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Abstract: Research questions, methods, key findings, and implications are summarized with emphasis on AI-enabled 

big data analytics in smart energy management. The scope, limitations, and novelty are stated, and practical and 

theoretical contributions are outlined. 

The global push for net-zero carbon emissions by 2050 necessitates the decarbonization of energy systems, but the 

massive deployment of renewable generation introduces intermittency and variability. Consequently, demand–supply 

matching has emerged as a high-priority problem. Advanced data analytics is essential for smart energy management and 

artificial intelligence (AI) enables intelligent decision-making by using big data analytics. However, ensuring energy data 

privacy and security is vital for successful adoption of AI-based solutions. Future trends, such as the emergence of the 

metaverse, quantum computing, and 6G networks, will further boost demand for big data analytics and AI solutions. AI-

enabled big data analytics covering data acquisition pipelines, quality, governance, storage, and processing frameworks 

will enable various smart management paradigms: demand response, renewable generation integration, storage 

management, microgrid management, and fault detection. 
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1. INTRODUCTION 

New technologies are increasingly being applied to smart energy management systems in order to deal with global 

warming, improve energy efficiency and reliability, increase the portion of renewable energies, and develop risk-

prevention strategies. Smart grids equipped with frequency manageable renewables enabled by demand response 

strategies are regarded as a candidate technology for the future energy system. It has been widely recognized that, in 

order to utilize the available technological and natural resources sustainably and optimally, several kinds of AI-enabled 

big data analytics should be developed to empower energy management centers for real-time control and supply–demand 

operation. These analytics can be categorized into descriptive, prescriptive, and predictive types, and include explanatory 

models for understanding energy systems, Intelligence methods for decision–support purposes, and forecasting methods 

for supply and load predictions. 

Big data, artificial intelligence, and energy analytics are intersecting fields. On one hand, the energy sector is experiencing 

unprecedented acceleration in data-accumulation rates driven by the deployment of smart meters, phasor measurement 

units, satellite-based renewable source prediction, IoT-enabled proxim sensors, and frequency controllers. This data 

deluge represents an extraordinary opportunity to improve several areas of energy system management, including 

predictive management of demand response services, short-term physical storage supply forecasting, and distribution 

system reliability enhancement. On the other hand, the development of advanced big-data–analytics technologies, 

together with the hardware needed to support practical deployment (e.g., cloud and edge computing), is occurring at a 

speed that far exceeds the energy domain’s current capacity to absorb the newly developed solutions. Furthermore, energy 

demand for computing will also grow as ML methods for energy applications mature, especially in descriptive and 

prescriptive areas. 

1.1. Background and Significance   The accelerating energy transition and electric system digitalization generate 

massive quantities of data, with environmental awareness and technical progress unlocking new sources and dimensions. 

Data shape energy models, guide decision-making, and provide insights into processes, yet the challenges and 

opportunities of big data are not fully appreciated. Concerns span quality, value realization, governance, and 

environmental impact. Concepts of data volume, velocity, variety, and streaming or batch processing have become 

mainstream. In an era of rapid and large-scale development of sensor systems, Internet of Things technologies, and social 

networks, the volume and variety of available energy data are growing at unprecedented rates. The analysis, integration, 

and harvesting of diverse data streams for enhanced energy system control and optimization has emerged as a key research 

topic. 
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In this context, artificial intelligence (AI) has enabled extraordinary progress in image and speech processing. Its ability 

to exploit huge data resources in an automated way represents a potentially disruptive opportunity for smart grids and 

systems. Data-driven analysis tools are unlocking valuable insights, many addressing problems of previous academic and 

industry research with fair accuracy: energy consumption and distributed generation forecasting, elasticity estimation, 

advertising of demand-side response, and many more. Addressing these capabilities under the umbrella of AI-enabled 

big data analytics can accelerate further development and practical deployment of smart energy management solutions. 

 

Fig 1: AI is Enabling Smart Energy 

1.2. Research design  Integrating AI with big-data analytics introduces new challenges that require consideration of key 

aspects, such as data acquisition and governance, algorithms, and use cases. To illustrate their relevance in a smart-

energy-management context, these elements will be addressed one by one. The proposed data architecture for smart grids 

echoes the data-life-cycle stages commonly associated with AI: acquisition, quality, storage, processing, and governance. 

Beyond physical storage, it emphasizes the organization of data repositories, data-fusion mechanisms that break silos, 

and cloud-edge cooperation. The section on analytics methods and models reflects the analytical life-cycle stages of 

descriptive, predictive, and prescriptive analytics, along with typical drilled-down applications. 

The proposed framework focuses on energy systems and demand management, enriching the literature with 

methodological aspects rather than implementations. It is complemented by a metrics specification aimed at evaluating 

the quality of analytics models and comparisons with baselines, including benchmark datasets which provide reference 

values rather than reference models. Data-governance aspects concentrate on responsibility during the data-life cycle; 

security and privacy issues are dealt with in the “AI in Smart Grids” proposal. Addressing these aspects is timely given 

recent regulatory efforts including the EU GDPR and EA Data Act, as well as increased public awareness of AI’s capacity 

to process sensitive information. 

2. BACKGROUND AND THEORETICAL FOUNDATIONS 

The world is undergoing two concurrent revolutions: a transition in energy systems to become more sustainable and a 

digitalization that drives changes in society’s behaviour. The result is a deeper dependence on information technology 

(IT), information communication technology (ICT), and the Internet of Things (IoT) to deliver the necessary Smart 

Energy Management Solutions for Smart Energy Management. Consequently, energy systems and markets have become 

electronical, digitalized, and data-driven by their nature. The generation, processing, distribution, and consumption of 

energy generate more and more data. These data can be used to improve transparency, traceability, security, operational 

performance, reliability, and development, among others. Yet such benefits are only possible if the Smart Big Data are 

treated as Big Data—those with high Volume, high Velocity, and high Variety. In this sense, a separate branch of Big 

Data has emerged, namely, Energy Big Data. 

