 

unstructured free-text data. AI is increasingly being employed for these foundational tasks across oncology, rare diseases, 

cardio-metabolic conditions, and neurological and psychiatric disorders, as well as in the context of public health and 

infectious disease outbreak response. 

 

1.1. Overview of Precision Medicine: Definition, Importance, and Evolution 

Precision medicine refers to the tailored application of treatment approaches to the individual patient, guided by the 

predicted response of that individual’s unique disease biology. Unlike an alternative, one-size-fits-all treatment strategy 

applied irrespective of the individuals’ differences, precision medicine acknowledges inter-patient heterogeneity in 

biomedical characteristics, response to disease risk factors and therapeutic interventions, and hence response to therapies. 

Precise matching of the individual patient with the most effective treatment is considered crucially important for 
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achieving optimal clinical outcomes—especially in areas such as oncology and cardiovascular medicine, where the stakes 

associated with inadequate therapeutic selection can be particularly high. 

Breakthroughs in technology-driven data capture have thus far been the primary growth driver in precision medicine. 

Biomedical research now has access to a plethora of routinely collected datasets of disparate types and sizes. These have 

given rise to diverse training, validation and test cohorts for predicting the risk of disease and response to specific 

therapies. Natural language processing is harnessing the rich knowledge hidden in unstructured clinical narratives. 

Although the predictive capabilities of artificial intelligence (AI) are by no means confirmed, a diversity of AI-based 

models is being developed in all areas of medicine. 

By focusing on pattern-matching in data, AI has the potential to catalyze precision medicine by guiding its foundational 

components: data integration and cohort assembly, predictive modelling and risk stratification, genomic and multi-omic 

analysis, imaging and digital pathology, and natural language processing in healthcare. Together these provide the 

underpinning capabilities to realize precision medicine in all therapeutic areas. 

 

 
Fig 1: AI-Augmented Precision Medicine: Synergizing Multimodal Data Integration and Predictive Analytics for 

Personalized Clinical Outcomes 

 

II. FOUNDATIONS OF PRECISION MEDICINE 

 

Precision medicine is based on the notion that health, disease, and therapeutic response of individuals cannot be precisely 

determined by disease classification using a few visible markers, that treatment response cannot be made using a few 

selected biomarkers, that drug-response-related information is not obtainable from animal models, or that the prediction 

for drug response can be made without taking differences in patients’ genetic background and/or their multi-omics 

profiles into consideration. Five underpinnings of precision medicine have been proposed—“being better informed and 

more accurate,” “being reasoned and informed,” “being personalized and intelligent,” “being mobile, seamless, and 

integrated,” and “being fair and safe.” Human disease is the result of an abnormal combination of multiple networked 

genes; its prevention, diagnosis, and optimal treatment require information from diverse areas for an individual patient, 

and therefore, a multi-omics approach is needed. 

Precision medicine relies on five fundamental components—a multi-dimension database for multiple diseases and 

populations, a multi-expertise system for rare diseases, an AI-based information-integration, reasoning, and decision-

making system, an exploration of precision medicine for major diseases, and a mobile platform supporting precision 

medicine in chronic disease management. These components will enable collection, exploration, and analysis of vast 

amounts of heterogeneous disease-related data to assist in understanding disease mechanisms better, predicting drug 

response for specific patients, forecasting disease trajectories, and determining approaches for chronic disease 

management. 

 

2.1. Key Principles and Underpinnings of Precision Medicine 

Precision medicine combines comprehensive understanding of biological, environmental, demographic, and social 

factors with the goal of delivering the right therapy to the right patients at the right time. It is supported by a combination 

of integrative models, formal methods, and machine learning tools capable of leveraging vast amount of clinical, 

biological, and multi-omic data and of synthesizing different types of evidence to make reliable predictions on disease 

progression, treatment response, therapeutical effects, and adverse events. 
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The application of precision medicine is currently limited to a few therapeutic areas (particularly oncology), where the 

use of molecular biomarkers is well characterized and supported by the availability of large-scale, high-quality datasets. 

However, the growing availability of clinical data from electronic health records, imaging, omics, and other sources 

provides a unique opportunity to support the application of precision medicine to a wider set of diseases and therapeutic 

areas, including relatively less studied conditions such as rare diseases, neurodegenerative disorders, and infectious 

diseases. 

 

2.2. Fundamental Components Driving Precision Medicine 

Precision medicine relies on multiple enabling components that work synergistically. The accurate interpretation of 

genetic variants, for example, is supported by the growing literature linking genomic variation to disease. Understanding 

the biological relevance of genetic alterations and linking these alterations to specific disease phenotypes will allow 

researchers to develop ontology-driven disease descriptions that can be used to define study cohorts. Rapid increases in 

banked biospecimens, including specimens with annotated whole-genome sequences and rich longitudinal profiles for 

cancer patients, have created the opportunity for AI-assisted analysis of these cohorts. Furthermore, model organism-

based, large-scale, high-throughput, phenotype-driven investigation of gene function is beginning to yield largescale 

training and testing data for validating and calibrating predictive models of the effects of genetic variation in humans. 

With support from the NIH and other organizations, the development of the Electronic Health Record (EHR) is enabling 

the collection of longitudinal, multi-omic data on the patients in these systems with rich health categorizations. Advances 

in imaging technologies for radiology, pathology, dermatology, and histology have opened the door to the creation of 

digital image archives. Natural language processing of unstructured text and speech within the EHR offers the potential 

for information extraction and nLP-based chatbots. Together, these initiatives are developing the data sources poised to 

enable formal AIdriven risk stratification and predictive diagnostic models in many human diseases. 

