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Abstract: Real-time operating systems (RTOS) play a pivotal role in facilitating efficient multitasking and resource 

management in embedded systems. This paper delves into the intricacies of Semaphore and Mutex synchronization 

techniques within the FreeRTOS framework on Arduino microcontrollers, focusing on their application in synchronizing 

tasks for LED control. Semaphore serves as a signalling mechanism, allowing tasks to coordinate and synchronize their 

actions, while Mutex ensures exclusive access to shared resources, mitigating the risks of data corruption and race 

conditions. Through detailed descriptions, comprehensive implementation codes, and rigorous real-time experimentation, 

it showcases the robustness and effectiveness of Semaphore and Mutex in ensuring the seamless operation of real-time 

systems on resource-constrained platforms like Arduino. This study contributes valuable insights into the practical 

utilization of synchronization primitives in embedded systems, paving the way for enhanced system reliability and 

performance. 
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I. INTRODUCTION 
 

Real-time operating systems (RTOS) have emerged as indispensable tools in the development of embedded systems, 

facilitating efficient multitasking and task prioritization. These systems find applications across various domains, from 

automotive and aerospace industries to consumer electronics and IoT devices.  

 

The advent of platforms like Arduino has democratized the accessibility of RTOS, enabling their implementation even 

on low-cost microcontrollers with limited resources. However, the concurrent execution of multiple tasks in RTOS 

environments introduces synchronization and data access challenges that must be addressed to ensure the correct 

operation of the system. 

 

Semaphore and Mutex are two fundamental synchronization techniques employed in RTOS to manage access to shared 

resources and coordinate the execution of concurrent tasks. Semaphore serves as a signaling mechanism, allowing tasks 

to communicate and synchronize their actions effectively. It comes in two primary types: Binary Semaphore, which 

restricts access to a shared resource to one task at a time, and Counting Semaphore, which permits multiple tasks to 

access the resource within defined limits. 

 

On the other hand, Mutex, short for mutual exclusion, provides a means of ensuring exclusive access to shared resources. 

In an RTOS environment, Mutex plays a critical role in preventing race conditions and conflicts that may arise from 

simultaneous access to shared resources by multiple tasks. When a task attempts to acquire a Mutex that is already held 

by another task, it is blocked until the Mutex becomes available, thereby enforcing mutual exclusion. 

 

This paper, delves into the utilization of Semaphore and Mutex synchronization techniques in FreeRTOS on the Arduino 

board for controlling LEDs. The objective is to explore the practical implementation of these synchronization 

mechanisms and evaluate their effectiveness in ensuring proper task execution and data consistency in real-time systems.  

 

Through detailed descriptions, implementation codes, and real-time results. The paper aims to provide insights into the 

intricacies of Semaphore and Mutex usage in embedded applications, laying the groundwork for further exploration in 

this field. 
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II. DESCRPTION 

 

Semaphore and Mutex are fundamental synchronization primitives employed in real-time operating systems (RTOS) to 

manage concurrent access to shared resources and coordinate the execution of tasks. Understanding their concepts, types, 

and implementation is crucial for effectively designing and developing RTOS-based applications. This section, delves 

into Semaphore and Mutex in detail, exploring their characteristics, usage scenarios, and implementation nuances. 

 

Semaphore serves as a signalling mechanism for task synchronization in RTOS environments. It enables tasks to 

coordinate their actions and manage access to shared resources effectively. There are two main types of semaphores as 

shown in Fig. 1 namely: Binary Semaphore and Counting Semaphore. 

 

 
 

Fig. 1  Types of Semaphores 

 

Binary Semaphore: Binary Semaphore has two states, typically represented by integer values 0 and 1. It acts as a mutex 

and is commonly used to control access to shared resources, ensuring mutual exclusion. When a task acquires a Binary 

Semaphore (sets it to 1), it gains access to the resource, while other tasks are blocked until the Semaphore is released (set 

back to 0). 