Big Data are the enabler of the third revolution of civilization: smart systems for both supply-side and demand-side 

operations. For balance, the supply-side increasingly promotes the integration of renewable energy sources, while the 

demand-side emphasizes decentralization. Many evaluate areas of interest for Big Data Analytics and underline their 

potential benefits. However, the underlying Analytics methods and models supporting Energy Systems decentralization, 
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and all other use cases of Smart Energy Management, require further investigation. Energy Analytics must serve as a 

foundation for, and be used by, the other paradigms of Smart Energy Management for their operation and performance 

improvement. Thus, Data-Driven Paradigms of Smart Energy Management surf through Analytics Paradigms; Smart 

Energy Management Paradigms depend on Data Architecture for Smart Grids and Data Quality and Governance. 

Equation 1: Applying the 95% / 98% cutoff rule 

AI-Based Data Engineering Autom… 

So: 

• 95% cutoff: flag anomaly if 𝑃̂(normal ∣ 𝑥) < 0.95 

• 98% cutoff: flag anomaly if 𝑃̂(normal ∣ 𝑥) < 0.98 

Equivalently in score space (solve for 𝑠): 

Start with: 

1

1+ 𝑒−(𝑎−𝑏𝑠)
< 𝜏 

 

Steps: 

1. Invert: 

1+ 𝑒−(𝑎−𝑏𝑠) >
1

𝜏
 

 

2. Subtract 1: 

𝑒−(𝑎−𝑏𝑠) >
1

𝜏
− 1 =

1− 𝜏

𝜏
 

 

3. Log: 

−(𝑎 − 𝑏𝑠) > ln⁡(
1− 𝜏

𝜏
) 

 

4. Multiply by −1(flip inequality): 

𝑎 − 𝑏𝑠 < −ln⁡(
1− 𝜏

𝜏
) = ln⁡(

𝜏

1− 𝜏
) 

 

5. Solve for 𝑠: 

𝑠 >
𝑎 − ln⁡ (

𝜏
1− 𝜏)

𝑏
 

2.1. Big Data in Energy Systems The nature of data in smart energy management systems is characterized by 

unprecedented volume, velocity, and variety. Generating, collecting, and transmitting massive amounts of data has 

become routine due to the emergence of smart energy systems. With millions of connected devices or sensors producing 

massive amounts of decision-supporting data within a very short time interval, big data–enabled technologies have been 

established to support the fast real-time processing and analysis of large datasets in different fields. While traditional data 

processing, modeling, and analytic methods have been successfully applied to energy systems under normal conditions 

over a wide range of temporal and spatial scales, they now face increasing challenges as these systems evolve into cyber-

physical systems, cyberspace–enabled digital twins, or bio-inspired systems. 
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The emergence of big data as a result of the unique features of smart energy systems has led to big data analytic and 

governance technologies being used to discover hidden patterns, predict future outcomes, and recommend actionable 

decisions. The definitions of big data vary, but they generally emphasize the combination of high data volume, processing 

velocity, and diversity in data types (structured, semi-structured, and unstructured) such as text, images, audio, video, 

and data from the social web. It has long been known that, in addition to volume, velocity, and variety, the combination 

of veracity and value is critical to ensuring data usefulness and usefulness-related business success. 

2.2. Artificial Intelligence in Energy Analytics Rich data availability has made it possible to apply numerous Artificial 

Intelligence (AI)-based methods to various problems in energy data analysis. In this context, the term AI is often 

associated with the Engineering and Mathematics sub-domain known as Machine Learning, which incorporates 

modelling-based and data-driven paradigms. Machine Learning methods can be distinguished into three classes 

depending on the structure of the target dataset: 1. including a labelled training dataset (supervised Learning), 2. coarsely 

labelled data (semi-supervised Learning), and 3. unlabelled data (unsupervised Learning). Algorithmic structures of 

supervision in these groups are also significantly diverse. In addition to ML, research frequently employs a special sub-

domain known as Deep Learning, which is distinguished by the highlighting of Algorithmic structures based on the type 

and quantity of ML use in processing. Within the domain of Deep Learning, the term Hybrid Learning is also used to 

identify methods utilising ML to process an intermediate dataset before further data learning capabilities of a Deep 

Learning structure. 

Machine Learning methods have been widely used on diverse energy datasets since the first years of Big Data availability. 

Time series data easy to mine have made time-series-based applications predominantly use predictive ML models for 

applications such as demand, generation and price prediction. Many applications focus on predictive demand or supply 

side and their integration, making Load Frequency Control and market trading common models for testing. Full-cycle 

models, simulating all market players, are rare and usually simplified to test specific hypotheses. Beyond prediction, rare 

applications of hybrid ML methods aim to support decision-making processes, assessing the optimum for a scenario 

rather than proposing real-time control, e.g. day-ahead storage sizing economics. With costly predictions or long-delayed 

outputs, decision-supporting models usually assume a single cycle throughout their future. 

2.3. Smart Energy Management Paradigms The management of energy systems and subsystems can take several 

forms, including automated control, optimization-based planning, and human decision-making based on informative 

dashboards. Control frameworks rely on pre-defined rules that enable data acquisition, processing, and actuation with 

minimal or no human intervention. Control mechanisms can be automatic for deterministic processes, such as generator 

operation and motor control, but are often implemented in hybrid appro-aches that also incorporate human judgments. 

