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Abstract: Hand key point detection is crucial for facilitating natural human-computer interactions. However, this task is 

highly challenging due to the intricate variations stemming from complex articulations, diverse viewpoints, self-similar 

parts, significant self-occlusions, as well as variations in shapes and sizes. To address these challenges, the thesis proposes 

several innovative contributions. Firstly, it introduces a novel approach employing a multi-camera system to train precise 

detectors for key points, particularly those susceptible to occlusion, such as the hand joints. This methodology, termed 

multiview bootstrapping, begins with an initial key point detector generating noisy labels across multiple hand views. 

Subsequently, these noisy detections undergo triangulation in 3D utilizing Multiview geometry or are identified as 

outliers. These triangulations, upon re-projection, serve as new labeled training data to refine the detector. This iterative 

process iterates, yielding additional labeled data with each iteration. The thesis also presents an analytical derivation 

establishing the minimum number of views necessary to achieve predetermined true and false-positive rates for a given 

detector. This methodology is further employed to train a hand key point detector tailored for single images. The resultant 

detector operates in real-time on RGB images and exhibits accuracy on par with methods utilizing depth sensors. 

Leveraging a single-view detector triangulated over multiple perspectives enables markerless 3D hand motion capture, 

even amidst complex object interactions. 

 

Keywords: Convolutional Neural Network, Key point detector, Density Network with a Single Gaussian Model, Mixture 

Density Network, Degree of Freedom. 

 

I. INTRODUCTION 

 

Hand pose estimation stands as a pivotal topic in computer vision, finding myriad applications across human-computer 

interaction, augmented/virtual reality, and gaming. These applications typically necessitate hand segmentation, 

articulated hand pose estimation, and tracking. Although recent advancements in body pose estimation[1], [2] can aid in 

hand detection and segmentation using human body hand joint features, articulated hand pose estimation from monocular 

RGB images remains a challenging endeavor on several fronts. This complexity arises due to the diverse configurations 

of human hands, which possess over 20 Degrees of Freedom (DoF). Moreover, hands, being smaller than the body, often 

occupy only a fraction of the image when the entire body is visible. Additionally, hand keypoints frequently encounter 

occlusion from other parts of the same hand, the opposing hand, or other body regions. 

 

At present, deep learning techniques demonstrate the highest level of performance in human body pose estimation. This 

task involves estimating the articulated pose of the body, akin to hand pose estimation. However, body pose estimation 

generally proves to be less challenging. This is primarily because the body is typically upright, reducing the complexity 

of the problem.  

 

Additionally, occlusions pose a less frequent and less severe issue in full-body images compared to hand images. Our 

study delves into deep learning methods designed for hand pose estimation, particularly those employing holistic 

articulated pose estimation. While pixel-wise pose estimation methods exist, they may be impractical for real-time 

applications due to their slower processing speed. Moreover, such approaches often fail to leverage crucial holistic hand 

features due to their focus on individual pixels. 
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In this study, our focus lies on RGB-based articulated hand pose estimation, a preference rooted in the widespread 

availability and straightforward deployment of standard color cameras in comparison to depth cameras. Our contribution 

targets the problem of partial hand pose estimation within individual RGB image frames, with key points of interest 

including the wrist and fingertips for each digit: thumb, index finger, middle finger, ring finger, and little finger. 

 

We introduce a novel RGB benchmark dataset designed specifically for estimating hand keypoints and conduct 

evaluations to offer quantitative assessments of current state-of-the-art methods for this task. This dataset encompasses 

hand gestures alongside keypoint annotations, particularly emphasizing gestures involving rhythmic hand movements. 

Our motivation stems from the potential utility of tasks involving such movements for cognitive assessments, particularly 

when integrated with activities involving whole-body motion[3].  

 

There exists a growing need for computational methods aimed at automatically computing various physical performance 

metrics, thereby enhancing the accuracy and efficiency of human-made assessments. Articulated hand pose recognition 

assumes a critical role in recognizing and evaluating physical exercises incorporating hand gestures. In Section 4, we 

delve into the selected hand gestures, elucidating the associated physical exercise tasks and underscoring the significance 

of articulated hand pose estimation in assessing performance within those tasks. Recognizing rhythmic movements for 

rapid sequential hand gestures poses additional challenges due to the speed and complexity of the motion. Furthermore, 

the hand's potential orientation variability and dexterity compound the difficulty in estimating and tracking finger 

positions. 

