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Abstract: In the discipline of informatics, artificial intelligence (AI) uses algorithms to process data and constantly refines 

its reasoning. AI, which began in the 1950s and has since evolved into "machine learning algorithms," encompasses Deep 

Learning for pattern recognition in medical images and Machine Learning for data analysis. With the use of augmented 

reality and virtual reality, AI has the potential to dramatically improve healthcare, especially for radiologists working in 

diagnostic imaging and interventional radiology. Working in diagnostic medicine and interventional radiologists. AI 

applications in the field of interventional radiology include patient selection, treatment planning, and training. Thorough 

research and validation are crucial to successfully integrating AI to improve patient care. This study examines the 

prognostic value of haemorrhagic transformation (HT) in acute ischemic stroke inferred from MRI-derived permeability 

measurements using MR perfusion images that was done. 

Keywords: Artificial Intelligence (AI), Informatics, Data Processing, Hemorrhagic Transformation (HT), Acute Ischemic 
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INTRODUCTION 

 

Medications and devices that remove blood clots are used to treat acute ischemic stroke, but these treatments carry risks 

such as bleeding in the brain. To reduce the risk of hemorrhagic transformation (HT), which is caused by a disruption in 

the blood-brain barrier and can increase pressure inside the skull, thrombolytic therapy (tPA) is only given within 4.5 

hours of symptom onset. Strokes affect over 10 million people worldwide each year. Most of them have brain imaging 

done for diagnosis during their hospital stay, as well as followup scans to evaluate things like infarction size, cerebral 

enema, and haemorrhagic change. Acute stroke imaging frequently uses computed tomography (CT), which is accessible, 

affordable, and quick. Although CT cannot detect hyper-acute strokes like MRI, it is equivalent in monitoring the course 

of infarction and edema with superior accuracy CSF volume reduction. As edema grows, CSF is dispersed before midline 

shift and clinical worsening. Our research shows a strong relationship between the extent to which the midline is shifted 

and the volume of cerebrospinal fluid that is displaced. We have created an automated method that works better than 

threshold-based models for segmenting CSF in CT scans of stroke patients. This automated method allows for accurate 

edema evaluation in sizable stroke patient cohorts, potentially assisting genetic research and early malignant edema 

prediction. We offer a preliminary approach for managing large CT scan datasets and extracting CSF volumes for this 

research.[4] Early detection of tissue at risk of damage is critical for the treatment of acute ischemic stroke, and 

thrombolytic guidelines typically allow therapy within a 3- to 4.5-hour window. However,This deadline might be overly 

restrictive, disqualifying some patients from receiving reperfusion therapy. MRI, particularly diffusion-weighted and 

perfusion-weighted imaging, provides helpful information about the status of ischemic tissue, assisting with treatment 

choices. Patients who have a "perfusion diffusion mismatch" and are candidates for thrombolysis can be identified by 

categorizing MRI data into overlapping and non-overlapping zones. The absence of defined post processing and threshold 

values presents difficulties and may result in unreliable assessments of this mismatch area. Volumetric analysis could 

oversimplify the complicated nature of the damaged tissue, overestimate the region that is at danger, and omit tissue that 

might be recoverable.[3]  

 

MATERIAL AND METHODS 

 

Patients with ischemic stroke who presented at Barnes-Jewish Hospital within six hours of the onset of symptoms were 

screened as part of the GENISIS trial. Patients gave their consent for the gathering of data, which included clinical data 

including age and NIHSS score as well as acute stroke imaging. For patients who underwent at least one follow-up scan 

during their hospital stay, CT scans from 2009 to 2014 were extracted. These scans were uploaded, evaluated, processed, 
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and their CSF volumes were extracted using a processing pipeline. All scans were uploaded in DICOM format to the 

Central Neuroimaging Data Archive (CNDA), including baseline and follow-up scans.  

There was no risk to the safety of the patients during the non-invasive data collecting for either dataset. Both sets of data 

were anonymized according to the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule. Health 

Insurance Portability and Accountability Act (HIPPA). This study didn't need institutional or ethical permissions because 

it used deidentified data and didn't employ human beings.[5] Animal procedures: Although the study used animals that 

had already been employed in prior studies, the outcomes were novel and groundbreaking .  