Optimizers employ either real-time or real-time data to plan actions over a horizon by calculating the best controllable 

actions that maximize or minimize a given objective function with respect to known constraints. Human informatics 

combines historical or real-time data visualization with machine learning, statistical or econometric predictors to generate 

dashboards and reports aimed at informing human decisions. 

Smart meters provide residential and commercial electricity use data on a near-real-time basis, enabling the design of 

informative dashboards that can affect energy use based on real-time changes or forecasts in electricity generation costs. 

Energising consumers for non-peak power reductions through the use of real-time price signals is particularly important 

from both a consumer and supplier viewpoint. Therefore, the estimation of reversible and actual DR demand is crucial 

for its effective implementation. Security and cyber resilience pose crucial challenges for analytics, notably in DR use 

cases that rely on the installation of sensors and actuators at the consumers’ premises. Although sensor and actuator cyber 

resilience is outside the scope of this study, the cyber aspects of data reporting, learning, execution, and validation must 

be carefully assessed. 

3. DATA ARCHITECTURE FOR SMART GRIDS 

Three interconnected components constitute the data architecture for smart grids: data acquisition and integration, data 

quality and governance, and storage and processing frameworks. 

**Data Acquisition and Integration** 

Smart grids require comprehensive data to support operational and decision-making functions, from grid control to 

market operations. Data sources include sensors, AMI, enterprise systems, IoT devices, weather stations, SCADA, and 
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customer premises equipment. The data integration pipeline encompasses several phases. First, data acquisition sub-

systems ingest data from collection points across the grid. The streaming-micro-batch-batch combination enables 

synchronous processing of data from sources with different scales. 

Data fusion combines information from geographically sparse sensors for real-time applications. Smart grid data 

originates in different charters and formats; a standard structure facilitates interoperability. Fusion involves the 

combination of data of different types, sourced from heterogeneous systems. Traditional methods, based on metadata 

description and manual mapping, rely on data statisticians and domain experts; data-integration-as-a-service (DIaaS) 

based on machine-learning automates the process and enables large-scale fusion. 

**Data Quality and Governance** 

Data quality is paramount for all big-data applications, with metrics quantifying consistency, accuracy, completeness, 

reliability, and timeliness. These characteristics underpin the trustworthiness of data, models, and conclusions. A 

dedicated group of data stewards ensures adherence to quality standards through policy guidelines covering provenance, 

lineage, audit, and access. Data-governance policies address availability, usability, consistency, data management risks, 

and privacy. Data quality is managed with appropriate quantitative metrics and rules for capture and storage. 

 

Fig 2: Big data analytics in smart grids 

3.1. Data Acquisition and Integration Smart grids generate massive volumes of data from smart meters, sensors, and 

Internet of Things (IoT) devices, requiring strategic architecture to ensure that data from these sources can be acquired 

and integrated for AI-enabled big data analytics. Energy management systems need to collect data at a temporal and 

spatial resolution that matches the objectives of the analytics. Established data fusion, standardization, and 

interoperability frameworks must be applied to ensure successful integration. Quality problems are rampant in smart grid 

data, and there are no universally accepted metrics. 

Smart grids encompass a wide variety of metering and sensing devices deployed in the energy system for supporting 

digital tools and solutions. Smart meters installed at the consumer premises generate real-time monitoring data about 

electricity consumption, covering a considerably high temporal resolution. Distribution substations are equipped with 

Intelligent Electronic Devices (IED) which can monitor various electrical parameters and performance of SPA 

(Substation Automation). Installed Phasor Measurement Units (PMUs) measure electrical variables up to the 

microsecond level as compared to the seconds and hours typical for smart meters. Consequently, the data flow from the 

installed smart energy devices is at the level of Giga-Byte or Terrabyte. Similarly, the data flow from the imported IoT 

devices is in a parallel stream. For collecting data from all these devices and sensors, a suitable data-acquisition 

architecture is a prerequisite for managing big data in Smart Energy System. 

Big data architecture usually comprises of the steps in sequence that includes data acquisition, data transport, data 

preprocessing, data storage, and accessing data for a certain analytics. Data can be added from different sources and in 

different batches. The sources of acquiring data include smart metering data, sensor data, cloud computing, Intelligent 

Electronic Devices (IED), Remote Terminal Units (RTU), Phasor Measurement Units (PMUs), Distributed Generators 

(DG), Geographic Information System (GIS) data and Imported Data from IoT devices in customer premises, weather 

stations, energy control centre and market data. With the increasing demand for distributing power and supporting utilities 

for enhancing reliability in operation, data requirements are being met with various type of smart sensors. 
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3.2. Data Quality and Governance  Data quality considerations encompass accuracy, completeness, consistency, 

timeliness, and uncertainty. Accurate sensing, measurement, and communication are essential for reliable data-driven 

decision support. Data despite insulation from physical disturbances can be corrupted by malicious cyberattacks or 

application bugs. 

Governance models define the people, processes, and technologies tasked with guaranteeing that specific data and 

analytics products fulfill business requirements. Data stewardship policies specify the individual or group accountable 

for each data product throughout its lifecycle. Lending to the business context, data provenance, lineage, and auditing 

capabilities are also outlined in such overarching governance documents. 

Irrespective of whether data is used for wise management of supervisory control and data acquisition (SCADA) or smart 

metering systems, or also for forecasting, demand response (DR), distributed energy resources management, or self-

healing purposes, data quality should underpin all analytics and detection techniques. The required quality levels are 

business-dependent and therefore need to be established by business rules. 