 

 
 

Equation 1 — Patient Feature Representation 

 

𝐱𝑝 = [𝑔𝑝,  𝑜𝑝,  𝑐𝑝,  𝑙𝑝] 

Step-by-step derivation 

1. Let patient 𝑝 have multiple modalities of information: 

o 𝑔𝑝: genomics features (variants, PRS, etc.) 

o 𝑜𝑝: omics features (transcriptomics, proteomics, metabolomics…) 

o 𝑐𝑝: clinical features (labs, vitals, diagnoses, meds…) 

o 𝑙𝑝: lifestyle/digital biomarkers (wearables, activity, sleep…) 

2. Represent each modality as a vector (possibly high-dimensional): 

   

  𝑔𝑝 ∈ ℝ𝑑𝑔 , 𝑜𝑝 ∈ ℝ𝑑𝑜 , 𝑐𝑝 ∈ ℝ𝑑𝑐 , 𝑙𝑝 ∈ ℝ𝑑𝑙 

   

3. Combine them into a single patient representation by concatenation: 

   

  𝐱𝑝 = [

𝑔𝑝
𝑜𝑝
𝑐𝑝
𝑙𝑝

] ∈ ℝ𝑑𝑔+𝑑𝑜+𝑑𝑐+𝑑𝑙 

   

4. In compact bracket notation, that concatenation is written as: 

 

  𝐱𝑝 = [𝑔𝑝,  𝑜𝑝,  𝑐𝑝,  𝑙𝑝] 
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Patient (g_p) genomics (o_p) omics (c_p) clinical (l_p) lifestyle 

P01 0.50 -0.46 1.47 -0.60 

P02 -0.14 -0.47 -0.23 1.85 

P03 0.65 0.24 0.07 -0.01 

P04 1.52 -1.91 -1.42 -1.06 

P05 -0.23 -1.72 -0.54 0.82 

P06 -0.23 -0.56 0.11 -1.22 

P07 1.58 -1.01 -1.15 0.21 

P08 0.77 0.31 0.38 -1.96 

P09 -0.47 -0.91 -0.60 -1.33 

P10 0.54 -1.41 -0.29 0.20 

 

III. CORE CAPABILITIES OF ARTIFICIAL INTELLIGENCE IN BIOMEDICINE 

 

The core capabilities of artificial intelligence that are relevant to biomedicine—the most mature AI/ML applications, 

their broad domain utility, and evidenced solutions and lessons learned—are outlined next. These capabilities are 

primarily for the early phase of a drug project, from patient stratification to the discovery of new biomarkers associated 

with therapeutic responses and unwanted effects. Five areas are addressed. 

AI systems are facilitating academic and industry cohort de-silosing. Data from independent institutions are being 

integrated to expand cohort size, increase ethnic diversity, and overcome clinical-reporting bias. Groups are integrating 

multiple modalities of existing stored and fresh samples, imaged data, and clinical-protocol outcome data. Screening 

preclinical animal models for mimicry of gene-activated or suppressed pathways and associated phenotypic changes is 

supporting triangulation, with implications for drug rediscovery. The data are then collated to enable more-independent 

external validation of ML algorithms trained and tested in one institution before clinical deployment in another. 

 

3.1. Data Integration and Cohort Assembly 

Precision medicine in biomedical research relies on comprehensive aggregation and integration of vast amounts of data 

from diverse sources. This includes health records, genomic information, biological samples, disease-related phenotyping 

and imaging data, digital pathology slides, and clinical notes. Despite its fundamental importance, it remains one of the 

most difficult problems to tackle. Artificial intelligence algorithms can combine information from diverse sources, detect 

relevant patterns hidden in the data, and produce integrated data sets and research cohorts for subsequent predictive 

modeling. These capabilities facilitate biomedicine knowledge discovery, hypothesis generation, disease stratification, 

and biomarker identification. 

AI systems like Condor, which combines patient records, disease signatures, and molecular, imaging, and treatment 

information, automatically extract disease signatures from clinical patient records and stratify patients by disease 

signature-based latent space using an unsupervised deep learning approach with a variational autoencoder. Condor also 

aggregates multimodal data from other sources, bridging genomic, imaging, and health records for the stratified patient 

cohort. In cardiology, a similar approach integrates multimodal data—from electronic health records, coronary 

angiography, cardiac magnetic resonance imaging, and nuclear stress testing—to delineate interpretable heart failure 

subgroups with different prognoses. 
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Equation 2 — Disease Risk Prediction 

 

𝑦̂ = 𝑓𝜃(𝐱𝑝) 

 

Step-by-step derivation 

5. You want a model that maps patient features to a prediction: 

 

  𝐱𝑝 → 𝑦̂ 

   

6. Let 𝑓𝜃(⋅) be an AI/ML model with parameters 𝜃 (weights). 

7. Apply the model to the patient representation: 

 

  𝑦̂ = 𝑓𝜃(𝐱𝑝) 

   

8. Interpretation depends on the task: 

o If classification: 𝑦̂ can be a probability or class score. 

o If regression: 𝑦̂ can be a continuous risk score. 

 

Patient logit (=\mathbf{w}^\top \mathbf{x}_p) (\hat{y}) (risk prob) (y) (observed) 

P01 0.551 0.634 1 

P02 1.509 0.819 0 

P03 0.207 0.552 0 

P04 1.042 0.739 1 

P05 0.921 0.715 0 

P06 0.516 0.626 1 

P07 0.892 0.709 1 

P08 -0.164 0.459 0 

P09 0.476 0.617 1 

P10 0.046 0.511 0 

 

3.2. Predictive Modeling and Risk Stratification 

Machine learning can be deployed to develop predictive risk models for a range of outcomes. Many diseases develop 

only in a minority of higher-risk individuals. To prevent adverse outcomes, targeted strategies can be implemented only 

in these individuals. Risk models aggregate millions of data points to guide clinical decision-making by predicting who 

is likely to develop disease. For example, dozens of studies have used deep learning to predict the onset of cardiovascular 

disease in the general population based on low-cost and readily available clinical data. 

