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Abstract: With the exponential growth of the online food delivery industry, ensuring timely deliveries has become 

paramount to customer satisfaction and business success. However, the persistent challenge of delayed delivery continues 

to plague food delivery companies, resulting in customer dissatisfaction and potential revenue loss. This project delves 

into the domain of food services to investigate the complexities surrounding the accurate estimation of delivery times. 

Through the exploration of predictive models and the analysis of various factors influencing delivery time estimation, 

including geographical variables, traffic patterns, order complexity, and operational dynamics, the study aims to develop 

robust forecasting mechanisms. By leveraging historical data and employing advanced analytical techniques, this research 

seeks to uncover insights that can enhance operational efficiency and mitigate delivery delays effectively. Ultimately, the 

outcomes of this study are poised to contribute valuable insights to the online food delivery industry, fostering improved 

customer satisfaction, retention, and sustained growth in this dynamic market landscape. 
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I. INTRODUCTION 
 

The online food delivery industry has witnessed exponential growth, underscoring the critical importance of timely 

deliveries for ensuring customer satisfaction and sustaining business success. However, persistent challenges with delayed 

deliveries have plagued food delivery companies, leading to customer dissatisfaction and potential revenue loss. In 

response to these challenges, this research endeavors to delve into the complexities surrounding the accurate estimation 

of delivery times within the food services domain. 

 

Through the exploration of predictive models and the comprehensive analysis of various factors influencing delivery time 

estimation, including geographical variables, traffic patterns, order complexity, and operational dynamics, this study aims 

to develop robust forecasting mechanisms. Leveraging historical data and employing advanced analytical techniques, the 

research seeks to uncover valuable insights that can enhance operational efficiency and effectively mitigate delivery 

delays. 

 

Ultimately, the outcomes of this study are poised to contribute significant advancements to the online food delivery 

industry. By fostering improved customer satisfaction, retention, and facilitating sustained growth in this dynamic market 

landscape, the research endeavors to address critical challenges and pave the way for enhanced service delivery in the 

food services sector. 
 

A. MOTIVATION 

The motivation for this project lies in improving the accuracy of food delivery time predictions, addressing existing 

inefficiencies in the online food delivery sector. Our goal is to enhance customer satisfaction and operational efficiency 

through advanced predictive models, contributing to a more seamless and optimized food delivery experience. 

 

B. PROBLEM DEFINATION 

The problem addressed in this project is the accurate estimation of food delivery times in the online food delivery industry. 

The challenge lies in developing effective predictive models that consider various factors such as geographical variables, 

traffic patterns, and other relevant parameters to provide precise estimates. The goal is to optimize and enhance the 

prediction process, contributing to improved operational efficiency, customer satisfaction, and overall performance in the 

dynamic landscape of food delivery services. 

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 13, Issue 3, March 2024 

DOI:  10.17148/IJARCCE.2024.13318 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 114 

II. DATA ANALYSIS AND PREPROCESSING 
 

In this section, we elucidate our approach, starting with a presentation of both the existing and derived features. 

Subsequently, we provide an overview of the preprocessing techniques applied. 
 

A. DATASET DESCRIPTION 

The “Forecasting food delivery time” dataset released UberEATS, an American professional services firm. The data is 

containing about 45,593 entries and 20 features, which are explained as below: 
 

1. ID: Unique identifier for each record. 

2. Delivery_person_ID: Identifier for delivery personnel. 

3. Delivery_person_Age: Age of the delivery person. 

4. Delivery_person_Ratings: Ratings assigned to the delivery person. 

5. Restaurant_latitude: Latitude coordinates of the restaurant. 

6. Restaurant_longitude: Longitude coordinates of the restaurant. 

7. Delivery_location_latitude: Latitude coordinates of the delivery location. 

8. Delivery_location_longitude: Longitude coordinates of the delivery location. 

9. Order_Date: Date of the order. 

10. Time_Ordered: Time when the order was placed. 

11. Time_Order_picked: Time when the order was picked up. 

12. Weatherconditions: Weather conditions at the time of delivery. 

13. Road_traffic_density: Density of road traffic during delivery. 

14. Vehicle_condition: Condition of the delivery vehicle. 

15. Type_of_order: Type of order placed (e.g., buffet, drinks, meal). 

16. Type_of_vehicle: Type of vehicle used for delivery. 

17. multiple_deliveries: Indicator if multiple deliveries were made. 

18. Festival: Whether it was a festival day or not. 

19. City: City where the delivery was made. 

20. Time_taken(min): Time taken for delivery in minutes. 

  

B. DATASET ANALYSIS 

In this part, we are going with the analysis, they are following, starting with the Univariate analysis and then go with the 

Multivariate analysis. 
 