3.3. Data Storage and Processing Frameworks On-premises and cloud storage solutions each possess strengths and 

weaknesses. Local installations exhibit low access latency, control over physical security, and no network dependencies. 

Operating a private cloud at the edge enhances resource utilization and improves performance, but managing and 

maintaining on-premises and edge resources absorbs time and budget. In contrast, cloud-storage services remove burdens 

associated with infrastructure maintenance, offer high scalability and elasticity, and facilitate third-party collaboration. 

Dependence on network connectivity, performance, and security represent key risks. Data sovereignty and protection 

requirements dictate geographical data-centre locations; network leakages are seldom complete and companies need to 

prevent data exfiltration. 

Data-storage design should therefore balance on-premises and cloud repositories. Local stations store mission-critical 

data and data undergoing batch processing for subsequent analysis by third-party service suppliers. These considerations 

inform the selection of vendors and platforms supported by Data Transfer Services that simplify the transfer of data from 

the on-premises local data store to the cloud storage service (and vice versa), either on a scheduled basis or when triggered 

by special events. Data pipelines linking Cloud Storage with other cloud services on the strategic roadmap permit further 

scalability. 

The choice of processing frameworks is equally important. A functional cloud system may comprise an analytics or 

application server cluster that uses virtual machines for hosting distributed streaming-and-batch analytics systems, 

whereas a hybrid architecture allows for cloud-edge cooperation. Such solutions depend on a pipeline for real-time batch 

processing and streaming storage that automates data replication between the edge and main cloud data storages. On-

premises batch-processing and streaming engines reduce network-utilization costs but add complexity. Careful 

assessment of edge-cloud decision support and analytics requirements optimizes the overall benefit-cost ratio.  

 

4. ANALYTICS METHODS AND MODELS 

Four main categories of analytics can be distinguished in support of smart energy management: descriptive, predictive, 

prescriptive, and autonomous analytics. 
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Descriptive Analytics summarizes historical data to justify decisions and monitor operations. Data is typically reported 

through dashboards and key performance indicators (KPIs) that chart past performance and indicate when a parameter is 

outside its normal operating range. A classic approach identifies a reference distribution of operating characteristics from 

training data and flags measurements that have a low probability of being drawn from this distribution. Tools for 

visualizing big data help highlight unexpected correlations and insight patterns. 

Predictive Analytics extracts patterns from historical data to predict the future. In the energy context, the active variables 

are demand and supply, and the objectives of the models include forecasting future demand and supply profiles as 

accurately as possible and estimating the likelihood of rare incidents, such as equipment failure or energy theft. A wide 

variety of modeling techniques are available, and finding the best model for a given task is a modeling transfer-learning 

problem. 

Prescriptive Analytics tells users what they should be doing now or next using: (1) Optimization routines, which calculate 

the best action among a discrete or continuous set of choices while respecting all controlled or uncontrolled constraints 

(i.e., what is the best way to dispatch a portfolio of generating units); (2) Scenario analysis tools, which provide a view 

of the expected future under a fixed set of assumptions; and (3) Decision support mechanisms that present the expected 

impact (usually expressed in monetary terms) of multiple actions and support decision making. 

Equation 2: Precision, Recall, and F1 

F1 is the harmonic mean of precision 𝑃and recall 𝑅: 

𝐹1 =
2

1
𝑃
+
1
𝑅

 

 

Steps: 

1. Combine denominators: 

𝐹1 =
2

𝑅 + 𝑃
𝑃𝑅

=
2𝑃𝑅

𝑃 + 𝑅
 

 

2. Substitute 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
: 

𝐹1 =
2 ⋅

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

⋅
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
+

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

 

 

3. Multiply top and bottom by (𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)and simplify: 

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

4.1. Descriptive and Diagnostic Analytics  Data analytics plays a critical role in evaluating an organization’s past 

performance, determining the underlining causes of performance trends, monitoring daily operations, and identifying 

potential anomalies. The simplest analytics are descriptive and diagnostic analytics providing dashboards and key 

performance indicators (KPIs) to summarize business activity and inform decision-making. These analyses are typically 

“business user-friendly” and delivered in dashboards accompanied by visualization techniques that help to identify trends 

intuitively. Most organizations leverage these capabilities, often through a business intelligence solution, to support 

executive and management reporting. A key aspect of these analytics is also anomaly detection, where historical behavior 

is modeled so that outliers can be identified and flagged for root cause investigations. Examples of typical visualizations 

and key performance indicator dashboards in the energy & utilities sector include the following: 

- Power consumption in a subtree of the smart grid, with an indication of increased consumption after a period of stability. 
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- Monthly power consumption relative to the last 4 years. 

- Price vs exports vs consumption for a microgrid with renewables. 

- Monthly rainfall, temperature, brightness, and evaporation data to raise alarms of anomalies. 

The first three visualizations correspond to operations dashboards enabling the detection of problems or anomalies. The 

last one shows key stats that signal start of bushfire, making it possible to alert users of high susceptibility conditions. 

4.2. Predictive Analytics for Demand and Supply The predictive analytics pillar encompasses forecasts related to 

demand and supply that are crucial for effective energy management. Demand forecasting identifies the future power 

consumption patterns of individual customers or aggregated consumer groups. In addition to the load curve for a 

predictive horizon of interest, two other essential components must be estimated: the number of participating customers 

for demand response (DR) programs and the elasticity of the considered elastic end-users. For the former component, a 

review of the literature is essential to select the most relevant factors affecting customers' participation in DR schemes. 

Then, the participation rate can be calculated from the available data. 