Cardiovascular disease prediction can involve hundreds of variables. As datasets become bigger, prediction based on 

radiographic images becomes more common. Early detection of Alzheimer’s disease, for instance, can facilitate clinical 

trials that require younger individuals. Deep learning methods trained with clinical and imaging modalities from offspring 

and relatives of patients with Alzheimer’s disease can predict the onset of the disease five to six years before its expected 

arrival using only neuroimaging and clinical data. In the near future, such models will receive further validation and be 

applied in different healthcare settings. 

 

3.3. Genomic and Multi-omics Analysis 

Capacities of artificial intelligence crucial for biomedicine and precision medicine: Genomic and multi-omics analysis 

In recent years, the costs of DNA sequencing technologies have dramatically decreased. As a consequence, the 

availability of genomic information has substantially increased. Genotype-to-phenotype prediction using genomic data 

is possible when exploring cardiomyopathy, such as variants in MYBPC3 and MYH7 as contributors to the deterioration 

of sarcomere function. Establishing correlation networks of differentially expressed genes during disease states helps to 

identify critical nodes responsible for regulating biological processes in the network. 

Novel AI approaches train a neural network to predict noncoding genomic DNA sequences that regulate the transcription 

of downstream genes. Multi-Omics data-enabled architectures that utilize relations among genomic, epigenetic, 

transcriptional, and translation information facilitate accurate detection of key noncoding elements. Furthermore, cancer 

types are profiled by more than three functional pathways using a multi-omics ensemble classifier called O-PaC that 

https://ijarcce.com
https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.102Peer-reviewed journal & Refereed journalVol. 12, Issue 12, December 2023 

DOI:  10.17148/IJARCCE.2023.121228 

© IJARCCE              This work is licensed under a Creative Commons Attribution 4.0 International License               231 

integrates somatic mutation, miRNA expression, and methylation data. Though collecting multi-omics information from 

a single individual is challenging, various integration algorithms have been developed. The prediction of identical cancers 

derived from different omics is possible using a multi-modal transfer learning approach combining transfer learning and 

CNNs, and a data fusion approach fuses transcriptomics and proteomics data for accurate prediction of breast cancer. 

 

 
Fig 2: Synergizing AI and Multi-Omics: Frontiers in Integrated Data Analysis for Precision Biomedicine 

 

3.4. Imaging and Digital Pathology 

The incorporation of deep learning into established imaging pipelines is being actively researched, with example 

applications in diabetic retinopathy assessment, polysomnography for sleep studies, chest X-rays, mammography, and 

dermatopathology. Although the results are promising, specialized imaging modalities and fields remain underdeveloped. 

Beyond imaging, transfer learning can be utilized to fine-tune deep-learning models with fewer annotated data points and 

without access to particular imaging equipment, opening many opportunities. Polysomnography for sleep studies could 

have less-bias models trained on data from different sources. For other applications restricted by data availability, semi-

supervised or unsupervised training can be leveraged. Hybrid approaches integrating digital pathology with transfer 

learning from comparable domains and other sources provide an additional path for success. 

In addition to utilizing deep-learning models, medical imaging has great potential in revolutionizing the current task 

formulations in medical quizzes. Translations of Winograd schema or factual question answering can be rendered into 

medical settings using images while avoiding image captioning. Instead of generating the image content in text form, the 

model answers the question based on the actual information contained in the image. This avoids the pitfalls of image 

captioning, which has shown to be inherently unreliable. Test sets can be generated with ground truth using Amazon 

Mechanical Turk, with future directions including applying gradient-based techniques to obtain explanations of the model 

predictions beyond simple accuracy measures. 

 

3.5. Natural Language Processing in Healthcare 

Natural language processing (NLP) is a subfield of artificial intelligence (AI) that concerns the processing of human 

language by machines. Within the healthcare landscape, NLP research ranges from predictive modeling applications that 

leverage electronic health records (EHRs) to the generation of synthetic medical data for training purposes; from 

automating monotonous administrative tasks, such as coding, billing, and scheduling, to risk-stratifying clinical notes; 

and from parsing medical documentation for quality assurance and contract support to generating patient-friendly 

summaries of clinical findings. Beyond EHRs, NLP is proving useful for distilling valuable knowledge from the scientific 

literature, in clinical trials, for providing chatbots as an interface for patients and for generating conversational agents—

although concerns have been raised regarding the potential for deceptive behavior in models like OpenAI’s ChatGPT. 

Applied to EHRs and other large clinical databases, NLP methods have unveiled novel insights for multiple conditions. 

Particularly rich sources of information can be the free-text components of EHRs: unstructured clinical notes written by 

physicians and other providers. Clinical notes describe patients’ clinical status throughout the course of care, capturing 

the clinically relevant details of patients’ long-term journeys and ongoing diseases, natural language assessment tools 

supporting various aspects of mental health, including the risk of suicide, the early detection of dementia and the diagnosis 
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of autism. The rich resources included in clinical notes have also been leveraged to obtain early warning scores in surgical 

wards, unobserved states of pneumonia patients, diverse deep phenotypes and multiple cardiovascular risk factors. 

 

IV. CLINICAL APPLICATIONS ACROSS THERAPEUTIC AREAS 

 

The therapeutic potential for Artificial Intelligence (AI) to complement precision medicine is enormous. Within the 

oncology domain AI can predict cancer susceptibility, identify cancer in asymptomatic patients and ascertain prognostic 

features or carcinogenic mechanisms. AI-based technologies are also helping to improve patient care in rare diseases. 

