
ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 13, Issue 2, February 2024 

DOI:  10.17148/IJARCCE.2024.13223 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 132 

Predicting Air Quality by Particulate Matter 

Based on Neural Networks 
 

Dr. S Rajesh1, P Bazeer Ahamed2, M Deepakkumar3, T Subramanian4, G Raj Karna5  

Department of Information Technology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu.1-5 

 

Abstract: These days, many places struggle with air pollution, putting the health of young and old at risk for respiratory 

issues. Forecasting fine-grained air quality in the future is crucial for informing public policy and helping individuals 

make decisions. Using historical data on air quality, meteorological expertise, and forecasting data, we predict the average 

air quality for a town for the next seven days, as well as the air quality for each tracking station for the next 48 hours. Our 

proposal is a deep neural network method called Deep Air, which is based on domain knowledge about air pollutants. We 

employ a deep cascaded fusion community for longer-term forecasting and a deep distributed fusion network for station-

level long-term prediction, and long-term prospects for the city. The previous community used a neural distributed 

structure as part of the information transformation preprocessing in order to combine diverse city facts and simultaneously 

collect the direct and indirect components affecting air quality. The latter network examines the dynamic effects of 

historical, current, and projected future data on air quality using a neural cascaded architecture. Our device specifically 

integrates three additives— a project scheduler, and a prediction model—to boost the system's efficacy and stability. 

These additives function through a structure of many challenges. Results from experiments demonstrate the advantages 

of our proposed approach, which is mostly based on datasets from nine Indian towns over a three-month period. 

 

Index Term: Air excellent prediction, Deep Neural Networks. 

 

I. INTRODUCTION 
 

The tendency of increased Meterologicalization is making air pollution a severe issue for many towns [1]. Air pollutants 

are made up of a mixture of gaseous species (like NO2, CO, O3, and SO2) and particle counts (like PM2:5 and PM10). 

These pollutants have an impact on human fitness over the long and long term, especially for respiratory disorders in the 

young and old [2].  

 

To measure air pollutants from data set time, the Indian government has constructed a number of air quality monitoring 

stations and periodically releases data to the public [3].  

 

There is growing interest in projecting future fine-grained air quality in addition to monitoring. The government can use 

these projections to inform judgments about laws (like implementing traffic limits) and public policy (like deciding 

whether to allow exercise outside on a given day). For the following reasons, however, it can be exceedingly challenging 

to forecast future air quality.  

 

According to Fig. 1, the main sources of air pollution are industrial emissions, coal combustion, soil, and vehicle exhaust. 

Each of these sources emits pollutants in distinct spatial-temporal patterns. Additionally, surrounding emissions, local 

shipping, and meteorological circumstances all have an impact on the quality of the air [5]. These components can be 

divided into two groups based on their impact. Local emission and local delivery are direct elements because they directly 

affect how pollution forms; weather conditions, secondary productions, geography, and time are indirect factors because 

they together influence how pollution develops. However, we no longer have enough reliable information to precisely 

model those components [6].  

 

For instance, it is essentially impossible to increase pollution emissions on a city-wide scale. The same is true for climate 

predictions, since "the longer the forecast horizon is, the much less accurate the forecast can be. Second, these 

components interact in a complicated way. The effects of India for PM2:5 is depicted in Fig. 2a when air quality is 

predicted using multi-layer perceptron and the most efficient type of information. We may observe that the RMSE for 

weather forecasts and air quality are at odds with one another over time, with the former increasing even while the latter 

drops. The rationale behind it is that historical air quality records are consistent for day 1 to day 7 projections whereas 

weather forecast statistics capture future dynamics up until the anticipated time slot. As a result, the significance of 

various informational cues has changed over time. It is therefore miles away. it's crucial to create the optimum fusion 

technique for these statistics.  
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In addition, following a rain, many individuals feel that the air is remarkable and may be higher. However, under some 

circumstances, adequate air quality will be worse. The impact of rain on air quality is depicted in Fig. 2 using just 

statistical analysis of 3-year records from India from our records collection.   By counting the percentage of k = AQIt+k 

-AQIt, where AQIt > 100, Weather = rain, and okay is the time in the C language after rain, we may determine ratios. 