 

The paper is further organized as follows: In Section 1, we discuss Introduction; in Section 2, we discuss Literature 

Review; Section 3 describes Methodology; in Section 4 we describe Implementation; in Section 5, we discuss our 

experimental Result & Analysis. 

 

II. LITERATURE REVIEW 

 

Early research in hand pose estimation initially focused on utilizing RGB data, as demonstrated by Rehg and Kanade [4] 

who explored applications in vision-based Human-Computer Interaction (HCI). Many of the early methods were fragile, 

relying on the fitting of intricate 3D models with strong priors, such as principles from physics or dynamics [5], 

employing multiple hypotheses [6], or utilizing analysis-by-synthesis techniques [7].  

 

These approaches often relied on visual cues like silhouettes, edges, skin color, and shading, which were tested in 

controlled environments with limited poses and simple movements. Wang and Popovic's method managed to alleviate 

some of these limitations but necessitated the use of a specialized colored glove. Similarly, multiview RGB methods 

often rely on fitting complex mesh models (e.g., [1], [3]), achieving impressive accuracy but typically only under highly 

controlled conditions. 

 

Following the advent of readily available depth sensors, research emphasis shifted towards single-view depth-based hand 

pose estimation, leading to a proliferation of depth-based methods. These approaches can broadly be categorized into 

generative methods [8], discriminative methods [9], or hybrid methods [1], [10], [11]. A recent example of a hybrid 

method by Sharp et al. [10] has showcased practical performance across a wide spectrum, though challenges persist in 

scenarios involving interactions between hands or hands and objects. Discriminative and hybrid strategies for depth-

based hand pose estimation heavily rely on synthetic data. Oberwerger et al. [12], for instance, employ feedback loops 

to generate synthetic training data for hand pose estimation, driven by similar principles as our work, albeit focusing on 

generating depth images. Moreover, the semi-automatic data annotation scheme outlined in [13] shares a similar 

motivation; however, our approach utilizes multi-view geometry and key-point detection to offer automated supervision. 

 

Discriminative methods, particularly those reliant on deep architectures, necessitate extensive annotated training datasets. 

While synthesizing such datasets for depth maps is comparatively straightforward, generating them for RGB poses 

significant challenges due to the complexity of rendering, demanding photorealistic appearance and realistic lighting. 

Multiview bootstrapping presents an approach that facilitates the generation of large annotated datasets using an initially 

weak detector.  
 

This process, in turn, facilitates the development of the first real-time hand key-point detector for RGB images in real-

world settings. When the pose parameters involve joint locations, the pose estimation task can be likened to detecting 

key points from input images, thereby sharing similarities with other vision problems such as facial landmarking, 6D 

Object Detection, and human body pose estimation. Of these, hand pose estimation encounters similar challenges to 

human body estimation, which has witnessed significant advancements in the past decade [14]. 
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Fig. 1: Depth images captured by Intel RealSense SR300 [Intel] and cropped hand areas. (a) images captured in third-

person viewpoints; (b) images captured in first-person (ego- centric) viewpoints. 

 

Both models aim to represent articulated objects with numerous degrees of freedom and account for self-occlusions. 

However, hand pose estimation presents distinct challenges due to intricate variations stemming from high Degrees of 

Freedom (DoF) articulations, diverse viewpoints, self-similar components, significant self-occlusions, and variations in 

shapes and sizes. 

 

The CPM (Convolutional Pose Machines) is a convolutional neural network designed for human pose estimation using 

single 2D human pose estimation datasets like MPII, LSP, and Frames Labelled in Cinema (FLIC). This model utilizes 

CNNs for human pose estimation, with its primary innovation lying in the utilization of a sequential convolution 

architecture to capture both spatial and texture information.  

 

This architecture comprises multiple stages within the network, each undergoing supervised training to prevent gradient 

vanishing in deep networks. Initially, the original image serves as input, while subsequent stages use the feature map 

from the previous stage.  

