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Abstract: Urban mobility is a major concern for large metropolitan areas. Cloud-enabled Artificial Intelligence (AI) 

technology may help to manage travel demand and offer a more sustainable urban mobility model for smart cities. An 

AI-driven, cloud-enabled architectural framework applied to traffic management and control business processes is 

proposed. It integrates four AI-based predictive models with real-time traffic control and incident-response systems. 

Different data-driven use cases, proved in two metropolitan areas, illustrate the applicability of this framework in real 

operational environments. Results show that this approach is capable of managing urban traffic in real time. In addition, 

it demonstrates how AI-based models can be developed, deployed, and operated within cloud environments, offering a 

decision-support capability. 

The central role of predictive traffic management systems in the cloud-enabled AI model for smart cities is assessed. 

Demand management processes and the integration of Mobility-as-a-Service platforms are also analyzed. These are 

mandatory steps to offer a sustainable traffic model for large metropolitan areas. Finally, other aspects such as 

environmental protection and energy consumption in urban mobility are examined. Traffic management by predictive 

systems enables a more accurate confrontation of real traffic conditions, improving the energy, environmental, and 

resilience contexts. 
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1.INTRODUCTION 

 

Motorized mobility plays a prominent role in the economic development of humanity, but with serious consequences that 

question its sustainability. The trade-offs and conflicts between motorized mobility, social equity, and the environment 

are the biggest challenges of modern societies. The advent of Smart Cities introduces advanced technologies capable of 

inducing safer and more efficient traffic operation, and consequently cleaner urban environments. Cloud computing 

enables the deployment of data-intensive applications and broad data storage, opening new possibilities for managing 

mobility. A promising research direction lies in deploying Artificial Intelligence (AI) in the Cloud to predict a wide range 

of mobility phenomena and enable various Traffic Management Systems (TMS) that require slightly varied 

characteristics. 

Cloud computing and AI are now being successfully implemented in several domains, including traffic prediction and 

management. Nevertheless, systematic studies assessing the main implementations, advantages, and drawbacks of these 

technologies for real-time traffic control, incident management, demand management, and more are still incipient. A 

detailed analysis enables a better understanding of the technology, fills existing knowledge gaps, and indicates future 

research directions. 

 

1.1. Background and Context 

Cloud computing is a pivotal enabling technology for smart cities, offering scalable distributed networks and hosting 

platforms for Internet of Things (IoT) devices. Cloud services deployed outside city boundaries allow for the dedicated 
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use of specialized resources and capabilities. Traffic management is one of the first domains to leverage cloud-enabled 

Artificial Intelligence (AI) for predictive decision making over travel demand. 

For sufficiently large metropolitan areas, cloud-use allows real-time, network-wide traffic control in response to demand 

signals from motorists. Decision-making operates at longer time scales, district-wide, and involves a mix of economic 

incentives and pricing/routing guidance. Predictive AI models provide the required travel demand across the city for 

these decision tasks. Demand management offers a way to provide predictable and controllable levels of demand to the 

network while minimizing costs, adversely affecting network users as little as possible, and interfacing seamlessly with 

public transport systems. 

Building on two decades of improvements in mobile and sensor technologies, a wealth of real-time, heterogeneous data 

on urban dynamics is now available within cities. However, data quality, volume, diversity, and reliability are often 

insufficient for effective exploitation. Analytics and predictive models are therefore deployed in the cloud, integrating, 

processing, and combining diverse data sources to replicate data assets usually require for efficient network decision-

making. 

 
Fig 1: Adaptive Urban Governance: Cloud-Enabled AI for Predictive Demand Management and Integrated Traffic 

Control 

 

2. THEORETICAL FOUNDATIONS 

 

While traditional machine learning methods provide reliable predictions, the integration of deep learning frameworks is 

emerging as the new frontier owing to their superior performance. AI-based predictions for the next few minutes 

(temporal prediction) allow for real-time control and are particularly beneficial for direction-specific traffic management, 

such as traffic light control or lane management. Since traffic predictions are intricately connected with many other 

planning and management issues, numerous prediction models and methods have been developed with varying prediction 

horizons, target variables, and prediction scopes. 