As a result of the condition being unaltered after rain, the raising and descending ratios added here are less than We can 

see that the likelihood that the air quality will deteriorate 12 hours after rain is still greater than 20%. 

 

Fig. 1. Various factors influencing air pollution 

 

This is because a number of factors work together to bring down air first class, making it difficult to determine the full 

impact of any one component. 0.33, air quality substantially varies with time and place, occasionally occurring with a 

rapid change.  

 

As shown in Fig. 3, the air first-class constantly varies over time with hourly obvious daily, and weekly periodic styles. 

It also varies in different ways depending on the region. Additionally, we will find some unexpected changes where the 

air quality index (AQI) lowers extremely rapidly over a very long period of time [7]. 

 

 

Fig.2.Impact of rain on air quality 

 

A strong wind flowing from the southeast causes the AQI of tracking station S2 at the 30th timestamp to drop by almost 

200 over the following hours, as shown in Fig. 3. Any such abrupt transition is crucial because people tend to pay more 

attention to unexpected changes than to common occurrences in daily life.  

 

When the air is heavily polluted, they only care about future air quality and want to know how long it will last. Even yet, 

it's possible that the entire dataset only sometimes contains unexpected updates. Some of the three-year records are 

excellent, and less than 2.3 percent of them contain unexpected changes. Any such information imbalance event makes it 

very difficult to predict the state of the air. 
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We suggest a DNN-based method to forecast the air quality of the next 48 hours for a tracking station and the daily average 

of the next 7 days for a metropolis. This method takes into account air quality statistics, meteorological information, and 

climate projections. Since all indirect factors affect direct elements and both direct and indirect factors have significant 

effects on air quality, our strategy is inspired by domain knowledge about air pollution. This knowledge may help in the 

development of version forms with additional interpretations for long-term predictions. By using distribution, we are able 

to simultaneously capture these individual and holistic benefits. We combine the benefits of those two elements for long-

term forecasts, taking into account the opposing effects of historical air quality and climate forecast over time, in order 

to capture the dynamic interactions using cascaded Fusion architecture. The following is an index of our contributions: 

 

• We upgrade a device that predicts air quality in from data set-time. 

• Providing prediction services for more than three hundred municipalities, both for long and extended time 

periods. 

• We implement three key device components—an information crawler, an undertaking scheduler, and a 

prediction model—with a multi-task structure in order to increase the system's efficiency and stability. 

 

Fig. 3. Change of Air Quality over location and time 

 
II. SYSTEM OVERVIEW 

 

The device architecture is depicted in Fig. 4 and is primarily made up of 3 parts: the prediction version, the project 

scheduler, and the records crawler. The mission scheduler will activate the prediction model if the collected facts satisfy 

the prediction criteria. Keep in mind that, in order to increase machine efficiency, information crawlers are implemented 

with a multi- thread and multi-queue-based totally multi-mission architecture. Regarding the prediction version, following 

records preprocessing, we predict, for station-level long-term air first-class and city-degree lengthy-time period air 

terrific. Here, we train the neural networks on the given dataset spatial transformation of 8hrs and then prediction, where 

multi-undertaking architecture is used to accomplish online prediction. Then, for instant record conversion to quit-person, 

prediction effects are stored in an additional cache. Prediction results will periodically back up to the database in order to 

restore the data. Ultimately, we use web services to display the online effects of us from data set-time predictions. 

 

 
Fig. 4. Architecture of Air Quality Prediction System 
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III. PREDICTION MODEL 
 

While some clients have unique forecast requirements, others are more concerned with town- level long-term planning, 

while others are more concerned with station-level long-term planning. As a result, we anticipate that both scenarios—a 

deep neural network and a deep cascaded fusion network—will produce first-class-grained air. 
 

a. Spatial Transformation 
 

Because contaminants spread over space [6], a geolocation's air quality no longer primarily depends on its prior air quality. 