 

This approach aims to integrate spatial information, texture information, and central constraints. Additionally, employing 

multiple scales to process the input feature map and response map within the same convolutional architecture ensures 

both accuracy and consideration of the distance relationship between key points of each human skeleton. 

 

The overall structure of the CPMs is depicted in Figure 2, where "C" and "MC1, MC2" denote different convolution 

layers, and "P" represents various pooling layers. The "Centre map" denotes the central point of the human body image, 

used for aggregating response maps to the image centers. The "Loss" function reflects the minimum output cost, 

consistent with subsequent figures. 
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Fig. 2: The overall structure of the convolutional pose machines. 

 

The initial phase of the CPMs comprises a fundamental convolutional neural network (indicated by white convolutions), 

tasked with directly generating response maps for each key point of the human skeleton from input images. The entire 

model encompasses response maps for 14 key points of the human skeleton and an additional background response map, 

resulting in a total of 15 layers of response maps.  

 

The network architecture remains consistent across stages ≥ 2. In subsequent stages, a feature image with a depth of 128, 

derived from stage 1, serves as input. This input undergoes fusion through a concept layer, integrating three types of data: 

texture features, spatial features, and center constraints (wherein the center point of the human body image aggregates 

the response maps to the image centers). 

 

III. METHODOLOGY  

 

This technique essentially involves a learning process conducted through a Multiview system. In our everyday 

experiences, we observe objects from various angles, each presenting a different shape. Developing computer vision 

algorithms for camera networks necessitates an understanding of the relationships between images of the same scene 

captured from different viewpoints. A strategy employed in this regard entails utilizing a multi-camera system to train 

detailed detectors for keypoints vulnerable to occlusion, such as hand joints. This approach, termed Multiview 

Bootstrapping, unfolds as follows: initially, an initial keypoint detector generates noisy labels across multiple hand views. 

Subsequently, these noisy detections undergo either 3D triangulation using Multiview geometry or are flagged as outliers. 

The resulting reprojected triangulations serve as new labeled training data to refine the detector. This iterative process 

repeats, yielding additional labeled data with each iteration. 

 

a. Dataset 

We present the Hand Keypoint Dataset (HKD), containing annotated RGB images captured while participants engage in 

rhythmic finger movements. Our dataset comprises 782 color image frames collected from four distinct participants, 

constituting a novel benchmark dataset for hand Keypoint detection and/or tracking from RGB images. The dataset 

includes original frames annotated with key points, as well as annotated cropped frames loosely centered around the 

hand's centroid in the frame. Annotations cover six hand keypoints: W (wrist), TT (tip of the thumb), IT (tip of the index 

finger), TM (tip of the middle finger), TR (tip of the ring finger), and TL (tip of the little finger). Additionally, the dataset 

includes annotations for the hand centroid location in the original RGB frames. During data collection, participants 

executed rapid sequential finger gestures outlined in Section 3, performing these movements thrice with varying hand 

orientations relative to the camera. The dataset encompasses hand movements from four participants (two male, two 

female), with annotations manually conducted by two annotators utilizing a standardized annotation toolkit developed 

by our team.  
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Additional details of our dataset, 

 

Fig. 3: Example annotations of cropped images from HKD dataset. 

 

 

Fig. 4: Variance of hand key points of Subject1 in HKD. 

 

b. Proposed Method                                  

 

We configured our network module and dataset using OpenCV, along with prototext and caffemodel files. Subsequently, 

we processed an RGB image containing a hand. The process of detecting keypoints resembles identifying notable points 

on the hand, akin to human hand joints. We established 22 points to pinpoint hand keypoints and established pairs of 

keypoints to connect specific points, akin to a human skeleton. Once this method localizes all the keypoints, we depict 

the skeleton by drawing lines between the pairs and represent the keypoints as circles. Ultimately, we present the output, 

showcasing the detected keypoints and skeleton. 

