
IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI: 10.17148/IJARCCE.2021.10830

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 193

ISSN (O) 2278-1021, ISSN (P) 2319-5940

The Role of Progressive Web Apps and WebGL

in Modern Front-End Engineering

Sivaramarajalu Ramadurai Venkataraajalu1

New York, United States1

Abstract: Progressive Web Apps (PWAs) and WebGL have emerged as influential technologies in modern front-end

engineering, revolutionizing the way web applications are developed and experienced by users. This paper explores the

significance of PWAs and WebGL in the context of front-end development, highlighting their key characteristics,

benefits, and real-world applications. By examining the synergies between PWAs and WebGL, we discuss the

opportunities and challenges associated with their integration. Through a comprehensive literature review, we analyze

the current state of research and identify future trends and opportunities in this field. The paper aims to provide valuable

insights for front-end engineers, researchers, and stakeholders interested in leveraging PWAs and WebGL to create

immersive, performant, and engaging web experiences.

Keywords: Progressive Web Apps (PWAs), WebGL, Front-End Engineering, Web Development

I. INTRODUCTION

Front-end engineering has undergone significant advancements in recent years, driven by the increasing demand for

interactive, responsive, and cross-platform web applications. Two technologies that have gained prominence in this

context are Progressive Web Apps (PWAs) and WebGL. PWAs represent a paradigm shift in web development,

combining the best of web and native apps to deliver app-like experiences directly in the browser [1, 2]. On the other

hand, WebGL has revolutionized graphics rendering on the web, enabling hardware-accelerated 3D and 2D graphics

without the need for plug-ins [3, 4]. The convergence of PWAs and WebGL opens up new possibilities for front-end

engineers to create immersive and performant applications that push the boundaries of what is possible on the web. This

paper aims to explore the significance of PWAs and WebGL in modern front-end engineering, providing a comprehensive

overview of their characteristics, benefits, and real-world applications. By examining the synergies between these

technologies and conducting a thorough literature review, we seek to identify the current state of research, discuss the

challenges and opportunities associated with their integration, and highlight future trends and directions.

The purpose of this paper is to explore the role and significance of PWAs and WebGL in modern front-end engineering.

By examining the key characteristics, benefits, and real-world applications of these technologies, we aim to provide a

comprehensive understanding of their impact on web development practices. Furthermore, we investigate the synergies

between PWAs and WebGL and discuss the opportunities and challenges associated with their integration.

II. LITERATURE REVIEW

A. Progressive Web Apps (PWAs)

The concept of Progressive Web Apps has gained significant attention in recent years, with numerous studies exploring

their characteristics, benefits, and adoption. Biørn-Hansen et al. [5] conducted a comprehensive review of PWA literature,

identifying key themes such as performance, user experience, and offline functionality. They highlighted the potential of

PWAs to bridge the gap between web and native apps, providing a seamless and engaging user experience across devices.

Several studies have focused on the performance aspects of PWAs. Malavolta et al. [6] presented a performance

comparison between PWAs and native apps, demonstrating that PWAs can achieve comparable or even better

performance in terms of load times and responsiveness. They emphasized the importance of optimizing PWAs for

performance, considering factors such as network conditions and device capabilities.

.

User experience is another crucial aspect of PWAs that has been extensively studied. Majchrzak et al. [7] investigated

the user perception and acceptance of PWAs, highlighting the positive impact of PWAs on user engagement and

satisfaction. They identified key factors influencing user adoption, such as perceived usefulness, ease of use, and trust.

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI: 10.17148/IJARCCE.2021.10830

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 194

ISSN (O) 2278-1021, ISSN (P) 2319-5940

B. WebGL

WebGL has been the subject of numerous studies, exploring its capabilities, performance, and applications in various

domains. Dirksen [8] provided an in-depth overview of WebGL, covering its architecture, rendering pipeline, and

programming model. The study highlighted the potential of WebGL for creating interactive 3D graphics and

visualizations in the browser.

Several studies have compared the performance and features of different WebGL frameworks and libraries. Mwalongo

et al. [9] conducted a comparative analysis of popular WebGL frameworks, including Three.js and Babylon.js, evaluating

their performance, ease of use, and community support. The study provided valuable insights for developers in choosing

the most suitable framework for their specific needs.

WebGL has found applications in various domains, ranging from gaming and virtual reality to scientific visualization

and data analysis. Rego et al. [10] explored the use of WebGL for creating immersive virtual reality experiences,

discussing the challenges and best practices involved in developing WebGL-based VR applications.