Research indicates that AI can enhance rare disease diagnosis and management, accelerate the drug development process, 

and assist health systems along the entire therapeutic journey. Similar advances are emerging in cardio-metabolic 

conditions. By supporting the structure and analysis of population-level environments, AI can be deployed to characterize 

the complex interactions leading to cardio-metabolic disease development, including the application of AI-enhanced 

wearable devices for continuous, personalized remote monitoring to prevent such conditions. AI tools are also being 

developed for investigating and predicting numerous neurological and psychiatric disorders. 

Heavy-scale AI and machine learning systems represent a new frontier in infection research. Such advanced digital 

infrastructures can combine and integrate disparate and non-standard data inputs to produce high-level exploratory 

analyses of infection datasets across species and time. In public health, AI technology has been shown to improve control 

and prevention measures for COVID-19 and dengue, support hospital management during pandemics, strengthen 

epidemiological forecasting and verification platforms, predict dissemination pathways of newly emerging infectious 

diseases and enhance disease surveillance at forensic and inter-dimensional levels. AI-guided approaches to estimating 

and predicting biological pathway relationships between infectious disease, external climatic environment, internal 

environment and occurrence rate have also produced emerging trends and associations in the infectious dynamics of 

salmonella in China. 

 

Patient (P(r=1\mid x,t1)) (P(r=1\mid x,t2)) 

P01 0.760 0.360 

P02 0.284 0.398 

P03 0.652 0.620 

P04 0.736 0.257 

P05 0.312 0.290 

P06 0.612 0.344 

P07 0.745 0.389 

P08 0.759 0.598 

P09 0.565 0.450 

P10 0.672 0.433 

 

 
 

Equation 3 — Treatment Response Probability 

 

𝑃(𝑟 = 1 ∣ 𝐱𝑝, 𝑡) = 𝜎(𝐰⊤𝐱𝑝) 

 

Step-by-step derivation 

9. Define a binary response variable: 

  𝑟 ∈ {0,1}, 𝑟 = 1 means “responds” 
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10. Compute a linear score from features: 

 

  𝑧 = 𝐰⊤𝐱𝑝 

   

11. Convert that score into a probability using the sigmoid: 

 

  𝜎(𝑧) =
1

1+𝑒−𝑧
 

 

12. Substitute 𝑧 = 𝐰⊤𝐱𝑝: 

 

  𝑃(𝑟 = 1 ∣ 𝐱𝑝, 𝑡) = 𝜎(𝐰⊤𝐱𝑝) 

 

4.1. Oncology 

Numerous artificial intelligence–based models for tumor detection and diagnosis in hematopoietic and solid cancers have 

achieved performance levels comparable with those of expert human pathologists and radiologists. AI-based tumor 

detection and diagnosis in more than 25 hematological and solid cancers, including bladder, breast, colorectal, head and 

neck, liver, lung, lymphoid, gastric, pancreatic, ovary, kidney, skin, prostate, esophageal, neuroendocrine, neural, and 

thyroid malignancies, has approached expert levels in performance. Computational pathology networks that outperform 

experts in specific diagnostic tasks are likely to be introduced soon, owing to the rapid advances in state-of-the-art 

technology in radiology and pathology. 

AI-based prediction of tumor response to chemotherapy and immune checkpoint therapy (ICT) has been developed. 

Early-generation AI models for the prediction of chemotherapy response have only produced favorable results for specific 

cancer types. Deep learning–based models for the prediction of ICT response obtained early success. These models were 

mainly trained on radiomic features indirectly embedding histopathological information extracted at the tumor 

microenvironment scale. Fully automated AI models for the prediction of ICT response directly based on 

histopathological images have also begun to be introduced. 

 

4.2. Rare Diseases 

Estimates suggest that one in twenty people will suffer from a rare disease during their lifetime, adding up to around 

seven thousand distinct disorders affecting around 350 million people globally. Rare diseases continue to be grouped 

because of a lack of expertise and resources assigned for their study and treatment, and while individual disorders often 

receive considerable attention in their own right, headway in epidemiology and treatment-drug development is invariably 

slow and costly. Most rare diseases can be classified into one of three families of causes—structural and energetic, 

mediated via immune mechanisms, or nucleotide related—and their solving is perceived as a highly valuable investment 

opportunity. Significant advances can be made within each family through the ability to develop abundant and appropriate 

data. AI methods allow such unmet needs to be addressed, moving beyond simple prediction of protein or RNA 

structures—important though these remain—toward solving an entire family of diseases. 

Only ∼300 rare diseases are classified as monogenic disorders—caused by aberrant sequences of a single gene—yet 

these have hitherto received the bulk of attention. AI affordances should enable a shift in emphasis. The distribution of 

rare diseases is naturally more Bala than Gaussian and, for many disorders, minimal or no training data exist, obstructing 

the deployment of supervised methods. Generative models can hence be applied with great benefit: GANs offer the 

potential to synthesize realistic images of rare forms of diabetic retinopathy, and simulated joint likelihood approaches 

show promise in monogenic facial dysmorphism. Metabolomic data also lend themselves to Māori methods, enabling the 

prediction of diseases presenting with complex and interacting metabolic perturbations, yet for which training data would 

be too sparse or difficult to obtain. 

Other types of population-wide disorders such as ankylosing spondylitis and cystic fibrosis, often benefiting from existing 

drug treatments, lend themselves well to BAI methods that facilitate the drug repurposing approach. For organ 

transplantation, the majority of rejected grafts are irreversibly damaged at biopsy; further, unlike kidney rejection, timing 

and causative mechanisms are often unknown. Large-scale images of transplanted kidneys coupled with associated graft 

fates have recently been synthesized and used to accomplish semi-supervised fewshot GAN-based generative screening 

and differentiation of different classes of rejection with very promising results. Electronic medical records, especially in 

the area of natural language processing, have been mined to find rare and atypical manifestations and elucidate potential 

treatments for a number of rare diseases. 