 

Counting Semaphore: Counting Semaphore maintains a count of available resources or events. It allows multiple tasks 

to access a shared resource within defined limits. Each time an event occurs, the Semaphore count is incremented, and 

tasks can acquire the Semaphore until the count reaches its maximum value. Counting Semaphore is useful for scenarios 

where multiple resources need to be accessed concurrently. 

 

Mutex, short for mutual exclusion, is a specialized form of Semaphore that ensures exclusive access to shared resources. 

It prevents race conditions and conflicts arising from simultaneous access by multiple tasks. In an RTOS environment, 

Mutex is typically implemented as a special type of Semaphore that allows only one task to hold the Mutex at a time. 

When a task attempts to acquire a Mutex that is already held by another task, it is blocked until the Mutex becomes 

available. 

 

Mutexes are essential for protecting critical sections of code and ensuring data integrity in multitasking environments. 

As shown in Fig. 2 , they provide a mechanism for enforcing mutual exclusion, thereby preventing data corruption and 

maintaining system stability. 

 

 
 

Fig. 2  Mutex 

 
 

Implementing Semaphore and Mutex in RTOS requires careful consideration of task priorities, resource access patterns, 

and synchronization requirements. Tasks must be appropriately designed to acquire and release Semaphore and Mutex 

objects in a coordinated manner to avoid deadlocks and priority inversion issues. 
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In practical implementations, Semaphore and Mutex are created using RTOS-specific APIs provided by the kernel. Tasks 

interact with Semaphore and Mutex objects through these APIs, acquiring and releasing them as needed to synchronize 

their execution and access shared resources. 

 

III. IMPLEMENTATION 

 

Fig. 3 shows the basic connection Arduino board with two LEDS anode pins are connected to the digital pins 7 and 8 and 

push button is connected to digital pin 2. The cathode pins are grounded. After making connections, the codes of 

semaphore and Mutex are uploaded to Arduino board. 

 

 
 

Fig. 3. Schematic diagram of the circuit 

 

Semaphore Implementation: The code begins with including the Arduino_FreeRTOS.h header file, which provides 

access to FreeRTOS APIs for Arduino-compatible boards. This header file is essential for utilizing FreeRTOS 

functionalities. A variable of type SemaphoreHandle_t is declared to store the values of the semaphore. This variable will 

be used to create and manipulate the semaphore throughout the code. Within the void setup() function, two tasks, 

TaskLED and TaskBlink, are created using the xTaskCreate() API provided by FreeRTOS.  

 

These tasks are responsible for controlling the LEDs connected to the Arduino board. Additionally, a semaphore is created 

using the xSemaphoreCreateBinary() function. This semaphore will be used to synchronize access to shared resources 

between tasks. The priority of tasks is set to be equal initially, and this can be adjusted for experimentation. Pin 2 is 

configured as an input, with the internal pull-up resistor enabled, and an interrupt is attached to this pin. Finally, the 

scheduler is started to begin task execution. 

 

The ISR (Interrupt Service Routine) function is implemented to handle the interrupt triggered by pin 2. This function 

ensures the proper functioning of the interrupt by addressing the debounce issue of the pushbutton. This is typically 

achieved using millis() or micros() functions to measure time and adjust the debouncing time accordingly. Once the 

debounce issue is resolved, the interruptHandler() function is called. Inside the interruptHandler() function, the 

xSemaphoreGiveFromISR() API is invoked to give a semaphore to TaskLED, indicating that it can proceed with its 

operation, such as turning on the LED. 