C. Integration of PWAs and WebGL

The integration of PWAs and WebGL has been explored in several studies, highlighting the benefits and challenges

associated with their combination. Cibin and Zanellato [11] presented a case study on developing a PWA-WebGL

application for interactive product visualization, demonstrating the potential of this approach for enhancing user

engagement and experience. Mochocki and Lahiri [12] discussed the performance considerations when integrating

WebGL into PWAs, emphasizing the importance of optimizing WebGL rendering and minimizing the impact on PWA

load times. They proposed techniques such as lazy loading and asset compression to ensure a smooth and performant

user experience.

III. PROGRESSIVE WEB APPS

D. Definition and Characteristics

Fig. 1 Progressive Web Apps Architecture

Progressive Web Apps are web applications that leverage modern web technologies to deliver an app-like experience to

users [2]. PWAs combine the best of both web and native apps, offering key characteristics such as installability, offline

functionality, push notifications, and seamless updates. The core technologies behind PWAs include Service Workers,

Web App Manifests, HTTPS, and Push Notifications. Figure 1 depicts the architecture of PWA[34]

Service Workers are JavaScript files that run independently from the main browser thread, enabling features like offline

caching, background syncing, and push notifications. Web App Manifests provide metadata about the PWA, allowing it

to be installed on the user's device and customizing its appearance [13]. HTTPS is essential for ensuring secure

communication between the PWA and the server. Push Notifications allow PWAs to engage users with timely and

relevant updates, even when the application is not actively running [14].

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI: 10.17148/IJARCCE.2021.10830

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 195

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Fig. 2 PWA lifecylce and key events

B. Benefits of PWAs for Front-End Engineering

PWAs offer numerous benefits for front-end engineering, enhancing user experience, performance, and cross-platform

compatibility. One of the key advantages of PWAs is their ability to provide an app-like experience directly in the

browser, eliminating the need for users to download and install separate native apps [15, 16]. PWAs can be easily

discovered through search engines and shared via URLs, reducing the friction for user acquisition and engagement.

PWAs also excel in performance, offering fast load times and smooth navigation even on slow or unreliable network

connections. By leveraging Service Workers and caching mechanisms, PWAs can cache critical assets and data locally,

enabling offline functionality and reducing the dependence on network availability [17, 18]. This offline capability is

particularly valuable for users in regions with limited connectivity or for applications that require uninterrupted access to

content and features.

Cross-platform compatibility is another significant benefit of PWAs. As PWAs are built using web technologies, they

can run on any device with a modern web browser, regardless of the operating system or platform. This compatibility

allows front-end engineers to develop a single codebase that can reach a wide audience across desktop, mobile, and tablet

devices, reducing development and maintenance efforts [19, 20].

C. PWA Development Best Practices and Tools

Progressive enhancement is another important principle in PWA development, ensuring that the application remains

functional and accessible even on devices or browsers that may not fully support all PWA features. This approach

involves designing the application to work well on a basic level and then progressively adding advanced features and

enhancements for capable devices [21, 22].

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI: 10.17148/IJARCCE.2021.10830

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 196

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Several tools and frameworks have emerged to facilitate PWA development. Google's Workbox [23] is a popular library

that simplifies the process of implementing Service Workers and caching strategies. Frameworks like Angular, React,

and Vue.js provide robust ecosystems and tooling for building PWAs, with built-in support for PWA features and

optimizations.

IV. WEBGL (WEB GRAPHICS LIBRARY)

A. Introduction to Web Graphics Library

WebGL is a JavaScript API that enables hardware-accelerated rendering of interactive 2D and 3D graphics within

compatible web browsers [3]. It allows developers to leverage the power of the device's graphics processing unit (GPU)

to create visually stunning and performant applications directly in the browser.

WebGL is based on OpenGL ES (Embedded Systems) 2.0 and provides a low-level, cross-platform API for rendering

graphics. It allows developers to access and manipulate the GPU's rendering pipeline, enabling fine-grained control over

vertex and fragment shaders, textures, and geometry.

B. Key Features and Capabilities

WebGL offers a wide range of features and capabilities that make it a powerful tool for front-end engineering. One of its

key strengths is hardware-accelerated rendering, which utilizes the device's GPU to efficiently render complex graphics

and animations. This acceleration enables WebGL applications to achieve high frame rates and smooth performance,

even for demanding visualizations and interactive experiences.