 

4.3. Cardio-metabolic Conditions 

The potential of AI is being explored also for cardiometabolic health. Although the initial hype cycle underlying many 

digital health companies remains in a contraction phase, numerous well-characterized spatial transcriptomics datasets are 
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now publicly available and harnessed as reference data for the integration of single-cell RNA sequencing data from heart, 

fat, or kidney. Transplantation of healthy tissues for the treatment of metabolic disorders such as diabetes offers 

unmatched benefits, but the shortage of healthy organs for transplantation is consequently a major obstacle. In this 

context, AI models trained on combined spatial transcriptomics data from healthy human donors have recently been 

employed to predict the location of specific cells in whole-slide images of donor organs and splice-graph transcription 

factor expression maps, guiding the design of niche-specific organoids geared toward the production of long-lasting 

bioengineered pancreatic islets. 

A better understanding of cardiac tissue organization and injury repair is plausible through a series of developments in 

natural-language processing (NLP). AI-based deep-Learning pipelines trained on tissue transcriptomes from healthy and 

diseased mouse hearts have revealed previously unrecognized cell–cell communication pathways. In parallel, 

developments in NLP based on large-scale text mining of published literature and combined with spatial transcriptomics 

have accelerated the construction of a cardiomyocyte–endocardiocyte communication Atlas for embryonic heart 

development. Moreover, given the importance of metabolic health for better cardiovascular outcomes, the accurate 

assessment of body composition beyond conventional BMI calculations can now benefit from the possibility of training 

innovative AI models fed with various imaging modalities. 

 

4.4. Neurological and Psychiatric Disorders 

Beyond cancer, the area with the highest density of AI-driven research in Precision Medicine is neurology, with 

applications ranging from prediction of treatment-responses based on neuroimaging data to novel disease-modelling tools 

for neurodegeneration; a majority of studies remain limited to Proof-of-Principle analyses, with a particularly strong 

focus on the analysis of neuroimaging data. 

Several recent reports attribute psychiatric disorders, on the other hand, to neurodevelopmental changes that affect 

circuits and networks, and indeed a mix of neurodevelopmental and neurodegenerative models has appeared in the 

literature. The lack of large genome-wide association studies (GWAS) or biobanks-with-multi-modal-data is delaying 

the entry of these areas into the era of predictive modelling. 

 

 
 

Equation 4 — Personalized Therapy Selection 

 

𝑡∗ = argmax
𝑡

 𝔼[𝑈(𝑡, 𝑦̂)] 

 

Step-by-step derivation 

13. Let 𝑡 be a treatment choice from a set 𝑇. 

14. Let 𝑈(𝑡, 𝑦̂) be a clinical utility function (benefit–risk–cost). 

15. If outcomes are uncertain, evaluate expected utility: 

 

  𝔼[𝑈(𝑡, 𝑦̂)] 
   

16. Choose the treatment with maximum expected utility: 

 

  𝑡∗ = argmax
𝑡∈𝑇

𝔼[𝑈(𝑡, 𝑦̂)] 

   

4.5. Infectious Diseases and Public Health 

AI-assisted tools can aid in multiple aspects of infectious diseases such as genomics, drug discovery, epidemiological 

modeling, and vaccination. The COVID-19 pandemic illustrated how artificial intelligence can contribute to rapid vaccine 

development, distribution, and administration at scale and address a plethora of previously unexplored public health 

issues. 
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AI is applied to epidemic forecasting, utilizing model-based methods and emerging machine learning approaches. The 

emerging connection with ML has stimulated advancements in both fields. In digital epidemiology, Twitter data allowed 

early surveillance of the 2009 H1N1 pandemic. Enhanced capabilities to generate realistic synthetic data are also being 

explored. Convolutional neural networks (CNNs) exhibit promise for the automatic detection of COVID-19 pneumonia 

based on chest CT scans. Lastly, AI may be used in more nuanced fields of public health, such as the distribution of 

material goods according to principles of equity and effectiveness. 

 

V. DATA GOVERNANCE, ETHICS, AND REGULATORY CONSIDERATIONS 

 

In addition to the principled use of AI data governance frameworks, the deployment of AI in precision medicine requires 

careful attention to real-world considerations such as data quality and standardization, fairness, accountability, privacy, 

security, and clinical validation. These aspects are informed by broader empirical work on the responsible and equitable 

deployment of AI in general, although they require specific and tailored solutions when their application is in medical 

domains. 

Data Quality and Standardization 

The integrity of predictive models that employ health data as predictors fundamentally relies on the representativeness 

of the training cohort with respect to the population in which the model is intended to be deployed. Therefore, predictions 

made in a population that differs from the training cohort must be treated with caution and be subject to thorough clinical 

vetting before being made available for routine clinical use. Possible population bias in the training cohort may not only 

reduce predictive performance but also introduce differential risk prediction across subpopulations, which may be 

unacceptable from an ethical, safety, or regulatory perspective. In practice, the training cohorts of predictive models 

continue to be recruited from referral centers with highly selected patients, raising questions about the generalizability of 

predicted outcomes. 