 

The TaskLed() function is created to handle the LED control task. Within the while loop of this function, the 

xSemaphoreTake() API is called to attempt to take the semaphore. If the semaphore is successfully taken (indicated by 

pdPASS, which equals 1), the LED is toggled. This ensures that the LED operation is synchronized with the availability 

of the semaphore, preventing concurrent access issues. Additionally, a function is created to blink the other LED 

connected to pin 7. This function operates independently of the semaphore mechanism and serves as a secondary task for 

LED control, demonstrating multitasking capabilities. 
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Mutex Implementation: The header files required for mutex functionality are included, ensuring that the necessary 

functions and definitions are available for the code. These header files remain consistent across different 

implementations. A variable of type SemaphoreHandle_t is declared to store the Mutex values. This variable serves as a 

handle to the Mutex, allowing for its creation and manipulation within the code. Within the void setup() function, the 

serial monitor is initialized with a baud rate of 9600. This enables communication with the Arduino board via the serial 

interface, facilitating debugging and data output. Additionally, two tasks, Task1 and Task2, are created using the 

xTaskCreate() API provided by FreeRTOS. These tasks are responsible for executing specific functions concurrently. 

Furthermore, a Mutex is created using the xSemaphoreCreateMutex() function. This Mutex will be utilized to 

synchronize access to shared resources between the two tasks. Both tasks are assigned equal priorities initially, ensuring 

fair execution. 
 

The task functions for Task1 and Task2 are implemented to define their behavior. Within the while loop of each task 

function, the Mutex is acquired using the xSemaphoreTake() function before any critical operation is performed. This 

ensures that only one task can access the shared resource at a time, preventing conflicts and race conditions. Once the 

Mutex is successfully acquired, the task proceeds with its operation, which in this case involves printing a message to the 

serial monitor. After completing the critical section, the Mutex is released using the xSemaphoreGive() function, allowing 

other tasks to acquire it. A delay is typically added after releasing the Mutex to ensure proper task scheduling and prevent 

resource contention. The void loop() function remains empty in this implementation as it is not necessary for the 

functionality of the code. The tasks created in the setup() function continue to execute indefinitely, interacting with the 

shared resource using the Mutex for synchronization. 
 

Fig. 4. Real Time Implementation 
 

Fig. 5. Mutex Output 
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Fig. 6. Semaphore Output when button is not pressed 

 

Fig. 7. Semaphore Output when button is pressed 

 

IV. CONCLUSION 
 

In conclusion, the paper has provided a comprehensive exploration of Semaphore and Mutex synchronization techniques 

in FreeRTOS on the Arduino board for controlling LEDs. Through detailed descriptions, implementation codes, and real-

time results, It has demonstrated the practical application and effectiveness of these synchronization mechanisms in real-

time embedded systems.  
 

Here, is the summary of the key findings and implications in the study:  
 

Effective Task Synchronization: Semaphore and Mutex have proven to be effective in synchronizing tasks involved in 

controlling LEDs. By managing access to shared resources, these synchronization techniques prevent conflicts and race 

conditions, ensuring proper task coordination and data consistency.  

 

Prevention of Data Corruption: Mutex, in particular, plays a crucial role in preventing data corruption by enforcing 

mutual exclusion. By allowing only one task to access a shared resource at a time, Mutex prevents simultaneous writes 

or reads that could lead to data inconsistencies.  
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Real-time Performance: The implementation of Semaphore and Mutex in FreeRTOS on the Arduino board has 

demonstrated satisfactory real-time performance. Tasks were able to synchronize effectively without significant delays 

or interruptions, showcasing the efficiency of these synchronization mechanisms in embedded systems.  

 

Scalability and Flexibility: The work's modular design allows for scalability and flexibility in accommodating additional 

tasks and shared resources. Semaphore and Mutex can be easily adapted to control access to various resources beyond 

LEDs, making them versatile solutions for synchronization in diverse embedded applications.  

 

Enhanced System Reliability: By ensuring proper task synchronization and data integrity, Semaphore and Mutex 

contribute to enhanced system reliability and robustness. Embedded systems relying on FreeRTOS can benefit from the 

implementation of these synchronization techniques to minimize errors and failures. 

 

The paper lays the groundwork for further exploration and enhancements in the realm of task synchronization in 

embedded systems. Future research could focus on optimizing Semaphore and Mutex implementations for specific 

application scenarios, as well as exploring advanced synchronization techniques and strategies. 
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