WebGL seamlessly integrates with other web technologies, such as HTML5 and JavaScript, allowing developers to create

rich and interactive applications that combine graphics with standard web content. This integration enables the

development of immersive experiences that blend 2D and 3D elements, user interfaces, and data visualizations.WebGL

also supports advanced visual effects and shaders, empowering developers to create sophisticated graphics and realistic

simulations. Shaders are programs that run on the GPU and control the rendering process, allowing for effects like

lighting, shadows, reflections, and particle systems. WebGL's shader language, GLSL (OpenGL Shading Language),

provides a flexible and powerful way to define custom visual effects and manipulate graphics at a low level [24, 25].

C. WebGL Frameworks and Libraries

To simplify WebGL development and provide higher-level abstractions, several frameworks and libraries have emerged.

These tools offer pre-built functionality, utilities, and optimizations, allowing developers to focus on creating content

rather than low-level WebGL code.

Three.js [26] is one of the most popular and widely used WebGL libraries. It provides an intuitive and object-oriented

API for creating and manipulating 3D scenes, cameras, lights, and materials. Three.js abstracts away many of the

complexities of WebGL, making it more accessible to developers with varying levels of graphics programming

experience. Babylon.js [27] is another powerful WebGL framework that offers a complete engine for building 3D games

and interactive visualizations. It provides a wide range of features, including physics simulation, collision detection, and

scene graph management. Babylon.js also offers a visual editor and a large community with extensive documentation

and examples.

D. WebGL Applications and Domains

WebGL has found applications in various domains, showcasing its versatility and potential. One prominent area is

gaming, where WebGL enables the development of immersive and interactive browser-based games. From casual 2D

games to complex 3D environments, WebGL provides the performance and graphical capabilities necessary for engaging

gaming experiences.

Virtual and augmented reality (VR/AR) is another domain where WebGL has made significant contributions. WebGL,

in combination with WebVR and WebXR APIs, allows developers to create immersive VR and AR experiences that can

be accessed directly through web browsers. This opens new possibilities for interactive product visualizations, virtual

tours, and immersive storytelling.

In the field of data visualization and scientific simulations, WebGL has proven to be a valuable tool. It enables the creation

of interactive and dynamic visualizations that help users explore and understand complex datasets. From 3D charts and

graphs to scientific simulations and medical visualizations, WebGL provides the necessary performance and visual

fidelity to represent data effectively.

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI: 10.17148/IJARCCE.2021.10830

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 197

ISSN (O) 2278-1021, ISSN (P) 2319-5940

E-commerce and product visualization is another area where WebGL has been successfully applied. By leveraging

WebGL's capabilities, retailers can create interactive and photorealistic 3D product models that allow customers to

explore products from various angles, customize options, and visualize them in different contexts. This enhances the user

experience and can lead to increased customer engagement and conversions.

Additionally, by leveraging the computational capabilities of the device's GPU, WebGL can efficiently process and

visualize the results of machine learning models in real-time. This enables developers to create intelligent and responsive

applications that can analyze data, make predictions, and provide immersive user experiences, all within the browser

environment. The integration of WebGL and on-device machine learning empowers web applications to perform complex

tasks, such as computer vision, augmented reality, and data visualization, without relying on server-side processing or

external APIs, thereby enhancing performance, privacy, and offline functionality. Figure 3 depicts how we can make use

WebGL to run ML models on the edge device.

Fig. 3 JavaScript code to run machine learning model on browser using WebGL

V. SYNERGY OF PWAS AND WEBGL

A. Benefits of the combination of PWAs and WebGL

The combination of Progressive Web Apps (PWAs) and WebGL opens up exciting opportunities for front-end

engineering. By leveraging the strengths of both technologies, developers can create immersive, performant, and

engaging web experiences that rival native applications[19,20].

PWAs provide the app-like experience, offline functionality, and cross-platform compatibility, while WebGL brings

hardware-accelerated graphics and interactive visualizations to the mix. Together, they enable the development of rich

and dynamic applications that can be accessed directly through the browser, without the need for installation or platform-

specific development.

One significant benefit of combining PWAs and WebGL is the ability to create immersive and visually stunning

experiences that can be enjoyed by a wide audience. PWAs ensure that the application is accessible and performant across

different devices and network conditions, while WebGL provides the graphical prowess to render complex 3D scenes

and animations [4,8].

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI: 10.17148/IJARCCE.2021.10830

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 198

ISSN (O) 2278-1021, ISSN (P) 2319-5940

TABLE I COMBINED CAPABILITIES OF PWAS AND WEBGL

PWA Characteristics WebGL Capabilities Synergies

App-like experience Immersive 3D

graphics

Combining PWA's app-like features with

WebGL's immersive graphics creates engaging

and interactive user experiences.

Offline functionality Hardware-accelarated

rendering

PWAs enable offline access to content, while

WebGL ensures smooth and performant

rendering of graphics, even in low-connectivity

scenarios.