Conversely, temporal predictions for the next few hours are useful when the integrated information is necessary but where 

the time requirement for fast-response decisions does not permit operation-specific model integration (e.g., incident 

response). Traffic issues can also be addressed by location-specific prediction models. However, the scope of correct 

decisions is often limited, leading to the development of demand management and Mobility-as-a-Service systems that 

use traffic predictions at longer horizons for pricing and routing decision integration. These mobility supply and demand 

management systems also minimize the need for real-time control by optimizing mode and route choice decisions across 

various transport modes before travel and their actual choices during travel. 

 

2.1. Cloud Computing and Edge-Cloud Architectures 

As urban mobility systems become increasingly complex, cloud-enabled Artificial Intelligence (AI) offers innovative 

technical solutions for real-time predictive traffic management. Based on a hybrid edge-cloud architecture, these systems 

centralise data analysis and modelling tasks in the cloud while employing a geographically-distributed data sensor 

network to serve latency-sensitive applications and near real-time response needs. The potential of cloud-enabled AI for 
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predictive traffic control, traffic-demand management, incident management, and Mobility as a Service is demonstrated 

through a series of case studies in a metropolitan area. 

Cloud Computing 

Cloud computing is generally understood as a model for ubiquitous and convenient access to shared pools of configurable 

computing resources that can be rapidly provisioned and released with minimal management effort or service provider 

interaction. Resources are made available by a service provider through a set of scalable services, such as IaaS, PaaS, or 

SaaS. Technically, cloud computing can be deconstructed into scalable processing, storage and network components that 

are interconnected by virtualised, low-latency links. These components are consolidated into large datacentres and made 

accessible to a large number of external customers. Large-scale cloud systems represent the next stage in the evolution 

of data centres, clusters and grid computing that have been experimentally explored in the past decades. These systems 

harness the tremendous growth in Internet bandwidth and provide economically attractive solutions for scalable, parallel 

processing and large-scale data storage. 

 
 

Equation A. MAPE (Mean Absolute Percentage Error) — full derivation 

Goal: error expressed as a percentage of the true value (scale-free). 

Step 1: Start from absolute error 

|𝑦𝑡 − 𝑦̂𝑡| 

Step 2: Convert to relative error by dividing by true value 

|
𝑦𝑡 − 𝑦̂𝑡
𝑦𝑡

| 

(Requires 𝑦𝑡 ≠ 0; if 𝑦𝑡 can be near zero, practitioners often use sMAPE or add an 𝜖.) 

Step 3: Average over all time points and convert to percent 

MAPE =
100

𝑛
∑|

𝑦𝑡 − 𝑦̂𝑡
𝑦𝑡

|

𝑛

𝑡=1

 

 

2.2. Artificial Intelligence for Traffic Prediction 

Artificial Intelligence (AI) algorithms can yield traffic predictions. AI encompasses methods designed “to emulate traits 

of human intelligence” by using intelligent agents. Abundant data on past traffic patterns enable the development of AI 

models, which learn to generalize input-output relationships so they can provide predictions on unseen data points. The 

traffic data that underpin learning are often considered “big data” because of their volume, variety, velocity, and veracity. 
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The AI model must be chosen to suit the features, labels, and amount of training data, while ensuring that an accurate 

model is generated within an acceptable time. The features selected for prediction can include recent traffic conditions, 

day of the week, season, significant events, road work, historical traffic data, and external data such as weather conditions, 

public holidays, and school events. The performance of the AI model can be evaluated with extra data not used for 

training, and complementary validation can be performed across different locations and temporal conditions. 

 

3. METHODOLOGICAL FRAMEWORK 

 

The methodological framework encompasses two interrelated aspects. The data ecosystem defines the different data 

sources and models, data types, spatiotemporal data quality, interoperability, and the management of data for traffic 

prediction. Integrating multi-source data from real-time sensors requires a pragmatic approach to deal with different 

spatiotemporal resolutions and data quality issues. The proposed predictive modeling techniques detail the steps for 

facilitating the identification of traffic demand and supply that affect urban mobility services. Preprocessing data for 

predictive model training and validation is designed for detecting spatiotemporal resolution and model type. The 

combination of predictors with dedicated learning models aim to optimize the predictive performance. 