1. Univariate analysis 

we analyze the number of orders in relation to various features in the univariate analysis 

 

 
Fig: 1 Univariate Result 
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2. Multivariate analysis 

we analyze two or more features at a time in multivariate analysis 

 

 
Fig: 2 Multivariate Result 

 

C. FEATURE ENGINEERING 
 

We derive additional features from the existing ones to expanding the dataset's information, facilitating valuable insights 

and enhancing overall analysis. The newly calculated features contribute to a more comprehensive understanding of the 

dataset. 

1. City_code: Derived from Delivery_person_ID, this unique identifier categorizes delivery locations by city. 

2. day_of_week: Numeric representation obtained from Order_Date, providing insight into the day for temporal 

analysis. 

3. is_weekend: Binary indicator derived from day_of_week, signaling whether the corresponding day is a 

weekend. 

4. day: Extracted from Order_Date, specifying the day of the month for chronological reference. 

5. month: Extracted from Order_Date, denoting the month in which the order was placed. 

6. order_prepare_time: Calculated as the duration between Time_Ordered and Time_Order_picked, reflecting 

the time taken for order preparation. 

7. distance: Computed using the geodesic library, this metric measures the spatial separation between 

Restaurant_coordinates and Delivery_coordinates. 
 

D. PRE-PROCESSING TECHNIQUES 
 

1. Label Encoding for Categorical Variables: Label Encoding is a preprocessing technique employed to convert 

categorical variables into numerical representations. It assigns a unique integer label to each category, allowing machine 

learning algorithms to work with categorical data more effectively. 

In this context, Label Encoding is applied to categorical features like 'Weather_conditions,' 'Road_traffic_density,' 

'Type_of_order,' 'Type_of_vehicle,' 'Festival,' and 'City_type' in the dataset. 
 

2. Standardization of Features: Standardization is a preprocessing step that involves scaling numerical features 

to have zero mean and unit variance. In the project, it is utilized to standardize features such as 'Age,' 'Ratings,' 

'Order_prepare_time,' and 'Distance.' Standardized features ensure that all numerical inputs are on a consistent scale, 

preventing certain features from dominating the model training process. 
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III. METHODOLOGY AND METRICS 

 

In this section, we present an outline of the forecasting methodologies implemented in our study. The models undergo 

training and validation on 80% of the data, followed by testing on the remaining 20%.  

 

The hardware configuration includes a minimum of 8GB RAM. The primary aim of this section is to list all the models 

employed before undertaking a metric-based evaluation of their individual outcomes. 
 

IV. A. MACHINE LEARNING MODELS 

 

A. MACHINE LEARNING MODELS 

 

In this project, we used the following machine learning models they are namely,  
 

LinearRegression(), RandomForestRegressor(), AdaBoostRegressor(), KNeighborsRegressor(), 

DecisionTreeRegressor(), GradientBoostingRegressor(), XGBRegressor(), LGBMRegressor(). 

 

B. METRICS RESULT 

In this part, the metrics results are shown to the all models.  

 

Metrics are used in our models are Mean absolute error(MAE) Mean square error(MSE), Root mean squared 

error(RMSE),R-Squared(R_2), Accuracy and the respective each model metric results are given below. 

 

 
 

Fig: 3 Metrics Result 

 

C. HYPERPARAMETER TUNING RESULT 
 

Hyperparameter tuning is the optimization process of selecting the best external configurations, known as 

hyperparameters, for a machine learning model. These settings, like learning rates or the number of hidden layers, are 

crucial for a model's performance but are not learned during training.  

 

In our project, we are applied hyperparameter tuning using GridSearchCV to experiment with different values and 

find the optimal hyperparameter sets for all the models. This process enhances model performance and ensures better 

generalization to new data. And the following are the hyper-parameters results to the all the machine learning models 

applied. 
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Fig: 4 Best Parameters for every Model 

  

V. RESULTS AND DISCUSSION 

 

In the results and discussion section, the food delivery time prediction involves taking specific inputs. These inputs consist 

of various features crucial for the prediction process. The chosen features serve as essential input parameters for the 

accurate estimation of food delivery times. 

 

 
 

Fig: 5 Intake of inputs  
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In the results and discussion section, the process begins with the intake of inputs for food delivery time prediction. After 

data processing, the final output emerges as the predicted time for food delivery, represented in minutes. 

 

 
 

Fig: 6 Predicted time for food delivery 

 

VI. CONCLUSION 

 

In conclusion, this study meticulously explores predictive models for accurate food delivery time estimation. The project 

involves comprehensive data analysis, including data cleaning, feature engineering, and rigorous model evaluation, 

resulting in a robust predictive model optimized through parameter tuning.  

 

The encoding of categorical variables enhances model effectiveness, with evaluation metrics emphasizing the model's 

accuracy. Notably, the project introduces innovative approaches, such as geospatial distance calculations for determining 

the physical distance between the restaurant and the delivery location, contributing valuable insights to optimize food 

delivery predictions in the dynamic online food delivery industry. The findings hold significant implications for 

improving operational efficiency, customer satisfaction, and sustained growth in this rapidly evolving market. 
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