Fast load times High-performing

computing

PWAs optimize load times through caching and

minimal data transfer, complementing WebGL's

ability to leverage the device's GPU for efficient

computation.

Responsive design Adaptive rendering PWAs adapt to different screen sizes and

devices, while WebGL allows for dynamic and

responsive rendering of graphics based on

device capabilities.

Push notifications Real-time interactivity PWAs can deliver timely push notifications,

enhancing user engagement, while WebGL

enables real-time interactivity and dynamic

updates to the graphical content.

Cross-platform

compatibility

Browser-based

deployment

PWAs and WebGL both leverage web

technologies, ensuring cross-platform

compatibility and eliminating the need for

platform-specific development.

Seamless updates Shader-based effects PWAs enable seamless updates without user

intervention, while WebGL's shader-based

effects allow for dynamic and visually stunning

graphics that can be easily updated.

Discoverable and

shareable

Integration with web

content

PWAs can be easily discovered and shared via

URLs, while WebGL integrates seamlessly with

other web content, allowing for rich and

immersive experiences.

B. Challenges and Considerations

Integrating PWAs and WebGL also presents certain challenges and considerations that developers need to address.

Performance optimization becomes crucial to ensure smooth rendering and responsive interactions, especially on

resource-constrained devices [28]. Developers must carefully balance the graphical complexity and asset sizes to

minimize loading times and maintain a fluid user experience.

Another challenge is managing the memory and computational resources required by WebGL applications. Efficient

memory management techniques, such as object pooling and garbage collection, need to be employed to prevent memory

leaks and optimize performance [24]. Developers should also be mindful of the GPU limitations and design their

applications to scale well across different hardware configurations[25].

Compatibility and fallback mechanisms are important considerations when combining PWAs and WebGL.

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI: 10.17148/IJARCCE.2021.10830

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 199

ISSN (O) 2278-1021, ISSN (P) 2319-5940

While WebGL is widely supported by modern browsers, there may be variations in implementation and performance

across different devices and platforms [9]. Developers should implement progressive enhancement techniques to provide

alternative rendering methods or graceful degradation for older browsers or devices with limited WebGL support.

C. Best Practices and Guidelines

To effectively combine PWAs and WebGL, developers should follow best practices and guidelines that optimize

performance, maintainability, and user experience. Some key best practices include:

• Lazy loading and code splitting: Splitting the application into smaller chunks and loading them on-demand can

significantly reduce the initial load time and improve performance [17]. Lazy loading WebGL assets, such as textures

and models, ensures that resources are loaded only when necessary.

• Caching and offline support: Leveraging the caching capabilities of Service Workers, developers can store

critical assets and data locally, enabling offline functionality and faster subsequent loads [2]. This is particularly

beneficial for WebGL applications that may have large assets or require offline access.

• Compress on and optimization: Compressing WebGL assets, such as textures and geometry data, can

significantly reduce the download size and improve load times [12]. Techniques like texture compression, mesh

simplification, and level-of-detail (LOD) optimization help strike a balance between visual quality and performance.

• Responsive design and adaptive rendering: Designing the application to adapt to different screen sizes and

device capabilities ensures a consistent and optimized experience across a wide range of devices [5]. Adaptive rendering

techniques, such as dynamic resolution scaling and progressive enhancement, can help tailor the WebGL content to the

device's capabilities.

• Testing and performance profiling: Rigorous testing and performance profiling across different devices,

browsers, and network conditions are essential to identify and address performance bottlenecks [6]. Tools like Chrome

DevTools and WebGL Inspector provide valuable insights into rendering performance, memory usage, and potential

optimizations[23].

D. Future Directions and Emerging Trends

The combination of PWAs and WebGL is an evolving landscape with exciting future directions and emerging trends.

One notable trend is the increasing adoption of WebGPU, the next-generation web graphics API that aims to provide

lower-level access to the GPU and enable even greater performance and flexibility. WebGPU promises to unlock new

possibilities for advanced rendering techniques and compute-intensive tasks.

Another trend is the growing integration of PWAs and WebGL with other web technologies, such as WebAssembly and

WebXR. WebAssembly allows developers to run high-performance, low-level code in the browser, opening up new

opportunities for complex simulations and computations. WebXR, on the other hand, enables the creation of immersive

virtual and augmented reality experiences directly in the browser [10].

The expansion of PWAs and WebGL into new domains and industries is also an exciting prospect. From education and

training to healthcare and scientific research, the combination of these technologies can revolutionize the way interactive

and visually rich applications are developed and deployed.