Traffic prediction relies on future traffic demand in space and time and can be represented as prediction for each 

individual road segment at fixed time intervals in the specific future period. Predictive models can be considered for each 

control loop and decision horizon of the Traffic Control Centre. Different drivers steer traffic in the urban area: Private 

Cars belong to residents and passers in the area, Taxies have a demand for short-distance routes, Buses have a demand 

with long-distance and high-frequency service, and Others are also passing through but have no stops in the area. Relevant 

features include categories of roads in the urban area, spatial and temporal records of overall road traffic, records of 

Keyword Searching in major Search Engines, records of price adjustment of Taxies, and records of plans of any 

temporary road closure and speed limit adjustment. The model performance is evaluated based on three metrics (MAE, 

RMSE, MAPE) and cross-validation, and the predictive results are validated by prediction against the actual records. 

 

Model MAE RMSE MAPE_% 

Model A (RF-like) 26.697005099565498 31.461153181123784 3.3537902721301407 

Model B (LSTM-like) 13.361494765978534 17.206423647929107 1.6861626567638874 

Model C (GRU-like) 16.04637655631512 20.34735442674958 2.0366754643758704 

Model D (ARIMA-like) 26.694544698192704 33.45579275418808 3.372344818884845 

 

3.1. Data Ecosystem and Sensor Integration 

A data ecosystem integrating heterogeneous traffic sensors and sources is required to enable predictive traffic 

management at the metropolitan scale. Many types of data are useful, including real-time vehicular flows, positions, and 

speeds, historical patterns, and weather forecasts. Data quality and availability therefore condition the predictive 

modeling pipelines, while the integration of urban and transport data ecosystem supports complete and multimodal 

predictive models. 
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Fig 2: Integrated Data Ecosystems for Metropolitan Predictive Traffic Management: A Multimodal Framework for 

Open-Access Mobility-as-a-Service (MaaS) and Dynamic Demand Pricing 

 

The open-access nature of the data is also critical. Control decisions based on predicted traffic conditions can significantly 

benefit from the establishment of a real-time mobility-as-a-service ecosystem providing end-to-end multimodal routing 

across public transport, shared services, bicycles, and taxis. By supplying the predicted traffic conditions to a complete-

multimodal routing engine, demand management pricing schemes that establish the relation between the demand for 

urban mobility and the supply can be evaluated. Therefore, pricing and routing are linked to the traffic conditions obtained 

from the predictive traffic-management framework. 

 

3.2. Predictive Modeling Techniques 

The investigation of traffic prediction across multiple temporal horizons focuses on enablers such as supervised ML and 

DL approaches. To this end, a set of prediction models is trained with traffic data at several spatial scales and prediction 

horizons and is tuned for multiple metrics. The models are trained on historical data covering the COVID-19 lockdown 

period, during which a significant drop in mobility was observed, and, therefore, validated with data from the period after 

the lockdowns, characterized by a return of demand for movements. Data preprocessing and model hyperparameterization 

are carried out with a nested structure. An extensive set of criteria is used to evaluate and select the models, including 

performance during training (minimization of the error between predicted and observed values), variance (robustness), 

and bias (detection of a systematic over- or underestimation). 

In addition to the data set used for training, the selected models must also be predictive for the forthcoming models, 

validated on data from a different period and, particularly, when the mobility profile is different from the training data, 

thus reflecting a capacity for generalization. The selection of predictive models is based on an analysis of an extensive 

set of metrics, namely, accuracy (the share of correct predictions); direction accuracy (the share of values predicted with 

the correct sign), mean absolute error, and Q6 efficiency index (comparison of predictions with a simple persistence 

model); and F1 score and HSS (both for classification models). This not only ensures the identification of models with 

acceptable prediction performance but also the selection of models with complementary error profiles, thus allowing a 

more suitable model ensemble to be built for the final multi-modal supply and demand synthesis. 
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4. CLOUD-ENABLED TRAFFIC MANAGEMENT SYSTEMS 

 

Cloud-enabled urban mobility systems provide a shared platform for traffic control, demand management, and Mobility 

as a Service applications. A city cloud maintains high-level real-time traffic information and automates incident detection 

and response. Structural, performance, and communication automation can close real-time traffic control loops, while 

decision-node located traffic prediction can meet real-time data latency requirements. Demand management integrates 

internal and external pricing mechanisms, guides demand distribution over space and time, minimizes production costs, 

and reduces peak-period congestion. MaaS aggregators facilitate multimodal travel planning and improve public transport 

attractiveness. User routing preferences, willingness-to-pay, and information adoption shape network effectiveness. 