Nonetheless, the quality of its acquaintances' air also affects how pleasant something is. However, as demonstrated in 

Fig. 5 left bottom, air first-rate the shading of the dot indicates the amount of suitable air, and tracking stations are 

sporadically located over a given geographic area. We develop the Spatial transformation element, which primarily 

consists of Partition, aggregation, and interpolation, to convert spatial sparse air high- quality facts into a consistent Enter 

for the additional prediction model. First, we divide the geographical area into sixteen sections using two circles and four 

strains, or 20 and 100 km semidiameters. Because of this, all regions have the target tracking station as their common 

center, and those inside the inner circle have a tiny area while those inside the outer circle have a large area.  
 

Furthermore, regions with unique angles maintain eight wind guidelines, which can also be determined by climatic 

conditions. Additionally, we aggregate the air quality measurements obtained from local monitoring sites. Consequently, 

areas having a minimum of one station may have a single average AQI. However, we find from India's partition data that 

different objective stations have varied missing styles, and approximately 33% of areas no longer have monitoring 

stations. We therefore fill up the blank values in these areas. Specifically, we initially created some fictitious tracking 

stations in these regions at random. Next, we interpolate the AQI of fictitious monitoring sites using inverse distance 

weighting (IDW), a traditional spatial interpolation technique [8]. IDW uses the distance to the goal sensor to determine 

the weight of each available AQI value from neighboring stations, taking into account the stations that are situated both 

inside and outside the outer circle. These weights and readings are then combined using a weighted common. The average 

AQI for the region is then calculated by combining the interpolated data from fictional stations. Finally, we acquire 17 

AQI in a single timestamp, 1 from the target station and 16 from neighboring regions. We have followed the same method 

for each monitoring site over the years. 
 

 

Fig. 5. Framework of station-level long-term prediction. 
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3.1.2 Deep Distributed Fusion 

 

The reason for constructing the fusion network in Fig 6 subnets deals with facts from the data set and time c language; 

historically, the climate provided hourly actual weather conditions, while the climate prediction provided 3-hour stress 

as features for separated historical climate data. weather predicted. Here, the climate forecast considers the following 

factors: humidity, wind direction, speed, and anthills. Facts: wind route, wind power, and weather are all taken into 

account. Yew is the outcome of the HW subnet receiving previous Climate data and AQIs. Apart from obtaining you as 

an output when we supply the WF network with weather forecasts and AQIs. Pollutants in the environment undergo 

secondary chemical reactions in addition to direct emissions.  

 

To represent the chemical interactions, we thus establish a secondary manufacturing subnet (SP). After merging the PM2:5 

AQIs with the other pollutants (PM10, NO2, CO, O3, and SO2) that were measured at the target station, we are able to 

say with certainty. The Meta Assets Subnet (MP) shapes the time and topography of dwellings that impact air quality. 

Time (Month, Day, Week, Timecode) is a distinct temporal dimension that is used to version the air quality, such as winter 

weather. has air quality that is consistently poorer than in the summer. Furthermore, we replicate the impacts of topography 

on air quality using station identification, such as the gradual deterioration of air quality in crowded regions compared to 

open areas. Once station identity, time, and AQIs are combined in Fusion-Net, we obtain imp. Aside from the specific 

results, all indirect causes will simultaneously establish the growth environment of direct ones impacting future air 

quality. We arrange the holistic influence on subnet (hi) to understand the holistic effect by merging all direct and indirect 

Factors, which enables us to record these Facts. Next, we have chi. While there are many variables that affect flying first 

class, some of them can be specific. 

 

y = Sigmoid (yhw. whw + ywf. wwf + ysp . wsp + ymp . 

 

wmp  + yhi . whi) … (1) 

 

In which ^y 2 Rh are the predicted outcomes, yhw; ywf; ysp, ymp; yhi Are the outputs of 5 subnets is Hadamard product, 

and are the learnable parameters that Modify the levels stricken by these subnets. Here, the prediction Outcomes are 

mapped into [0, 1] by way of Sigmoid characteristic. And later, we deformalize the predictions to get the data set air First-

rate. 

 

 
 

Fig. 6. Architecture of distributed fusion. 