 

IV. IMPLEMENTATION 

 

We implement the procedure outlined in the preceding section to ascertain the hand's pose and individuate the five fingers 

individually. Employing the Multiview Bootstrapping method, we detect all 22 keypoints, proceeding to estimate the 

hand's pose based on these detected keypoints. Ultimately, we categorize the five fingers independently, marking the 

culmination of our implementation. 
 

a. Image Preprocessing 

Initial image processing is undertaken to ready it for primary processing or subsequent analysis. In this stage, we begin 

with an image and reduce its dimensions through resizing. Initially, we determine the original height and width of the 

provided image, calculating the aspect ratio accordingly. Following this, we establish a default height of 368 pixels, while 

the width is determined based on the aspect ratio and height. The width is computed as the product of the aspect ratio and 

height. For processing with the Multiview Bootstrapping method, four image parameters are required: batch size, channel, 

height, and width. Utilizing OpenCV and its "blobFromImage" function, we amalgamate all necessary information 

required for the network. 
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b. Localize Keypoints 

The result consists of 22 matrices, each representing the Probability Map of a keypoint. To pinpoint the precise keypoints, 

we initially resize the probability map to match the dimensions of the original image. Subsequently, we identify the 

keypoint's location by detecting the maximum value within the probability map, achieved through the minmaxLoc 

function in OpenCV.  

 

We then illustrate the detected points on the image, labeling them with corresponding numbers. Specifically, the wrist is 

denoted by point 0, while points 4, 8, 12, 16, and 20 signify the tip points of each finger. 

 

c. Estimate Hand pose 

We define pairs of key points as like joint on human hand. We define 20 pose pairs to connect the detected keypoints. 

The pose pairs are like, 

 

[[0, 1], [1, 2], [2, 3], [3, 4], 

 

[0, 5], [5, 6], [6, 7], [7, 8], 

 

[0, 9], [9, 10], [10, 11], [11, 12], 

 

[0, 13], [13, 14], [14, 15], [15, 16], 

 

[0, 17], [17, 18], [18, 19], [19, 20]] 

 

We will use the detected points to get the skeleton formed by the key points and draw them on the image. 

 

  

Fig. 5: Flowchart of proposed methodology 
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d. Finger Classification 

 

We noticed that all the fingers start from 0 point and end with 4, 8, 12, 16, 20 respectively. When the detector 𝑑i {if i 

ϵ [0…4]} It is indicating as number 1 finger, When, 𝑑i {if i ϵ [0, 5…8]} It is indicating as number 2 finger, When, 𝑑i 

{if i ϵ [0, 9…12]} It is indicating as number 3 finger, When 𝑑i {if i ϵ [0, 13…16]} It is indicating as number 4 finger, 

When, 𝑑i {if i ϵ [0, 17…20]} It is indicating as number 5 finger. So, we need to identify the pixel value of the needed 

points and indicate with the indexing number. 

 

e. Visualization 

 

The visualization of the image is facilitated by a function within the OpenCV module. Utilizing OpenCV, we display our 

outcome. Specifically, we employ distinct colors for individual fingers and denote each finger with a straight line 

originating from the top of the image, accompanied by an index. 

 

V.      RESULT AND ANALYSIS 
 

None of the existing hand pose estimation datasets we evaluated were suitable for our intended application: encompassing 

general, real-world images depicting everyday hand gestures and activities. Consequently, we manually annotated two 

publicly available image collections: (1) The MPII Human Pose dataset [18], sourced from YouTube videos curated 

specifically to portray ordinary human activities, and (2) Images from the New Zealand Sign Language (NZSL) Exercises 

conducted by Victoria University of Wellington [2], featuring individuals using NZSL to narrate stories. We opted for 

the latter dataset due to its diverse range of hand poses, resembling those encountered in conversational contexts, which 

are less prevalent in the MPII dataset. 

 

 

Fig. 6: Expected result after successful implementation. 

 

 
 

 

Fig. 7: Comparative output with different Aspect ratio 
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a. Robustness to View Angle 

We assess the enhancement in the detector's resilience to varying viewing angles by gauging the proportion of outliers 

during 3D reconstruction. To establish ground truth, we meticulously scrutinize our most accurate 3D reconstruction 

outcome, selecting only frames that are correctly reconstructed. We define the view angle in terms of azimuth φ and 

elevation θ relative to a stationary hand positioned at the origin.  