The load forecasting techniques must incorporate demand-side flexibility, which is essential for the success of DR 

programs. Flexibility indicators are thus included in the feature space. Special attention is focused on identifying the best 

set of factors for a specific time series to improve forecast accuracy. For supply, the predictive task of interest is to 

forecast renewable energy generation during a defined horizon. For some algorithms, prediction intervals—upper and 

lower bounds around the central prediction—are a relevant metric that permits quantifying the degree of certainty about 

the forecasts. 

4.3. Prescriptive Analytics and Optimization Prescriptive analytics utilize optimization models and engines to 

recommend the best course of action for a defined business objective or key performance indicator, subject to a range of 

conditions and constraints. Bilevel models, performing optimization over other optimization outcomes, are employed to 

study demand-side management through optimal load profile and elasticity estimation. The proposed methods either 

maximize system flexibility, revenue, or social welfare while minimizing operational costs or emissions and total 

response required for a given activation level. Scenario analysis and decision-support systems are implemented in the 

context of microgrid business model evaluation and supply chain resilience assessment. Many applications coexist in the 

space of support for selection of optimal, near-optimal, or robust solutions. 

The interpretation of AI-based forecasts often requires scenario analysis. For example, possible electricity generation 

from solar sources is influenced by both climate conditions and availability of generating capacity and infrastructure. 

Multiple actors might be willing to participate and invest conditional on expected price evolutions, but society would 

prefer to minimize investment cost while fulfilling emissions boundary conditions. Thus, economic and environmental 

criteria frequently call for detailed study of a particular business case by using the AI-based outputs of the explorer layer 

of an advanced DSS. More sophisticated optimization models could support the selection of the most appropriate solution 

for the considered actors: the installation of energy storage capacity, grid connection, or reliance on self-sufficiency. 

5. APPLICATIONS IN SMART ENERGY MANAGEMENT 

Due to the combined effects of digital transformation, climate change, and urbanization, a fundamental reshaping of 

energy systems worldwide is underway. Even if decarbonization and stabilizing the climate are necessarily the primary 

drivers, the associated increase in demand for energy in urban areas, with its volatility, as well as the demand to triage 

congestion and other operational problems are creating a need for a more responsive, flexible, and controllable energy 

On the supply side, increased penetration of variable and low-resilience resources requires increasingly sophisticated 

weather forecasting and storage management for stability and economy. 

Some energy managers have fully embedded risk management into their strategies, including going so far as testing the 

contributions of paradoxical reserves to resilience against very high-impact, low-probability events, and others that 

simply have not or are not yet aware. While the former exacerbation arises from annual steering committee meetings, the 

latter is well illustrated by analyses of the resilience strategies undertaken at Melbourne Water, and behaviours in energy, 

CO2, and other emissions have been shown to reflect blatant non-linearities. Indeed, although, in principle, any aspect of 

energy consumption-data streams of any of the four types of demand response – elasticity, forecasts broken down by 

price, trend and anomaly detection; participation rates; and the energy demand forecasts required to generate DR-band 
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holdeconomically – might be analysed using the full spectrum of data-analytics methods, it therefore seems only sensible 

that studies prioritise the exploration of those aspects for which, hitherto, interest or awareness has been least pronounced. 

Building use-case descriptions for the data analytics required to support the seamless coordination between demand and 

supply in an electrical system with high penetration of variable sources, whether those of DR programs, microgrids with 

DER-support, or fault detection and enhanced reliability – as a rubber-stamp approval for the required fully distributed 

cloud-edge conceptual architecture – is something of a mise-en-scène exercise. As much as the actuators and actors 

supporting the DR programs are sure to be a motley bunch – demand curtailers, load-shapers, price-elastic demand, 

flexible generation, batteries, EVs, etc. Their contributions and the underlying physical mechanisms have also been 

shown to interact in often unanticipated ways. 

 

Fig 3: Applications in Smart Energy Management 

5.1. Demand Response and Load Forecasting Methods for estimating demand elasticity for DR programs, participation 

rates, and short-term load forecasting accuracy are analyzed for DR initiatives in India. Demand-side response 

management (DSRM) seeks to balance supply and demand using advance contracts and incentives to motivate customers 

to alter consumption patterns when market conditions are favorable. Demand elasticity, defined as the percentage change 

in demand per percent change in price, and willingness to participate, the likelihood of participating by a customer, are 

important factors in establishing customer incentives. A load-aggregator framework is discussed and applied to estimate 

total willingness to participate across different demand segments. Event-based and incentive-based methods for DR 

forecasting accuracy assessments are also presented. 

Demand elasticity and customer willingness to participate are explored for a DR initiative offering financial incentives 

to shift demand from grid-peak periods. Shock-driven dramatically shifting and seasonal-load-shaped models of demand 

response are also outlined. Surprise events, typically caused by severe weather conditions, create conditions for 

significant demand shifts but often on an incentive basis due to the extremely-short-notice time duration. These models 

can help the demand-response aggregator address its scheduling needs, set up a bidding price, and inform the regulating 

authority about the total demand response that can be garnered during such situations. Finally, the event-based and 

incentive-based estimates of forecasting accuracy are found complementary in an operational context. 

Demand can be stored in electric, thermal, chemical, and mechanical forms. Electric storage devices, such as batteries 

and supercapacitors, have the capacity to absorb energy at a high rate without a significant cost penalty, but cannot 

provide large amounts of energy over long periods. Thermal storage devices can provide a large amount of energy for 

long periods, but frequently need to be charged at a high rate during off-peak hours, resulting in limited participation 

opportunity. However, well-prepared shock-driven model shifts can serve as DR forecasts, especially within the 

framework of a load-aggregator scheme. 