 

b. City-Level Long-Term Prediction 

 

We can anticipate the next 48 hours of Air Satisfactory for all monitoring stations with the DA- brief version. Predicting 

the daily average air quality for a city over the next seven days is also crucial. The majority of people only give a damn 

about coarse- grained air quality, such as the average quality of air in a city for the next several days, and don't give a 

damn about hour-degree quality.  
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Different from station-stage long-time period prediction, city-level long-time period prediction encounters additional 

challenging circumstances: First of all, air pleasant denotes strong continuity in a brief length, but it also lacks a daily or 

weekly periodicity. Consequently, the old air exceptional has a limited role in long-term air quality prediction, where "the 

longer the forecast horizon Is, the less importance will be." Second, other than weather forecasts, there is not enough 

statistical data to explain the destiny facts. Even if climate forecast accuracy declines over time, it's crucial to highlight 

the impact of climate forecasting on long-term prediction. 1/3, it's very difficult to tell apart the primary feature from the 

supporting features because the impact of all capability exchanges builds up over time, not to mention the next week. As 

such, we are unable to employ Reuse DA-quick for long-term air first-rate prediction right away. As is well known, 

historical air quality data and weather forecasts have opposing effects over time, with the former decreasing and the latter 

increasing. As demonstrated in Figure Nine, we propose a Deep cascaded fusion community (DA- lengthy) to capture 

these intricate dynamic connections and forecast city-level long-duration air exceptionalities. More specifically, in order 

to investigate the intra-dynamics of each significant issue, we first embed Air satisfaction data, meteorological facts, and 

weather forecast statistics. Then, air quality records combine meteorological conditions with signet in an iterative fashion, 

simulating the dynamic interaction between these key components over time. We handle all Fusion results in an identical 

manner and aggregate all of the fusion effects, which sets us apart from Simplest when taking into account the outcome 

of the previous Fusion. creating the final prediction through the use of a weighted merging. Here, we extract the town-

level daily average AQI of the past few days for air quality data, as well as the area-level AQI of the past few hours via 

spatial transformation. 

 
 

Fig. 7. Fusion Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8. Architecture of cascaded fusion 
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i.Deep Cascaded Fusion 

 

We can designate air first-class and meteorology as previous existing records and climate projection as future predicted 

records by taking time statistics and data from the data set into consideration. The floor records that have already happened 

are included in the earlier statistics, while the records that are occurring in the future are included in the later records. As 

we know, with time, the effects of earlier current statistics become weaker and the effects of future anticipated facts 

become stronger. As illustrated in Fig. 7, we set up a cascading Fusion structure to capture such dynamic interactions 

throughout time in order to maximize the benefits of each record. Specifically, addresses the two Fusion Net input 

components: predecessor and successor capabilities. For instance, the air satisfactory facts serve as the first predecessor 

function, the fusion net's results serve as the second previous capability, and the weather forecast's individual slices 

serve as the successor function. The dynamic correlations are captured by the cascaded fusion structure when each 

successor feature fuses with its preceding characteristic in turn. We shall reduce the influence of the original 

Predecessor function and strengthen the remaining successor function over time with the cascaded fusion architecture. 

Because of this characteristic, while assessing distributed fusion architecture, cascaded fusion structure makes better 

predictions for long-term air and is more appropriate for simulating dynamic interactions over time. 

 

c. Algorithm 

Algorithm 1 describes the DA-Long process. In order to minimize the loss, we first build the training instances (lines 1–

7) and then train the model using backpropagation (lines 8-9). The training DA-Long pseudo-code is comparable. We 

will disregard it here, as it was discussed in our previous paper [13]. 

 

Algorithm 1: DA-Long:(India) 

 
 

1: To  do 

2: for 

3: 

4: 

 

                           =[     

 

 

 

 

For time series forecasting, a deep learning technique called the DA-Long algorithm is employed. It is a hybrid of long 

short-term memory (LSTM) networks with dilated causal convolution (DCC). In time series data, long-range 

dependencies are captured by the DCC network, and short-range relationships are captured by the LSTM network.  

 

The input time series data is first sent through a DCC network in order for the DA-Long algorithm to function. A stack 

of dilated causal convolutional layers makes up the DCC network. Because every dilated causal convolutional layer has a 

unique dilation factor, it may capture dependencies across a range of time scales. An LSTM network receives the DCC 

network's output after that. A kind of recurrent network is the LSTM network. 