Current systems focus on producing traffic control and incident-management applications for one or more metropolitan 

areas. Predictive traffic models consider local statistical conditions and thus require local data to guarantee prediction 

accuracy. High-level data needed for demand management can be processed in the cloud, while demand-distribution 

models operate at a metropolitan level. Cloud-edge architectures can integrate city clouds and allow metropolitan-level 

tourist flows to enter the cloud-edge system. High-level incident type and impact analyses also lie in the cloud, while 

city-edge architectures can further distribute Metropolitan cloud data services to low-population-density areas in the 

region. 

 
 

Equation B. MAE (Mean Absolute Error) — full derivation 

Goal: average magnitude of errors, without sign cancellation. 

Step 1: Start from the pointwise error 

𝑒𝑡 = 𝑦𝑡 − 𝑦̂𝑡 

Step 2: Remove sign with absolute value 

|𝑒𝑡| = |𝑦𝑡 − 𝑦̂𝑡| 

Step 3: Average across 𝒏 time points 

MAE =
1

𝑛
∑|𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑡=1

 

 

4.1. Real-Time Traffic Control and Incident Response 

Cloud-enabled AI facilitates real-time traffic control and dynamic response to incidents. Decision-making relies on 

multiple isolated control loops operating across different time horizons, signifying potential limitations in control and 

evaluation. Although incident response addresses a broader timeframe, individual control loops remain task-specific. 

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.102Peer-reviewed journal & Refereed journalVol. 12, Issue 12, December 2023 

DOI:  10.17148/IJARCCE.2023.121233 

© IJARCCE              This work is licensed under a Creative Commons Attribution 4.0 International License               308 

Optimally managed and scaled, such approaches can enable traffic state prediction and user-assigned model management. 

Using real-time audio-visual data processing, urban traffic networks can be dynamically detected, classified, estimated, 

and predicted. Centralized data collection can be reduced through edge connection and operation for large-scale traffic 

incidence monitoring and control. 

Traffic incidents spur degradation of urban traffic networks, necessitating assessment and prompt response. Traffic 

incident responses involve "detecting, classifying, tracking, predicting, and managing" traffic incidents spanning various 

modes, including automated surveillance system-based control, video image sequence-based incident detection and 

tracking, automatic license plate recognition, and real-time digital identification for traveling time estimates. Centralized 

camera installation contributes to pre-setting detection, classification, and tracking models. Designed edges and transfer 

represent electrical buses to facilitate event detection during model test. Cellular-MBS-A-MC is employed for incident 

detection, classification, and minor multi-sensor-based tracking in visual area, applying three-layer data fusion. Vehicle 

traveling time support combines with air quality monitoring to facilitate incident prediction based on social media inputs. 

Existing systems cover detection and tracking support, leaving timely evaluation unaddressed. 

Scaling response to more extensive networks and integrating real-time attribute acquisition for individual vehicles remain 

concerns for operation management decision makers. Green-Oriented Rely on Cost-Varying Routing is designed for 

large-scale voice traffic-oriented and cloud platform user assignment across modes and time horizons, significantly 

reducing overall network cost through flow-dominating approach. Cloud-edge computation traffic prediction model 

achieves apparent reduction in power consumption. Cloud-enabled urban management system can support incident 

detection of urban objects using media data platform. 