5.2. Renewable Integration and Microgrids   Achieving high shares of solar and wind generation poses major 

challenges for electric power systems. Energy storage, demand-side management, and flexible generation such as hydro 

power provide valuable support. Storage and generation technologies of small scale can be combined into microgrids, 

decentralizing supply and enabling service during power system outages. Data on available technologies and their 

governing conditions come from historical analysis. The ways in which storage systems should be managed are well 

established, focusing on minimizing cost or emission, as also in unit commitment of traditional plants. Employing battery 
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and combined heat-and-power systems under participation constraints improves operational reliability, but representation 

of electric power system outages and restoration is less developed. Operational regimes that minimize outages expose 

risks of both insufficient supply and oversupply, enabling identification of avoided long-duration outages. Typical 

weather data is insufficient for participation-rate evaluation; longer samples should be applied. Warning and final signals 

are based on avoided outages; handled with care and analysis of possible false alarms may improve effective use. 

5.3. Fault Detection and Reliability Enhancement Anomaly detection using unsupervised ML methods has been 

widely adopted in the literature for identifying faults in electrical and mechanical systems. Such algorithms can classify 

the overall system health in disparate states based on multi-channel sensor time-series data, but they rarely offer causal 

insights and often require additional layers of explainability for sensitive applications. Towards achieving the resilience 

goals of smart grids, effective planning and decision-making need to consider both the physical and cyber domains, while 

fulfilling not only technical but also regulatory and strategic requirements. For improving dependability, security, and 

continuity in the operation of energy systems, integrating AI-based methods for fault detection and root-cause analysis 

with formulations for mitigating the consequences is a promising avenue. 

The probability of failure is typically associated with external factors such as weather and operational conditions. The 

overall risk can thus be computed, and a scenario-analysis-based approach may be followed to determine the need for 

investment in mitigation measures such as redundancy, resilience boosters, and cyber defence-in-depth. Such planning 

mechanisms inform resource allocation decisions and therefore the estimated risk is crucial. In particular, the participation 

of the suppliers' infrastructure in the allocation of resources necessary for shielding the market from adverse conditions 

is a vital aspect of risk minimisation. AI methods can provide crucial inputs for developing control and optimisation 

models, as well as for compliance with business continuity regulations. 

 

6. GOVERNANCE, PRIVACY, AND SECURITY CONSIDERATIONS 

AI-enabled big data analytics are indispensable for smart energy management. However, these technologies introduce 

risks and vulnerabilities that must be addressed to ensure user trust and system security. 

Concerns about data privacy and the ethical use of AI are increasingly mainstream. Compliance with applicable laws 

requires data stewards to obtain user consent for data collection, disclosing the purpose for which data will be processed. 

However, naive implementations that adopt a one-size-fits-all approach are likely to alienate customers. A more sensitive 

and nuanced approach is required to enhance data fairness and acceptance. Risks posed by automated decision-making 

systems can be mitigated by appropriate human oversight in the decision-making process. And, as with data privacy, 

mitigative measures need to be user-friendly and not run counter to business objectives. Companies can also seek third-

party validation of models and processes to allay user concerns. 

In the interconnected world of smart grids, where private networks often extend all the way into the homes of customers, 

the attack surface for malware threats is greater than ever. Malware can strike at any level—device, network or 

application. Creating a strong defense-in-depth posture involves embedding protection along the entire computing 

continuum, from edge devices to the cloud. Nevertheless, no defense posture can guarantee full protection, as zero-day 

attack vectors may circumvent security controls. Therefore, cyber resilience, defined as the ability to recover from an 

attack while maintaining essential operations, is mission-critical. Detecting and neutralizing malware resides at the cyber 
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defence security layer of the defence-in-depth posture, and can use testbed environments to uncover faults in the defence 

system. 

Equation 3: SVD and PCA for “novel indices” / query optimization 

Let data matrix 𝑋 ∈ ℝ𝑛×𝑑, rows are centered observations: 

∑𝑋𝑖,:

𝑛

𝑖=1

= 0 

 

Covariance: 

Σ =
1

𝑛 − 1
𝑋⊤𝑋 

 

PCA seeks direction 𝑣(unit vector) maximizing projected variance: 

max⁡
∥𝑣∥=1

 Var(𝑋𝑣) = max⁡
∥𝑣∥=1

 𝑣⊤Σ𝑣 

 

Use Lagrangian: 

ℒ(𝑣, 𝜆) = 𝑣⊤Σ𝑣 − 𝜆(𝑣⊤𝑣 − 1) 
 

Differentiate and set to zero: 

∇𝑣ℒ = 2Σ𝑣 − 2𝜆𝑣 = 0 ⇒ Σ𝑣 = 𝜆𝑣 

 

So principal components are eigenvectors of Σ, ordered by eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯. 

Explained variance ratio for component 𝑘: 

EVR𝑘 =
𝜆𝑘

∑ 𝜆𝑗
𝑑

𝑗=1

 

6.1. Data Privacy and Ethical Implications  Considerations of AI-based Big Data Analytics in Smart Energy 

Management Systems must examine the underlying corporate culture, governance, and areas of data privacy and use for 

the businesses involved. As market forces continue to shift from the traditional monopoly shareholder to a broad-based 

multi-stakeholder approach more overtly adopting corporate social responsibility (CSR) agendas, it is vital to also 

consider a broadening of the ethical vectors of the business within the governance and permission structures upheld by 

the businesses at all levels. In the light of AI-based Big Data Analytics in Smart Energy Management Systems, these 

additional requirements are rather pronounced and include a number of risk vectors. 