 

IV. EXPERIMENT 

 

a. Settings 

 

i.Datasets 

 

Data on air quality: According to the dataset monitoring stations spread over 9 Indian cities. Six contaminants are 

included in each air quality record: PM2.5, PM10, NO2, CO, O3, and SO2. We use Indian AQI criteria to translate these 

concentrations into the appropriate AQI for each contaminant. 

 

 From https://www.kaggle.com/datasets/rohanrao/airqualityda ta-in-india 

 

6: y = Get_Prediction_Target (   ) 

7: 

8: 

Append ({ }, y into D)  

initialize all learnable parameters 

 

in DA-Long 

, 
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ii.Model Details 

 

The following defines the specific hyper-parameters and embedding for our models; baselines are used for preprocessing, 

optimization, and activation function settings. Extreme parameters. One residual fully- connected layer is used after the 

initial fully-connected layer in a Fusion Net, with fully-connected layer sizes set to 24, 3. Ten percent of the training data 

is kept aside as the validation set for early halting and parameter adjustment, while the other ninety percent is used for 

training. After that, we use the entire training set of data to train the model for a few epochs (e.g., 25 epochs). 

 

iii.Evaluation Metrics 

 

We use prediction accuracy (acc) mae means absolute error(mae) for evaluation, which are defined as follows, 

 

acc = 1-     ... (2) 

mae =       ... (3) 

 

b. Performance on Spatial Transformation 

 

Table 1 illustrates the efficacy of the spatial transformation component (STC). When compared to utilizing solely the data 

from the target station, DA- Long exhibits superior accuracy since it ascertains the true scenario in which air contaminants 

are distributed across spatial dimensions. DA-Long is able to capture the dynamic changes in air quality from a spatial 

perspective by using signals from spatial neighbours. The outcome is poorer than STC if we feed in air quality 

measurements straight from the k-nearest stations (k=17, same size as STC). The neural network's ability to learn spatial 

information may be confused by the fact that each station has a unique set of k-nearest stations. Whereas the STC is better 

suited for replicating second-hand pollution sources in from data set-world circumstances since it takes spatial 

correlations into account and produces a consistent input from eight directions. We discover that inner and outer circles 

perform better in STC than an inner circle alone. This is because it takes into account signals from both nearby and far-

off cities, where air pollution might spread via wind from a far-off source. In particular, information from a distance is 

more significant than normal circumstances for abrupt shifts. 

 

c. Overall Discussion 

 

Our recommended strategies' frameworks are mostly based on in-depth knowledge of air pollution. For long-term 

predictions, we recommend a distributed fusion structure in which all fusion capabilities are concatenated at once using 

simple procedures. Air pollution is reduced from the standpoint of actual global scenarios by both direct and indirect 

factors. In most cases, all oblique influences will have an impact on direct aspects at the same time. Furthermore, every 

oblique element affects direct elements. We designed our assigned fusion structure based on this knowledge so that it 

could properly capture all of those important aspects at once. Remarkable features have special consequences when 

viewed via the lens of feature selection. By combining each auxiliary feature in parallel with the major feature, we can 

draw attention to the significance of the primary characteristic and benefit from the effects of auxiliary capabilities.  

 

Furthermore, we use the Weighted Merge Layer, which can simulate the dynamic effects of numerous higher- order 

impacts, to aggregate the data from each subnet. As a result, in order to increase forecast accuracy, our scattered fusion 

structure may dynamically fuse functions and automatically determine their relative relevance. We also commend the 

enhanced long-term air quality forecast of a cascaded fusion structure. The consequences of past climate and air quality 

projections are contrary over time, with the former increasing while the latter decreases when seen from the standpoint of 

data set-world situations. Combining the benefits of these skills and simulating the dynamic relationships across time is 

therefore crucial. Air quality and meteorology are referred to as ancestor characteristics from the standpoint of 

characteristic choice, while weather forecast is referred to as a successor capability. We shall gradually reduce the 

influence of the predecessor functions and increase the significance of the successor Functions by iteratively fusing each 

slice of the successor features with the predecessor capabilities.  