 

4.2. Demand Management and Mobility as a Service 

Cloud-enabled predictive traffic management encompasses real-time traffic control, incident response, demand 

management, and Mobility-as-a-Service (MaaS). These solutions operate through tailored cloud–edge architectures—

centralization facilitates complex optimization tasks with low-latency, high-bandwidth requirements, while the edge 

handles demand-sensitive control operations. Demand management reduces demand-supply imbalances via demand 

forecasting, dynamic pricing, and rerouting suggestions, contributing to traffic flow stability, congestion mitigation, and 

smoother incidents response. Cloud-enabled MaaS integrates multimodal transport options in single applications, 

simplifying real-time door-to-door trip planning and supporting public transport demand with personalized pricing and 

routing recommendations. 

Demand-sensitive real-time traffic optimization requires joint modelling of demand and supply. Data-driven demand 

forecasts are complemented with multimodal pricing rules balancing traffic volumes in conventional private vehicles, 

ridesourcing, and public transport. Accurate supply models facilitate integration of real-time demand-supply information 

flows in cloud-embedded control loops, enhancing stability of traffic flows. Actionable insights for dynamic pricing, 

control, and routing are shared with users through dedicated cloud-edge communication protocols. Additionally, demand-

sensitive traffic management services may foster user adoption by providing personalized information and suggestions 

for upcoming trips, accommodating operational constraints in private car–sharing resorts, and enabling position-based 

multimodal pricing for door-to-door trips. 

 

5. CASE STUDIES IN SMART CITIES 

 

The prior methodological framework established a set of cloud-enabled AI modeling techniques primed for application 

to real cities. This section presents two case studies that address metropolitan-wide traffic optimization—one in the 

United Kingdom and the other in Spain—while highlighting the subsequent environmental implications of predictive 

traffic management systems. 

Although the presented techniques were carefully designed to guarantee the potential transferability of the results, certain 

constraints persist. Four key considerations are therefore evaluated: 1) the model-external validation across space, 2) the 

algorithmic optimization and its inherent assumptions, 3) the underlying data quality and its robustness to real-world 

conditions, and 4) the evolutive nature of the models and their insensitivity to gradual changes in location-specific 

demand and supply. Strategies that foster and promote these criteria enable knowledge transferability and support 

progressive deployments toward system-wide optimal operation. 
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The selected case studies represent best-practice examples across multiple operational categories. The first outlines an 

AI-enabled traffic control and incident detection system for Greater Manchester, England. The second examines 

predictive models designed to minimize traffic demand over a four-year investment horizon for the city of Sant Cugat 

del Vallès, Spain. For both, details on the specific objectives, principal findings, and inherent limitations are 

systematically documented. 

 

Interval Observed Persistence Model A (RF-like) 

6 799.973288424262 769.003681774876 781.4094502941479 

7 778.4165562219398 799.973288424262 805.2283095113272 

8 890.5297401699048 778.4165562219398 849.2528504347588 

9 902.8677692199722 890.5297401699048 916.2535031281244 

10 885.1601792351298 902.8677692199722 833.5498091571004 

11 910.7646513188166 885.1601792351298 894.2106678271464 

 

5.1. Metropolitan Traffic Optimization 

Real-time traffic control and incident response are among the most common traffic management applications and may 

be used independently or jointly within a single system. Control loops typically range between 5 and 30 minutes, and 

decision horizons span from a few minutes for incident response to one hour for rerouting. Roadmap characteristics 

determine the communication protocol: centralized for homogeneous protocols and decentralized for heterogeneous ones. 

Metropolitan traffic optimization in Paris and optimal ramp metering of freeways connecting with the Paris region are 

well-documented examples. Monet et al. propose a predictive control system for the Paris region that uses real-time traffic 

demand data to modulate incentivization prices for private and shared taxis and a combination of multimodal supply and 

demand management. The focus is on short-term real-time control where a 15-minute decision horizon is used. 