The limited generalizability of risk prediction models highlights the importance of well-curated external validation 

cohorts and the need for effective methods to detect bias in risk models378. Cohorts curated for language-agnostic natural 

language processing applications also require greater external representativeness and transferability of models across 

different health systems and countries445. In addition to the representativeness of the training cohort, the quality and 

completeness of the health data in both the training and application cohorts determine the predictive performance of the 

trained models. Transdiagnostic approach is being exploited to leverage data from patients with different disease labels 

but similar underlying pathologies. The granularity and standardization of multi-omic data in cohorts are also critical 

determinants of the performance of exploratory models across the score range. A diversity of clinical outcomes of patients 

in the cohort predicted missed criteria for spontaneous intrapartum fetal heart rate decelerations. 

Different degrees of model interpretability are also preferred for different clinical applications. For instance, in situations 

of high risk or cost of incorrect predictions, a more interpretable predictive model can be useful to support risk 

management actions even if such a model exhibits inferior performance compared with a black-box approach. 

Standardization of data–procedures–data flow across different hospital centers is the aim of the large-scale Predictive 

Analytics in the Hospital Environment and Datathon for Predictive Hospital Analytics for the Perfusion Community 

initiatives, enabling development of interpretable predictive models in perfusion. 

 

5.1. Data Quality and Standardization 

Reproducibility is the cornerstone of scientific inquiry, and the need for rigorous data quality standards is therefore 

paramount for data-driven discovery in precision medicine. Careful statistical labeling and curation of datasets can 

facilitate these standards and the production of ready-to-use machine learning datasets, although assuring the reliability 

and standardization of often unstructured clinical and administrative data remain significant challenges. Earlier standards 

focused on large-scale genome sequencing projects but have since expanded to include multimodal molecular 

bioinformatics, imaging, electronic health record, clinical trial, wearable, public health, and social media datasets. 

Innovative approaches toward harnessing new data modalities are appearing consistently, such as a clinical-grade de-

identification tool for textual data cleaved from surveillance documents, tremor-aphasia-transit-misspelled-image 

detections for digital pathology, and automated collection of observational datasets from wearable and fitness tracker 

devices. Tools like PROMPT are changing the way patient-reported outcomes can be aggregated and made available for 

analysis within clinical populations. Multi-institutional federated networks are viably overcoming standardization gaps 

in clinical imaging and digital pathology. Due consideration of these data reliability, standardization, accessibility, and 

usability factors is essential within the machine learning community to maximize health research. 
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Fig 3: Standardizing the Frontier: Multimodal Data Integrity and Federated Interoperability for Reproducible Precision 

Medicine 

 

5.2. Fairness, Accountability, and Transparency 

The fair and responsible application of AI in healthcare is paramount. Deepening understanding of biases—arising from 

historical imbalances in population diversity, inequitable resource allocation, training data curation, and both supervised 

and unsupervised learning processes—enables formulation of key design principles for AIs. Model feedback that 

emphasizes poverty-related burdens and prevents unhealthy lifestyle choices and other “bad habits” can improve the 

informative data spectrum and help mitigate poorly represented populations. Furthermore, expanding focus beyond 

model performance to encompass the root causes of inequity and AIs’ broader societal impact is essential. Public input 

can guide ethically sound AI design, and crowdsourced prediction variability can be harnessed when standard training 

datasets exhibit imbalances. Recently developed Fairness in Artificial Intelligence Tools streamline accountability 

labeling of model outputs. Modular design, together with a set of accountable building blocks, facilitates third-party 

additions to promote transparency. Developers can enable AI-end user and broader community communication by 

offering tools for model interpretability, prediction explanation, and post hoc safety-constraint validation. 

Responsibility for AI-driven decisions ultimately rests with humans. As clarity of these decision-making processes 

increases, defining responsibility for decisions and actions supported by an AI system becomes more feasible. Fostering 

explicit discussion during clinical evaluations and across the involved parties covering both successful and failed 

predictions strengthens transparency and helps ensure accountability for employed AI systems. 

 

5.3. Privacy, Security, and Consent 

Harmonization of privacy and security policies is necessary to maximize the benefits of large-scale health data 

integration. Protecting individuals’ sensitive information as well as their expectations of privacy is critical for fostering 

public trust in initiatives aiming to lower the burden of disease using innovative technologies. The growing number of 

digital health use cases, now being implemented for disease prevention, viral outbreak prediction, and spontaneous 

epidemiological data detection, must ensure the confidentiality of users’ data. Privacy and security policies must take 

into account the increasing sophistication of malware and hacking methods and consider risk scenarios based on the 

sensitivity of data owned or processed. 

Guidelines on the use of commercial software from external cloud servers should require a detailed description of the 

software’s terms of use. Cloud services must guarantee that private or sensitive data are not disclosed or commercialized 

without the express consent of users, and that at least all personal identifiable information (PII) has been removed from 

the processed data; moreover, whenever feasible, the source code of the software should be shared in a public code 

repository or made available to trusted persons upon request. 

Ethical controls are a critical part of any digital health-related project. Ethics procedures are needed to guarantee that the 

benefits gained by the process clearly outweigh the possible harm to users, and that users are protected against 

exploitation. Informed consent must be adequately addressed, controlling for areas such as: clarification of the specific 

nature of the use of personal data, the balanced and equitable approach towards vulnerable populations, minors and users 

with impaired mental capacity, obligation of independent review and approval; provision of an express procedure for 

withdrawal of consent; notification and consent requirements during recruitment; requesting additional consent for 
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sensitive secondary uses that exceed the purpose of the original data collection; determining and documenting the 

acceptability of waiver for confidentiality risks; determining whether a study can be conducted without seeking consent; 

appropriate communication of risks and potential benefits. 

 

5.4. Regulatory Pathways and Clinical Validation 

Appropriate regulatory clearance is a prerequisite for any AI application intended for clinical use. Such assessment is 

critical to establish that the system is safe (i.e., has no negative impact on patients) and effective (i.e., provides utility 

beyond conventional solutions). Several AI diagnostic systems, mainly for radiology and dermatology, have been granted 

marketing authorization by the USA Food and Drug Administration, and more applications are currently undergoing 

evaluation. These early milestones have provided evidence that AI systems can free clinical professionals from laborious 

and repetitive tasks while supporting more complex decision-making. However, more mature products are needed for a 

diversification of applications across a broader range of disciplines and diseases. 