Animal procedures were followed. The research complied with the European Communities Council Directive and was 

given the go-ahead by the University Medical Centre Utrecht and Utrecht's Ethical Committee on Animal Experiments.  

During upload, deidentification was done in the usual way. Following scans were used to grade the cerebral edema 

according to the CED grading system (0, no infarct; 1, localized swelling in 1/3 of the brain) University. Male Wistar rats 

received a glucose-saline solution and antibiotic therapy before going under aesthesia. Injections or isoflurane-powered 

mechanical ventilation were used to provide aesthesia. The intervention entailed revealing the right carotid artery, 

inducing unilateral middle cerebral artery (MCA) occlusion, and controlling body temperature.Animals were given pain 

medication and hydration supplementation following surgery. The MCA was occluded for 30 minutes before MRI scans 

were conducted. While Groupie received intravenous rt-PA, Group II was given saline. While Group II and III animals 

underwent MRI scans at 24 and 168 hours following MCA blockage to evaluate tissue damage and reperfusion, Group I 

animals underwent a second MRI session at 72 hours.[3] Predicting Tissue Effects: T2 follow-up was combined with 

MRI measures such T2, ADC, CBF, MTT, and Tax.[3]   

 
Illustration 1: Challenges of brain medical image analysis 

 

                                                       Median (Min – Max)  

Age, y                                              68 (19 – 20)  

Time from stroke onset to MRI 120 (15 – 125) 

Admission NIHSS                          8 ( 1 – 26)  

Follow-up, T2-FLAIR volume  4.8 (0 – 211.1)  

TRACE DWI volume, mL                4.0 (0 – 161.30)  

SNR DWI                                         8.0 (1.8 – 30.40)  

SNR PWI                                        39.9 (13.2 – 112.8)  

Table 1: Patients And Image Acquisition 

Researchers should prioritize data safety and guarantee GDPR compliance while obtaining access to the data. We. This 

retrospective study included 222 patients (including 91 women) who participated in the I-KNOW multicenter and distant 
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ischemia preconditioning experiments. After being admitted to the hospital for acute ischemic stroke symptoms, these 

patients underwent MRI scans to determine whether they were eligible for intravenous tap treatment. The study used a 

variety of imaging techniques, including diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), T2-

fluid attenuated inversion recovery (FLAIR), and follow-up T2-FLAIR, to predict the imaging outcomes of 187 patients 

who received intravenous tissue plasminogen activator (tPA). As a control group, 35 untreated patients were also 

included. The initial clinical research was approved by local ethics boards and conducted in accordance with the Helsinki 

Declaration.[9] Additionally, mechanisms for future retrospective studies like the one conducted here Provisions for data 

collection were incorporated into the original study designs. 

Hospitals used T2-FLAIR,  

DWI, and gradient-echo dynamic susceptibility contrast PWI MRI scans as their acute imaging methods. To make these 

protocols compatible with the specific scanner/vendor each facility used, modifications were made. The perfusion data 

was used to construct the mean capillary transit time, cerebral blood volume, cerebral blood flow, cerebral oxygen 

metabolism22, relative transit time heterogeneity, delay, and Tax maps. The steps involved in the motion based perfusion 

pre-processing are [6]  

 

 DICOM Conversion: Because CT data had variable slice thickness, DICOM images were mass converted to Nifty 

format, with pixel height computed by figuring out the actual distance between subsequent slices. For CT images with 

gantry tilt, extra measures were taken utilizing trigonometry and resampling in order to obtain correct alignment and co-

registration. Some CT series interpolated to attain consistent thickness because the Nifty format does not support multiple 

slice thicknesses. Extra data about the scanner, protocol, and conversion methods were saved in a separate file that 

followed the Brain Imaging Data Structure (BIDS) format. 

Image Selection: Throughout the conversion process, derivative photos were filtered out using the "-i y" parameter in 

dcm2niix. The axial brain photos and other images have to be manually selected from the converted Nifty files.  

to filter out undesired series such angiographic images and bone windows in order to choose the axial brain images. The 

locations of stroke lesions in the cortical, subcortical, mixed cortical and subcortical, and lacunar layers were the 

categories used.Voxel-based image segmentation has limitations when it comes to neuroimage analysis and the extraction 

of biomarkers, despite being effective. Surface-based analysis, on the other hand, is crucial, particularly for precisely 

determining thickness—a characteristic that has been glaringly absent from deep learning comparison studies. Traditional 

pipelines do more than just segment images.  