 

The Community can learn the relevance of each fusion output and mechanically fuse the result by utilizing the Weighted 

Merge layer. For long-term period prediction, a cascaded fusion structure is more suitable. In our suggested method, CNN 

and LSTM are not used; just DNN is used. CNN is frequently able to learn spatial correlations. However, there is a lack 

of adequate air data in the area. In India, for instance, there are more than 2,500 Grids divided into six rings using a 1 

kilometer by 1 kilometer boundary, yet there are only 36 air quality monitoring stations.  

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 13, Issue 2, February 2024 

DOI:  10.17148/IJARCCE.2024.13223 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 140 

Despite the use of interpolation methods to fill in the gaps, the missing price is greater than 98 percent, which introduces 

significant uncertainty. If we immediately switch the spatial partition within the spatial transformation component from 

circles to grids with an image size of (5 * 5), the phase 4.2.1 experiment result isn't always accurate. As a result, the CNN 

model is unable to process a small amount of information. LSTM is used to model temporal dependency. Some factors, 

on the other hand, just have a tight temporal closeness with no daily, weekly, or monthly recurring patterns; they have an 

impact on air quality without having a high temporal reliance. For fast running, we selected DNN above LSTM, taking 

into account the performance of the web-based prediction tool. 

 

V. RELATED WORKS 

 

a. Predicting Quality of air 

 

Specifically, information-pushed models [21] and numerical prediction models [20] are the two types of air quality 

prediction methodologies. Numerical prediction methods based on atmospheric dynamics and environmental chemistry, 

such CMAQ, WRF/Chem, and CHIMERE, precisely identify the root cause of air pollution [22]. Equations representing 

the spatial-temporal distribution and transitions are constructed using numerical prediction approaches, solely utilizing 

information from meteorological statistics and emission sources [23].  

 

However, obtaining the majority of these Elements accurately and completely is extremely difficult Prediction accuracy 

is therefore difficult to guarantee. Additionally, the calculation complexity is fairly high and typically takes several hours. 

Synthetic neural networks and gradient-boosting selection trees are two examples of data-driven algorithms that anticipate 

air quality based entirely on a variety of features for examining linear or nonlinear correlations [13], [24]. Our previous 

model in the online device is the multi-view-based hybrid Version [7] that Zheng et al. proposed. However, FFA is an 

ensemble method that includes a predictor for each of time, space, dynamic aggregation, and inflection. Our approach 

carefully examines the patterns of air pollution while considering how those components interact. 

 

b. Proposed Prediction Model 

 

Our proposed system has predicted the air quality index accuracy is 83.45% compared to the Beijing DA-Long algorithm. 

(Fig.9) 

 

Fig. 9 Comparison of India and Beijing Dataset 

 

Table 1 Accuracy comparison 

 

Methods 8hrs Mae 

 

DA-Long 79.9% 24.9 

(Beijing) 

 

DA-Long 82.34% 18.66 

(India) 
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VI. CONCLUSION AND FUTURE WORK 
 

We present a DNN-based technique for predicting the daily average air quality for a town over the next seven days, as 

well as the air quality for each tracking station for the next 48 hours, in this paper. We propose a deeply distributed fusion 

community to describe the particular and cumulative effects of influencing factors for long-term air quality forecasting 

while accounting for complicated interconnections between direct and indirect causes. We were prompted by the 

repercussions of One-of-a-kind capabilities altering differentially over time when creating a Deep Cascaded Fusion 

community to capture the dynamic effects from both previously current data and future projected statistics.  

 

We've developed a data set-time machine that provides hourly station-stage and daily town-level air quality predictions 

for 300+ Indian cities. Furthermore, we present A multi-project structure based completely challenge scheduler, and 

prediction model, which may improve the device's efficiency and stability.  

 

In the future, we will see a combination of numerical prediction models and data-driven models for We created a from 

data set-time machine for 300+ Indian cities that gives hourly station-stage and daily town- level air quality predictions. 

Furthermore, we provide a multi-project structure that is totally based on a job scheduler, and prediction model, which 

can increase the device's performance and stability. 
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