More importantly, FDA clearance addresses only part of the work’s requirements for clinical integration and value. 

Indeed, FDA determination reflects quality of the model, for an analysis of clinical utility must demonstrate evidence 

that incorporation of the AI product into standard clinical procedures leads to improved outcomes (higher accuracy of 

diagnosis/treatment, fewer erroneous decisions, increased survival, etc.). Furthermore, clinical validation requires use of 

an independent dataset of patients other than those on which the model was trained/optimized, to rule out overfitting. 

Addressing these needs is resource-intensive and demands interdisciplinary cooperation across academic institutions and 

the private sector. Only by committing to allocating these resources can the potential of AI in medicine be fully achieved. 

 

 
 

Equation 5 — Model Loss Function 

 

ℒ = −∑𝑦𝑖
𝑖

log(𝑦̂𝑖) 

Step-by-step derivation 

17. For each sample 𝑖, you have: 

o 𝑦𝑖: true label (often one-hot for multiclass) 

o 𝑦̂𝑖: predicted probability assigned to the true class 

18. Likelihood of the true class under the model is 𝑦̂𝑖. 
19. Negative log-likelihood per sample: 

 

  ℓ𝑖 = −log(𝑦̂𝑖) 
   

20. Weight by 𝑦𝑖  (so only the true class contributes in one-hot form) and sum: 

 

  ℒ = −∑ 𝑦𝑖𝑖 log(𝑦̂𝑖) 
   

VI. CHALLENGES AND LIMITATIONS 

 

Although deep learning neural networks have achieved remarkable successes in various specific applications, academic 

interest in AI-assisted precision medicine has expanded beyond these early projects into very different areas. 

Nevertheless, the advances remain at the research stage, requiring further investigations to ensure their suitability for 

clinical use. Several critiques and cautions have emerged regarding the application of AI to precision medicine, which 

can be categorized into generalizability and bias, interoperability and infrastructure, translational gaps, and workforce 

and educational implications. 
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How well any predictive model can generalize to patients outside of the cohort on which it was trained remains a 

fundamental question. The deluge of development projects has also raised concerns regarding the presence of hidden 

biases associated with both disease heterogeneity and clinical factors. Model fairness and discrimination are now regarded 

as crucial considerations in a precision medicine context. In addition to the inherent weaknesses outlined above, the use 

of statistical and machine learning approaches for precision medicine hinges on the readiness of the underlying healthcare 

infrastructure. Clinical protocols and patient data stored in electronic health records must be well structured, and any 

additional information required to enhance the strength of the predictive model should be readily and widely available. 

 

6.1. Generalizability and Bias 

Precision Medicine has the potential to characterize interindividual variability and lead to more effective therapies. 

However, as with any predictive method, it is critical to determine whether predictions are generalizable & unbiased 

before being clinically deployed. Generalizability refers to accurately predicting a clinical outcome on data other than 

the training data used to build the model; bias refers to the accuracy of predictions made on the training data. The results 

of prediction studies in humans are severely limited in their generalizability and are subject to overfitting, especially with 

neural-network-based methods that use small training sets relative to the model complexity. Thus far, the majority of 

studies demonstrating the clinical utility of machine learning methods (reducing prediction error compared to 

conventional methods) support generalizability only within testing data, or within sites (for multi-site studies), rather than 

across sites or datasets. These constraints are often unreported, further limiting the adoption of these methods in clinical 

practice. A recent proposed framework for assessing the generalizability and risk of bias in clinical risk prediction studies 

recommends the following. 

1. Reporting summary statistics of clinical validation (groups included, number and magnitude of covariates, etc.), 

particularly in multi-site studies. 

2. Striving to achieve a low number of predictor variables relative to the training data points and model scale. 

3. Explicitly testing the performance of prediction risk models internally (training, validation & testing splits) and/or 

externally (different populations than the one used to create the risk model) and, thus, reporting generalizability & bias. 

4. Striving to avoid feature-leakage, where a model inadvertently uses information unavailable at prediction time. 

 

 
 

6.2. interoperability and Infrastructure 

A multitude of conceivable AI applications is possible, but the translation from theory to clinical practice within health 

systems demands significant infrastructural investments. The actualization of generalizable AI requires skilled personnel 

and a wide-ranging understanding, whose implementation necessitates expenditure both in terms of education and in-

delivery-model transitional changes. AI's future direction mustn't only ensure diversity among its data pools it must also 

explore interoperability, shifting from trial-based distribution to fit-for-purpose distribution of health data. 

Despite recent concurs within research organizations and the recognized value of CRM systems, translating the lessons 

learnt from analysis continues to remain a challenge. Each data source has specific operational features specific to each 

Units coordinated care and directorate transformation. Technical operational concerns include a lack of data domains 

distributed between specific systems rather than enabled through a common point of data collection. 

 

6.3. Translational Gaps from Bench to Bedside 

The successful transfer of findings from research to clinical practice remains a bottleneck in the development of precision 

medicine. In the healthcare domains where risk prediction models have been developed and validated, implementing an 

accurate model in clinical practice remains a challenge. Implementation science and health services research aim to 

understand and narrow the gap between the creation and adoption of new knowledge in clinical practice. The first focus 

of this area is the deployment of target interventions into clinical practice. Knowledge translation that addresses this 

policy-oriented aspect often relies on scoping or systematic reviews of the literature on barriers, enablers, and 

determinants of change in practice. Moving beyond binary adoption in services, researchers use realist synthesis to gain 

deeper understanding of the complex interaction between the intervention and its context. 
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The precision medicine translational gap is the second facet of Knowledge Translation. Its focus is on drawing on 

population-based discoveries of disease mechanisms and their functional studies to develop a testable hypothesis for 

clinical intervention. Such hypotheses often arise from the joint enquiry of discovery and implementation research but 

not always. The precision medicine translational gap can usefully be framed in terms of theory, design, and context. 