 

LITERATURE REVIEW 

 

Despite the fact that cerebral enema is a significant cause of neurological decline and death after hemispheric stroke, there 

are no reliable strategies for accurate prognosis or effective prevention. Big data tools have the potential to shed light on 

the genetic and biological components that affect the severity and course of cerebral enema. These techniques involve 

measuring the amount of edema (swelling) in the brains of large groups of people who have had strokes. A machine 

learning algorithm was developed to segment and estimate the volume of cerebrospinal fluid (CSF) in serial CT scans of 

stroke patients to make this research easier and faster. Initial findings from a longitudinal stroke study's initial cohort of 

155 participants demonstrate good consistency in total cranial volume registration between scans and a significant 

relationship between baseline CSF volume and patient age.  

 

From [1], Artificial intelligence (AI) is rapidly transforming the field of medicine, and interventional radiology (IR) is no 

exception. AI has the potential to revolutionize IR practice by improving the accuracy and efficiency of diagnosis and 

treatment, as well as developing new and innovative procedures. It lessens the burden on radiologists by automating tasks 

such as image analysis and report generation.This would free up radiologists to focus on more complex tasks, such as 

developing and performing new procedures. 

AI could help to improve the quality of care for patients in underserved areas. For example, AI could be used todevelop 

telemedicine systems that would allow radiologists to provide care to patients in remote locations. Overall, the potential 

impact of AI on IRpractice is very promising. AI has the potential to improve the accuracy and efficiency of diagnosis 

and treatment, as well as develop new and innovative procedures. 

AI could enhance the quality of healthcare for patients in underserved areas. For instance, AI could be used to create 

telemedicine systems that would enable radiologists to provide care to patients in remote locations. Overall, the potential 

impact of AI on interventional radiology practice is very promising. Therefore, it is important to identify the clinical and 

imaging indicators of HT so that patients can be monitored closely and treated promptly. 
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Figure2: Flow of work in the prediction of cerebral edema 

 

In their paper, Tian et al. Examined the clinical and neuroimaging markers of hemorrhagic transformation (HT) in patients 

with acute ischemic stroke who received endovascular thrombectomy (EVT).They found that the factors were 

independently associated are  

A more severe National Institutes of Health Stroke Scale (NIHSS) score at baseline, an elevated glucose level at hospital 

arrival, and a longer time from stroke onset to recanalization.Tian et al. also found that the type of thrombolytic treatment 

(intravenous alteplase versus EVT alone) did not affect the risk of HT. 

These findings are significant because they provide useful information about the clinical and neuroimaging markers of 

hemorrhagic transformation (HT) in patients with acute ischemic stroke who receive endovascular thrombectomy (EVT). 

This information can be used to create better risk stratification models for HT and to identify patients who require closer 

monitoring and treatment. This information can be used to develop better risk stratification models for HT and to identify 

patients who need closer monitoring and treatment. This work is a valuable resource for neurologists, radiologists, and 

other healthcare professionals who are involved in the care of patients with acute ischemic stroke. 

Here are some additional thoughts on the clinical and imaging indicators of HT in patients with acute ischemic stroke 

who undergo EVT: 

The higher the baseline NIHSS score, the greater the risk of HT. This is because the NIHSS score is a measure of the 

severity of the stroke, and more severe strokes are more likely to develop HT. Higher glucose levels at hospital arrival 

are also associated with an increased risk of HT. This is because hyperglycemia can damage blood vessels and make them 

more susceptible to bleeding. A longer duration between stroke onset and recanalization is another risk factor for 

hemorrhagic transformation (HT). This is because longer times to recanalization cause more tissue damage, which can 

increase the risk of bleeding. 

From [3], Brain age and cognitive age are two important concepts in aging research. Brain age refers to the structural and 

functional changes in the brain that occur with age, while cognitive age refers to the decline in cognitive function that 

occurs with age. 