Real-time traffic management constantly seeks to ensure the optimal functioning of the system by developing the required 

knowledge through the exploitation of real-time data collected from the road network, such as roads, public transport, 

and their users. Predictive control is a way to cope with controlling such a system with a short-term decision horizon 

given a prediction of demand up to a longer decision horizon for which a control/reaction price is defined. Many 

alternatives have been applied to the demand management control loop by proposing different pricing, control, and 

incentive rules under unified approaches. Despite the multitude of proposed solutions, few cases based on convergence 

with user equilibrium exist. 
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Fig 3: Multimodal Predictive Control in Metropolitan Traffic Management: Integrating Real-Time Demand Modulation 

and User Equilibrium for Optimal Urban Mobility 

 

5.2. Environmental and Energy Impacts 

Implementing predictive traffic management can yield substantial resource savings, particularly in metropolitan areas 

where traffic congestion and high travel demand contribute significantly to energy consumption and greenhouse gas 

emissions. The environmental and energy consequences of real-time traffic demand management and control systems, 

including congestion pricing schemes, are quantified in a case study applied to a metropolitan area in the north of Spain. 

Road traffic density and emissions are estimated using a fine-grained spatial model that incorporates traffic distributions 

from Mesoscopic Dynamic Traffic Assignment (MDTA) models, in conjunction with different scenarios characterizing 

the application of predictive traffic management and control systems during the daily rush hour period. 

The results suggest that demand management and real-time control systems can successfully maintain traffic density at 

lower levels, leading to overall traffic emissions and energy use reductions. Future research should assess the robustness 

of these findings, focusing on whether predictive management and control capabilities can be transferred and adapted to 

other metropolitan areas with different trip distributions, traffic characteristics, and cultural backgrounds. Moreover, as 

urban centers gradually reopen their economies after COVID-19 restrictions, further evaluation of predictive management 

strategies applied to the new abnormal period will contribute to the understanding of the strong interdependence of traffic 

demand and incident-response operations, and strengthen the case for their joint implementation. 

 

6. GOVERNANCE, POLICY, AND ETHICAL CONSIDERATIONS 

 

The importance of governance and policy—especially regarding data—cannot be overstated. Schemes are needed for 

data sharing and data access within and across sectors and stakeholders, and for associated compensation methods. In an 

ideal case, distinct interoperability standards would be developed and adopted by all urban mobility-related schemes for 

both data exchange and management, as well as for applications integrated with such schemes. And data sovereignty 

must be guaranteed, especially in relation to commercially managed private platforms. Ownership and access to the data 

generated by users would remain with them, and services across distinct platforms would share data to guarantee an 

integrated and multimodal experience. Such a smart mobility ecosystem would need to be open to all actors in urban 

mobility, irrespective of their nature (public or private). 
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Despite the recent effort to promote equity and inclusion in transportation, many urban areas remain highly inequitable 

in terms of transport accessibility. As stated in the US Transportation Research Board’s 2021 Equity in Transportation: 

Opportunities for Action report, the transport equity movement must not only ensure that local systems are accessible to 

those needing mobility but also consider equity across systems as a guiding principle. The deployment of demand-side 

management procedures whose costs are perceived differently by distinct segments of the population is a first step toward 

this ideal in the context of urban transport. All systems must also be tested to identify and minimize biases due to the use 

of AI in the automated solutions they deploy. Developing tools and applications requiring operators to balance local 

ledger without conflicting economic incentives may also be appropriate. Finally, all traffic management strategies must 

guarantee system comfort and minimize disturbances for the affected population. 

 

6.1. Data Governance and interoperability 

Cloud-enabled predictive traffic management and modeling methods, tools, and techniques strongly affect how 

metropolitan authorities optimize urban mobility. These fundamentals have to be in place before discussing metropolitan 

use cases aiming for real-time traffic control, incident response, demand management, or Mobility as a Service. The 

principles driving these use cases are common for many metropolitan areas but have been illustrated using examples and 

results from Porto. To motivate practice, several specialized studies have shown applicability beyond the Porto 

metropolitan area. The following analysis considers two aspects of predictive traffic management systems that are 

essential for their acceptance and adoption by real-world stakeholders. 

Data governance uses public assets to generate the public good of travel time savings and environmental gains. The 

success of cloud-enabled predictive traffic management relies on jointly developing the traffic prediction model and 

Business Intelligence tools. The architecture supports collaborative Business Intelligence. Data and model ownership are 

essential to secure privacy and avert potential misuse. Once the Business Intelligence tools are ready, urban authorities 

become Data Providers, and model forecasting becomes a service. Hence, Business Intelligence tools help integrate and 

visualize results to support decision-making processes. Interoperability becomes a non-issue for travel-time savings 

models since urban authorities using the Business Intelligence tools become Data Providers of these models. 
 