The first of these forms of risk is the area of privacy and the sometimes-intrusive aspects of permissioned data collection 

and insight generation from individuals. These risks include the corporate tick box attitude to customer agreement to data 

use, the correctness of that data, and actions informed by results from models that may unfairly penalize certain classes 

or groups of customer. Such risks can be appropriately handled with good data stewardship and some simple governance 

processes such as a strong data governance policy, statement of acceptable use of data, risk assessment of outputs, use of 

representative training data across all user groups, etc. These guide the data privacy and ethical vectors of Azure 

Sentiment Analytics and Twitter Analytics, respectively. 

6.2. Cybersecurity in AI-Driven Grids With the growing reliance on cyber-physical systems with distributed workings, 

AI-enabled smart grid elements are subject to cyberattacks becoming more advanced as well. Previous methods, 

techniques, and mechanisms are insufficient in GFDS. Therefore, a defense-in-depth model, zero trust model, a trickle-

down risk analysis approach, and a defense-in-depth cyberattack identification system. A multi-layer fractional 
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differential cyber-attack detection GAN model is proposed for power transmission and distribution systems (GTDRPS) 

adopting hierarchical communication architecture at the TG, TF, and TD level for GT=true, TF=true, CT=false). The 

components of the grid constitute the system layer supported by the data layer. Speech, image, text recognition, natural 

language approach, vagueness and uncertainty of huge volume of data create a non-steering and non-governing Ring 

invented alg on realrun data point using KVC-ALPKVA with LCS applied over non-steering part of n-dim chessboard. 

PoK (proof of knowledge) of RNG-core graph helps to protect both nature and human from a catastrophe. 

Energy facilities are appealing targets for cyber-attacks due to their critical infrastructure roles. Accordingly, a large-

scale cyber-attack on the Iranian energy companies in 2012 caused widespread paralysis and data loss. During 2021, 

DarkSide ransomware shut down 50% of the Colonial pipeline and spurred a fuel level crisis in the U.S. These events 

demonstrate the capability of attacks to disrupt fuel transportation services for essential consumers like airports, hospitals, 

military establishments, and emergency responders. Demand for a deeper empathy for AI cyber-physical big data has 

emerged along with these human-catastrophes. Hence, even the non-AI components should behave in an obedient steering 

norm along with the AI elements to establish cyber and information security in AI-supported systems. 

6.3. Compliance and Regulatory Landscape                   Regulatory compliance is a process that ensures an organization 

follows all relevant laws, rules, and regulations. In the context of AI-driven smart grids, compliance includes explicitly 

defined and legislated systems and regulations that the data owners must follow. Furthermore, compliance also refers to 

independently developed, formalized, and legislated processes, standards, or models that address the privacy and data 

protection issues specific to an organization and its activities. Such compliance and regulatory frameworks encompass 

all aspects of AI power applications. 

Governance frameworks exist and are evolving for developing algorithms based on data collected from data subjects. In 

such frameworks, data is usually anonymized and an attempt is made to eliminate bias while developing algorithms, thus 

ensuring that services based on the trained model do not violate the principles of fairness and justice. These frameworks 

also enable compliance with the laws of the jurisdictions where the data were generated. Data privacy is an important 

aspect of systems development and must therefore be undertaken at all stages of the project life cycle including data 

acquisition, preparation, and modeling. Regulations demand that data must be used only with the consent of the data 

owner and therefore data owners must be made aware of the privacy and security policies governing the use of personal 

data when giving consent. 

7. EVALUATION AND VALIDATION FRAMEWORKS 

An assessment framework for big data analytics in smart energy management systems is established, covering metrics 

for analytics performance, as well as benchmarks and case study requirements for testing models. Analytics fall into 

accuracy, precision, recall, F1 score, root mean square error, mean absolute error, and business metrics categories. 

Benchmarks include data representations, baselines for comparison, and transferability conditions to assess 

generalizability. An experimental design for analytics testing is proposed, detailing the experimental setup, data 

partitioning, reproducibility governance, and result-reporting criteria. 

A comprehensive evaluation and validation framework has been established for big data analytics methods and models 

tailored for applied smart-energy-management use cases. Evaluating the performance of machine-learning models 

typically focuses on four aspects: analytics accuracy, across all applications; business impact, so that models provide 

actionable indicators for decision makers; transferability, to establish whether models can be applied to new data settings 

with different characteristics; and reproducibility, ensuring existing methods can be executed with the same sources and 

procedures. 

 

Fig 4: Evaluation and Validation Frameworks 
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7.1. Metrics for Analytics Performance  High-dimensional and unstructured, the data generated by smart grids 

necessitate the use of machine learning-based algorithms for descriptive, predictive, diagnostic, and prescriptive 

analytics. The performance of such methods is quantified using a range of metrics, including accuracy, precision, recall, 

and F1-score for classification problems, and root mean square error, mean absolute error, and mean business value for 

regression problems. 

In supervised learning, the ratio of correctly predicted positive observations to the total predicted positives, precision 

describes the ability of the classifier not to label a negative sample as positive. Recall, also known as sensitivity, measures 

the ability of the classifier to find all the positive samples. Auc–roc (area under the receiver operating characteristic 

curve) is a performance measurement for classification problems at various thresholds. It is a probability curve and AUC 

represents the degree or measure of separability. It indicates how much the model is capable of distinguishing between 

classes. The F1 score is the weighted average of precision and recall, and thus takes both false positives and false 

negatives into account. The F1 score is a good way to show that a classifer has a good value in cases of uneven class 

distribution. The root mean square error (RMSE) is the square root of the mean of the squared errors and measures the 

difference between values predicted by a model or an estimator and the values observed. The mean absolute error (MAE) 

is the average over the test sample of the absolute differences between prediction and actual observation where all 

individual differences have equal weight. The business value of a forecast defines the economic value of the forecasts 

when used in a decision-making process and depends on the decision-making rule employed and so needs to be specified 

alongside the forecasts. 