Within this analytical framework, examples can be listed for each aspect of precision medicine intervention theory, 

especially in precision oncology, Since one major aim of precision medicine is to improve outcome, evaluating 

intervention effect size for different conditions, patient characteristics, and environments is critical to refining precision 

intervention capability. 

 

 
 

Equation 6 — Continuous Learning Update 

 

𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇𝜃ℒ 

 

Step-by-step derivation 

21. You want parameters 𝜃 that minimize loss ℒ(𝜃). 
22. The gradient ∇𝜃ℒ points in the direction of steepest increase. 

23. To decrease loss, update in the opposite direction: 

 

  𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇𝜃ℒ(𝜃𝑘) 
   

24. 𝜂 > 0 is the learning rate (step size). 

 

6.4. Workforce and Education Implications 

Success of precision medicine hinges on a robust workforce equipped with expertise to apply state-of-the-art 

technologies. Bridging the widening skills gap that leaves some regions ill-prepared to implement AI applications in 

healthcare necessitates novel training and educational approaches. Substantial investments will also be required to 

support the redistribution of talent and capabilities. Formation of multicultural and multidisciplinary teams drawn from 

diverse research institutions and industries can help address sovereign challenges, enhancing both local uptake and global 

transferability of emerging tools. Increased collaboration between industry and academia can facilitate efficient upskilling 

and reskilling programmes designed to equip current and future healthcare professionals—from scientists to clinical 

practitioners—with the knowledge needed to embrace and adopt innovative AI solutions. 

These trends must be complemented by open-source platforms that allow research and development to be decoupled from 

a single institution or industry partner, fostering developer-agnostic capabilities through public sharing of resources, 

algorithms, and workflows. Training, skilling, and creation of bias-appropriate settings can help guarantee that AI 

solutions are guided by healthcare expertise during product development and validation, whilst supporting the seamless 

integration of military, national, and organisational needs. Such synergies will allow for cross-fertilisation of ideas, 

innovations, and applications, thus enhancing the safe and effective translation of state-of-the-art research and 

development into deployable, clinically validated AI. 

 

VII. CONCLUSION 

 

Artificial Intelligence as a Catalyst for Precision Medicine 

Traditionally, clinical services dealt with specific diseases or organ systems and relied primarily on anatomy and 

physiology. However, in clinical practice, many factors can influence prognosis and therapeutic responses, including 

biological responses at the cellular level (e.g., to medications) and various social determinants of health. It is particularly 

challenging to predict an individual patient’s response to treatment for complex comorbid diseases, such as cancer, 
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diabetes, depression, or malnutrition. These factors are often overlooked or poorly captured in clinical studies, leading to 

treatment guidelines based on average population effects for different therapies. Indeed, patients not typically represented 

in clinical trials—due to exclusion criteria or other reasons—are at highest risk for unexpected adverse events. 

AI systems are capable of integrating heterogeneous data types from multiple interactions with a small number of patients. 

Such analyses can highlight cohort-specific disease-enabling mechanisms and identify patient sub-groups that respond 

differently to previous therapies. Oncology is the earliest and most advanced area of application, but the utility of AI 

systems has been demonstrated in precision medicine for rare diseases, multiple cardio-metabolic and neurological 

conditions, infectious diseases, health systems, and public health. These applications leverage the core capabilities of AI 

in biomedicine: cohort assembly and integration of diverse data types, risk stratification, predictive modeling, genomic 

and multi-omics analyses, imaging and digital pathology, and natural language processing to assess clinical text notes for 

predictive modeling. 

 

 
Fig 4: Precision Medicine Applications 

 

7.1. Future Directions and Emerging Trends in Precision Medicine 

Integration of rapidly advancing fields with artificial intelligence (AI) will sustain the momentum of research and 

development in precision medicine and facilitate its application throughout the health-care continuum. Coupled with 

generative AI, advances in future data collection, processing, and integration—including cheap and accurate whole-

genome sequencing, digital pathology, and digital radiology—will broaden data sources for supervised learning. 

Meanwhile, multimodal and multiple-instance deep learning will support predictive models that consider any 

combination of relevant data sources. Better understanding of human development at single-cell and multiplet levels will 

permit more accurate stratification of patients with heterogeneous diseases. The combination of prediction and risk 

stratification represents a key general capability of AI relevant to data-driven medicine. Predictive models will empower 

population screening programs for more diseases, including non-alcoholic fatty liver disease, arrhythmias, and many 

cancers, ultimately saving millions of lives. 

 

Cohorts of patients with validated clinical risk predictions can be entered into therapeutic trials for innovative treatment 

approaches to diseases such as aging. Acceptance of digital twins—computational models of organs and eventually of 

humans that integrate unique patient data—will attract investment in new drugs tailored to twin-specific molecular 

mechanisms, conditions, or complications. With validation from clinical trials, digital drug discovery will develop drug 

candidates for diseases that have remained intractable to classical whole-organism-testing approaches. Ultimately, 

enhanced AI capacities will support all therapeutic modalities, enabling the design of physical and mental direct brain 

animations, the accurate prediction of individual vaccine responses and immune-responses to novel agents, and a shift 

towards clinically beneficial dietary-adjustments for auto-immune patients. 
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