 

From an intuitive perspective, angles where φ = {−180, 0, 180} (providing a direct view of the palm or backhand) are 

deemed easier due to reduced self-occlusion. Conversely, angles at φ = {−90, 90} offer a side view of the hand, from the 

thumb to the little finger or vice versa, resulting in increased occlusion. Similarly, angles at θ = {90, −90} present a view 

from the fingertips to the wrist, and vice versa, representing the most challenging perspectives. We contrast the initial 

iterations of the "Mix" detector, which swiftly adapt to diverse viewing angles. This comparison is visualized as a 

heatmap, wherein hand detections are binned based on the azimuth and elevation of each example. The percentage of 

outliers is determined by considering all examples falling within each bin. 

 

b. Comparison to Depth-based Methods 

We evaluate the effectiveness of our method using a publicly available dataset curated by Tzionas et al.. While numerous 

datasets are commonly employed for assessing depth-based methods, many lack corresponding RGB images or have 

annotations that are solely applicable to depth images. Datasets containing RGB images with precise manual annotations 

are scarce; therefore, the dataset provided by [18] aligns best with our method's evaluation requirements. Employing the 

2D Keypoint detector "Mix 3" on the RGB images from the dataset, we analyze sequences featuring single-hand motion, 

hand-hand interaction, and hand-object interaction.  

 

For direct comparison, we utilize the average pixel errors in keypoint locations as outlined in Table 1. It's noteworthy 

that the referenced method relies on a sophisticated 3D hand template, utilizing depth data and tracking, resulting in 

several seconds of processing time per frame. In contrast, our approach achieves comparable performance in single-hand 

and hand-object scenarios using only per-frame RGB detection, capable of real-time operation with GPU acceleration. 

Performance diminishes in hand interaction scenarios, where our detector may erroneously identify occluding hands. 

Simultaneous detection of joints on both hands would offer advantages in such cases, rather than treating each hand 

independently as our current approach does. 

 

c. Summery 

We assessed Multiview bootstrapping by implementing Algorithm 1 using three initial detectors. All three detectors 

adhere to the architecture outlined in Sect. 4, but are trained on three distinct sets of initial training data T0: (1) "Render": 

a preliminary collection of synthetically generated images of hands, totaling approximately 11,000 examples, (2) 

"Manual": manual annotations extracted from the MPII and NZSL training sets discussed earlier, and (3) "Mix": a fusion 

of rendered data and manual annotations. For Multiview bootstrapping, we utilized images from the Panoptic Studio 

dataset [8]. Specifically, we employed 31 HD camera views and four sequences featuring hand motions, leveraging the 

provided 3D body pose [8] to estimate occlusions and bounding boxes for hand detection.  

 

During bootstrapping iterations, frames were discarded if they exhibited an average number of inliers < 5 or an average 

reprojection error > 5, with a detection confidence threshold of λ=0.2. Throughout the process, we manually discarded 

no more than 15 incorrectly labeled frames. It's important to note that the detector requires a bounding box surrounding 

the hand to predict the keypoints. Therefore, for optimal results, the hand should be positioned close to the camera or 

cropped using a hand detector before being inputted to the network. Additionally, the provided code is designed to detect 

only one hand at a time; however, it can be easily adapted to detect multiple hands by utilizing the probability maps and 

implementing certain heuristics. 
 

VI. CONCLUSION AND FUTURE WORKS 

 

This paper introduces two advancements: (1) the inaugural real-time hand Keypoint detector demonstrating practical 

utility in uncontrolled RGB video settings; and (2) the pioneering markerless 3D hand motion capture system, capable of 

reconstructing intricate hand-object interactions and musical performances autonomously. We ascertain that extensive 

training sets can be constructed through Multiview bootstrapping, enhancing both the quality and quantity of annotations.  

 

Our approach can be applied to generate annotations for any Keypoint detector susceptible to occlusions (e.g., body and 

face). The creation of a large annotated dataset often poses a significant bottleneck for numerous machine learning and 

computer vision tasks, and our method offers a means to refine weakly supervised learning by leveraging Multiview 

geometry as an external source of supervision. As a prospective avenue of exploration, enhancing the method's robustness 
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to discern between right and left hands, optimizing the algorithm, and implementing it in real-world problem-solving 

scenarios would facilitate the development of even more comprehensive datasets that closely mirror real-world capture 

conditions. 
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