7.2. Benchmarks and Case Studies  Metrics characterizing the analytics component are essential for performance 

evaluation. Common raw metrics include accuracy and its derivatives (precision, recall, receiver operating characteristic 

curve area, and F1 score) for classification tasks, as well as root mean squared error and mean absolute error for 

regression. In energy applications, however, neither of these characterizations maps directly to business value. 

Continuous business operation typically employs, for example, a predictive demand model serving as input to a demand 

response service – thus, the business value of such a model lies in the accuracy of its predictions measured against the 

final service delivery. This interdependence commutes through layers of the overall service supply chain. Consequently, 

case studies in the energy domain systematically assess business-driven predictive accuracy. Benchmarks should 

represent realistic operating conditions. Energy systems are characterized by correlations over space and time, 

conditioned by the distribution of correlating attributes (e.g., seasonal temperature patterns influencing demand of nearby 

customers). Well-formed benchmarks explore base systems that naturally test model generalization. Transferability – 

diverse source/target similarity attained through latent feature transfer – call for attention: when sources and targets 

exhibit misaligned patterns, the risk of narrow applicability looms large, potentially limiting sources to shy 

dimensionality. 

An ideal laboratory should allow testing of detection and diagnostic methods against well-formed ground-truth datasets. 

This requirement remains rarely satisfied, and detection papers resort to non-ideal sources. A sounder design introduces 

a benchmark providing realistic ground-truth family trees for easy fostering of large datasets with varied attributes. For 

an energy application, fault-detection experiments deploy fully formed family trees to create a dataset of loading scenarios 

containing 26 classes with strain-invariant temporal encodings – and yield significant gains over alternative algorithms. 

Based on these considerations, such a benchmark is instrumental for testing methods in supervised and unsupervised 

fault-handling tasks within the energy domain, and can be reproduced for other areas. To foster sceneries of preventive 

maintenance for critical infrastructures, use of anomaly-failure tree pairs is advised to accelerate training of anomaly-

detection methods through supervised-learning supervision. 

7.3. Experimental Design and Reproducibility It is important for experiments to disclose setup details and data split 

fractions in order to enable a fair comparison across models and methods. In particular, it is advisable to retain an unseen 

set for final evaluation as well as a smaller subset for hyper-parameter tuning or proof-of-concept demonstrations, thus 

avoiding information leakage that would render reported performance overly optimistic. 

Reproducibility and compare analyzes are aided by clear documentation, preferably in the form of a notebook that 

combines description with code. Reproducibility of analytical tasks should also be ensured through retention and proper 

governance of the underlying data sets. Finally, reporting checklists for analytics that direct attention to relevant aspects 

of a study facilitate clarity and completeness. 
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8. CONCLUSION 

Modern energy management systems must adapt to the rapid digitalization of society and the integration of renewable 

energy. Society is becoming increasingly reliant on more frequent, convenient, and diverse energy use and supply. This 

growth in electricity consumption is happening in conjunction with an increase in local renewable energy generation. In 

addition, energy systems are facing ever-increasing threats to their physical security. The combination of these drivers 

requires new algorithmic approaches to power system operation, distribution, control, maintenance, and private 

ownership and sharing of power system data, which demand high-quality smart energy management frameworks based 

on AI-enabled big data analytics. Such a framework requires well-managed data architecture. 

The proposed research framework enables the identification of appropriate use-cases for AI-based data analytics in the 

context of energy management algorithms that take large quantities of data as input. New models for managing demand-

response elasticity in buildings and their adoption rates, making battery storage-based management of renewable energy 

in microgrids more resilient, and facilitating reliable power system operation through improved fault-detection 

capabilities represent just some of the possible applications. An integrated data architecture that accommodates the latest 

advances in data collection and quality in the energy domain opens the door for testing new ideas. The proposed high-

level structure also provides a basis for identifying future use-cases that require data from across energy systems. 

8.1. Future Trends Advancements in AI-enabled analytics and circulating and distributed AI models notwithstanding, 

cloud computing remains a potential bottleneck in processing speed and real-time response. Edge processing pushes 

intelligence closer to the data generators while ensuring compliance with data sovereignty regulations, but it can be 

resource-intensive. The growing ubiquity of powerful low-power processors, including GPUs, TPUs, FPGAs, and SoCs, 

makes them cost-effective candidates for edge analytics. With open-source frameworks enabling deployment, these 

processors jointly with edge-cloud configurations can provide massive event streaming analytics. 

Nondiscriminatory accessibility to completed data science products is another key aspect that will stimulate a wider 

deployment of Big Data Analytics for Smart Energy Management. Enabling people and organizations without a dedicated 

data analytics team or extensive knowledge to harness the potential of these technologies represents a major step forward 

for supporting data-driven decision making. Services such as DataRobot allow organizations to access predictive models 

created by machine learning algorithms without requiring a dedicated data analytics team or extensive machine learning 

knowledge. 

Enabled through cloud computing that provides scalability, Big Data Analytics for Smart Energy Management also opens 

the door for Artificial Data to complement real data and build full datasets under a semi-supervised learning regime. This 

approach allows model training and testing with all-real data while having the prediction capacity for all-synthetic data 

without performance degradation. 
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