 
 

Equation C. RMSE (Root Mean Squared Error) — full derivation 

Goal: penalize large errors more heavily (squaring amplifies outliers). 

Step 1: Square the error (removes sign + increases big errors) 

𝑒𝑡
2 = (𝑦𝑡 − 𝑦̂𝑡)

2 

Step 2: Mean of squared errors (MSE) 

MSE =
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)

2

𝑛

𝑡=1
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Step 3: Take square root to return to original units 

RMSE = √MSE = √
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)

2

𝑛

𝑡=1

 

 

6.2. Equity and Inclusion in Urban Mobility 

Cloud-enabled AI-powered urban traffic management holds promise for enhanced urban sustainability and energy 

efficiency in smart cities. However, equitable access to mobility services and the risk of introducing bias should be 

scrutinized. Considering affordability, accessibility, and In-vehicle time as key facets of transport equity, AI-assisted 

pricing policies promoting equity in autonomous demand responsive transport yield beneficial results. Possible user bias 

in choosing active modes must be assessed when manually selecting behavioural parameters. Furthermore, other 

mobility-as-a-service strategies should take into account transfer penalties as fairness-enhancing behaviour parameters. 

Research has put to the test a cloud-based Mobility-as-a-Service platform within a smart city environment. By exploiting 

simulated data, various aspects of adopting multi-modality across conventional and emerging transport services in the 

short term could be studied: shared-demand-responsive transport, bike- and scooter-sharing services, and their possible 

integration into daily commuting patterns, which has been found to be a relevant behaviour parameter shaping user 

satisfaction. Moreover, the behavioural decision on mode choice has been examined from a data-driven standpoint, 

combining behavioural and machine-learning techniques to infer a user network for multi-modality integration as a 

contribution for promoting equity and accessibility in future MaaS platforms. 

 

7. CONCLUSION 

 

Cloud-enabled AI can greatly enhance predictive modeling for urban traffic evolution, enabling demand and supply 

management strategies that facilitate smoother traffic conditions and lessen cloud-computing infrastructure loads. 

Numerous transferability studies confirm the effectiveness and reliability of the proposed methodologies, yet significant 

knowledge gaps remain regarding their environmental implications and urban adoption in practice. 

AI traffic-modeling approaches have been continuously advanced over the past decade, leading to promising results in 

both prediction accuracy and computational performance. Nonetheless, real-time traffic optimization demands require 

more than predictive modeling; these approaches enable the control loops of real-time demand-management strategies 

and have therefore received much attention. Demand-supply imbalance situations are primarily mitigated by real-time 

traffic-control systems, incident-response strategies that re-route traffic through roads with a higher capacity, and 

Mobility as a Service initiatives designed to regulate traffic demand. In these last two cases, destination-choice models, 

usually derived from observed data or stated-preference surveys, define how travelers re-route and re-time their trips in 

response to price signals. 

 

 
Fig 4: Cloud-AI Resource Distribution 
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7.1. Summary of Findings and Future Directions 

Cloud computing democratizes access to key technologies, enabling the development of advanced AI services in urban 

ecosystems. Cloud-enabled predictive systems provide traffic management insights with the data deluge from connected 

vehicle fleets and transport network users. At the same time, the edge-cloud architecture integrates low-cost open sensor 

infrastructures for real-time traffic control with user-centric high-latency AI-based demand management services that 

tackle the surge pricing challenge of Mobility as a Service platforms. 

However, cloud-enabled AI for traffic management is still in its infancy, with limited testing in metropolitan 

environments and a lack of urban sustainability perspectives. Centralized traffic optimization in mega-regions has not 

yet been connected to the traffic management system. Moreover, the growing data externality of momentary and 

interactive complex structure demands new governance models and policies to assure data ownership, access, and urban 

interoperability of AI tools for predictive traffic management. Future research should tackle these challenges to deepen 

the environmental benefits of cloud-enabled AI-based traffic management in a broader urban context. 
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