Atatürk et al. developed a machine learning model to predict brain age and cognitive age using MRI and cognitive data 

from a cohort of older adults. They found that their model was able to accurately predict brain and cognitive age, and that 

the difference between predicted and chronological age was associated with factors such as premorbid IQ, education, and 

lifestyle. 
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The findings of this study are important because they provide a new way to quantify brain and cognitive maintenance in 

aging. This information could be used to identify individuals who are at risk for cognitive decline and to develop 

interventions to help people maintain their brain and cognitive function as they age. 

Overall, this work provides valuable information about the prediction of brain age and cognitive age. The study is well-

written and well-organized, and it is supported by a strong scientific literature. The paper is a valuable resource for 

researchers and clinicians who are interested in aging and cognitive decline. 

Here are some additional thoughts on the implications of the findings of this study: 

The ability to predict brain and cognitive age could be used to develop personalized interventions to help people maintain 

their brain and cognitive function as they age. For example, individuals with a higher predicted brain age could be targeted 

with interventions that promote brain health, such as exercise, diet, and cognitive training. 

The ability to predict brain and cognitive age could also be used to identify individuals who are at risk for cognitive 

decline. For example, individuals with a predicted brain age that is much older than their chronological age could be 

monitored more closely for signs of cognitive decline. 

The ability to predict brain and cognitive age could also be used to develop new diagnostic tools for cognitive disorders 

such as Alzheimer's disease. For instance, people with a higher predicted brain age could be targeted with interventions 

that enhance brain health, such as physical activity, nutrition, and mental stimulation.. 

Overall, the findings of this study have the potential to significantly improve our understanding of aging and cognitive 

decline. The ability to predict brain and cognitive age could be used to develop new interventions and diagnostic tools to 

help people maintain their brain and cognitive function as they age. 

 

METHODOLOGIES 

 

By incorporating the created deep learning framework, Fast Surfer CNN, into a complete and self-contained image 

pipeline known as Fast, this effort seeks to close this gap.   

 

A) Segmentation and Boundary Alignment:  

Segmentation and Boundary Alignment: Skull stripping was used to eliminate extracranial features during anonymization. 

We separated the pixels into three groups using K-means clustering: one for the brain, one for the skull, and one for the 

exterior region. Then, to create a mask particularly for the intracranial region, we eliminated the skull and surrounding 

areas. This mask, which included structures above the tentorium cerebelli and the cisterns at the base of the brain but 

excluded areas of the posterior fossa such as the cerebellum, was aligned to a reference brain template created from the 

images. of 15 stroke patients. Brain scans taken at baseline were saved in this template. In more than 50% of the template 

scans, we kept the pixels that matched atlas masks using the Advanced Normalized Toolkit (ANTS). Then, non-matching 

brain scans from follow-up scans were aligned with baseline scans that had been registered. Our results supported our 

prediction that CNN deep would perform better than competing approaches at using data from acute photos to predict 

outcomes. In independent test data, CNN deep outperformed shallow networks and voxel based methods in terms of 

strong concordance with actual results (measured by AUC based on follow-up T2-FLAIR images).A closer look at CNN 

deep's risk maps revealed a clearer distinction between final infarct areas and non-infarct zones, improving 

interpretability. Notably, there was a marginally significant treatment effect in favouring of a greater infarct volume when 

intravenous tap was not given. The remarkable effectiveness of CNN deep is ascribed to its ability to draw on data from 

prior patients, adapt during training, and take into account the variety in stroke progressions. As a result, deep CNNs can 

produce   

Skull stripping for anonymization involved removing extracranial elements. We separated the pixels into three groups 

using K-means clustering: one for the brain, one for the skull, and one for the exterior region. Then, to create a mask 

particularly for the intracranial region, we eliminated the skull and surrounding areas. This mask, which includes 

supratentorial structures and basal cisterns but leaves out areas of the posterior fossa like the cerebellum, was registered 

to a brain template made from the pictures of 15 stroke victims. Brain scans taken at baseline were saved in this template. 

In more than 50% of the template scans, we kept the pixels that matched atlas masks using the Advanced Normalized 

Toolkit (ANTS).  

Following that, follow-up scans were aligned with registered baseline scans, with nonmatching brain areas being 

excluded. 
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Figure 3: Diagram of the 3 levels of segmentation ontology 

 

The Figure 3 result from our multi-atlas brain  segmentation pipeline within the same subject.  The structures identified 

by their red labels are pointed to by red arrows in the images. 

 

DISCUSSION 

Our results supported our prediction that CNN deep would perform better than competing approaches at using data from 

acute photos to predict outcomes.   

In independent test data, CNN deep outperformed shallow networks and voxel-based methods in terms of strong 

concordance with actual results (measured by AUC based on follow-up T2-FLAIR images). A closer look at CNN deep's 

risk maps revealed a clearer distinction between final infarct areas and non-infarct zones, improving interpretability. 

Notably, there was a marginally significant treatment effect in favor of a greater infarct volume when intravenous tap was 

not given. The remarkable effectiveness of CNN deep is ascribed to its ability to draw on data from prior patients, adapt 

during training, and take into account the variety in stroke progressions. This enables deep learning to demonstrate similar 

accuracy in predicting tissue infarction in a mouse model of permanent middle cerebral artery occlusion (MCAO), which 

is characterized by irreversible tissue damage. Variations in projected infarction risk levels, especially with the GLM and 

RF algorithms, proved useful for identifying potentially recoverable tissue in a rat model of embolic stroke followed by 

reperfusion. This may affect how stroke patients are selected for therapeutic intervention. The methods were first used to 

reperfusion instances after being trained using a persistent MCAo model. Different follow-up infarctions were seen, which 

made it possible to identify recoverable tissue using acute MRI data. While the algorithms did not predict the final infarct 

exactly, they consistently showed high sensitivity and specificity for detecting tissue damage across different stroke 

models, anesthesia types, and MRI settings.[3]

 
FIGURE4: Intravenous  rtPA  (Recombinant tissue-type plasminogen activator) 
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Measurements of cerebral oxygen metabolism (CMRO2), mean capillary transit time (MTT), and time to maximum 

residue function (Tax) reveal hypoperfusion. On TRACE maps, however, there was only a negligible amount of confined 

diffusion. Notably, after reperfusion therapy there was no sign of a residual infarct on T2-weighted fluid-attenuated 

inversion recovery (T2- FLAIR). In contrast, when compared to trace DWI, Patient B, a 65-year-old man, did not show 

a mismatch on the MTT and CMRO2 maps. When utilizing Tax, a slight mismatch was discovered. A small effect of 

treatment was predicted, and subsequent T2-weighted fluid attenuated inversion recovery (T2FLAIR) images confirmed 

this finding. 

READING REVIEW Despite being effective, cerebral enema is a primary cause of neurological decline and death after 

hemispheric stroke. factors affecting the harshness of an enema. Limitation Due to the retrospective nature of this study, 

we are unable to draw any firm conclusions about how well the algorithm performed in a real clinical setting. Given the 

way this study was designed, we cannot say how the algorithm would impact healthcare providers and patient care.The 

evaluation of algorithm performance was limited to patients in the United States who were 18 years of age and older, 

which may limit the applicability of the findings to other groups. The algorithm's prediction performance may differ in 

prospective scenarios if used with patient groups that are vastly different from those in this study. According to cross-

validation research, the performance results are probably accurate for patient groups that resemble those in the BIDMC 

and Stanford datasets. However, factors like patient comorbidities and admission causes were not investigated.  

CONCLUSION 

 

Our research reveals that in acute ischemic stroke patients receiving t-PA or recanalization therapy, evaluating the 

permeability map intensity distribution can assist predict haemorrhagic transformation.  

Based on this predictive model, continual risk maps could help clinical judgment and enhance patient assessment. We 

discovered that deep CNNs, such as CNN deep, perform better at predicting the final infarct in acute ischemic stroke than 

GLM-based models. Due to their depth and layer structure, CNNs are excellent at preserving spatial information, 

producing predictions that are more accurate. These cutting-edge models give hope for automated decision support 

systems that provide individualized therapy suggestions, thereby improving patient outcomes. Contrary to more 

straightforward approaches like GLM, CNNs have the advantage of continuous learning and can take advantage of 

expanding image collections. info on quantitative plaques . 
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