VI. DISCUSSION AND ANALYSIS

The integration of Progressive Web Apps (PWAs) and WebGL has the potential to revolutionize front-end engineering

by enabling the development of immersive, high-performance, and engaging web applications. The synergy between

these technologies allows developers to create experiences that combine the best of both worlds: the app-like functionality

and offline capabilities of PWAs with the hardware-accelerated graphics and interactivity of WebGL.

The literature review conducted in this paper highlights the growing adoption and benefits of PWAs in terms of improved

performance, user engagement, and cross-platform compatibility [5, 6, 7]. PWAs have been shown to deliver fast load

times, smooth navigation, and offline functionality, enhancing the overall user experience [17, 18]. The ability to install

PWAs on the user's device and access them through home screen icons blurs the line between web and native apps [15,

16].

On the other hand, WebGL has emerged as a powerful technology for creating visually stunning and interactive graphics

in the browser [3, 8]. The hardware acceleration provided by WebGL enables the rendering of complex 3D scenes,

realistic simulations, and immersive visualizations [24, 25]. The wide range of WebGL frameworks and libraries, such

as Three.js and Babylon.js, have made it easier for developers to harness the power of WebGL without delving into low-

level graphics programming [26, 27].

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI: 10.17148/IJARCCE.2021.10830

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 200

ISSN (O) 2278-1021, ISSN (P) 2319-5940

The combination of PWAs and WebGL opens up new opportunities for creating innovative and engaging web

experiences. By leveraging the offline capabilities and performance optimizations of PWAs, developers can ensure that

WebGL applications remain accessible and performant even in challenging network conditions [11, 12]. The ability to

install PWAs and launch them instantly, coupled with the immersive graphics and interactivity provided by WebGL,

creates a compelling user experience that rivals native applications [19].

However, the integration of PWAs and WebGL also presents challenges that need to be addressed. Performance

optimization becomes crucial to ensure smooth rendering and responsive interactions, especially on resource-constrained

devices [28]. Developers must carefully balance the complexity of WebGL scenes with the limitations of the target

devices and optimize assets, textures, and shaders accordingly [29].

Furthermore, the development of PWA-WebGL applications requires a deep understanding of both technologies and their

respective best practices. Developers need to consider factors such as offline caching strategies, progressive enhancement,

and fallback mechanisms to ensure a seamless user experience across different browsers and devices [21, 30].

Despite these challenges, the future of PWAs and WebGL in front-end engineering looks promising. The continued

advancements in web technologies, such as WebAssembly and WebGPU, are expected to further enhance the

performance and capabilities of web applications [31, 32]. The growing adoption of PWAs across various industries,

from e-commerce to gaming, demonstrates their potential to transform the way users interact with web content [33].

VII. CONCLUSION

This paper has explored the significance of Progressive Web Apps (PWAs) and WebGL in modern front-end engineering.

PWAs have emerged as a game-changer in web development, offering app-like experiences, offline functionality, and

improved performance. They have the potential to bridge the gap between web and native apps, providing users with

seamless and engaging experiences across devices. On the other hand, WebGL has revolutionized the way graphics and

visualizations are rendered in the browser, enabling the creation of immersive and interactive experiences.

The combination of PWAs and WebGL presents exciting opportunities for front-end engineering, allowing developers

to create innovative solutions that push the boundaries of what is possible on the web. However, the integration of these

technologies also comes with challenges, such as performance optimization and cross-platform compatibility. As web

technologies continue to evolve, the future of PWAs and WebGL looks bright, with the emergence of new standards and

APIs further enhancing their capabilities. By leveraging the strengths of PWAs and WebGL, developers can create

immersive, high-performance, and engaging web experiences that rival native applications, shaping the future of front-

end development.

REFERENCES

[1] Ater, T. (2017). Building Progressive Web Apps. O'Reilly Media, Inc.

[2] Gaunt, M. (2018). Progressive Web Apps. Google Developers. https://developers.google.com/web/progressive-web-

apps

[3] Dirksen, J. (2013). Learning Three.js: The JavaScript 3D Library for WebGL. Packt Publishing Ltd.

[4] Anyuru, A. (2012). Professional WebGL Programming: Developing 3D Graphics for the Web. John Wiley & Sons.

[5] Biørn-Hansen, A., Majchrzak, T. A., & Grønli, T. M. (2017). Progressive web apps: The possible web-native

unifier for mobile development. In International Conference on Web Information Systems and Technologies (pp.

344-351). Springer, Cham.

[6] Malavolta, I., Procaccianti, G., Noorland, P., & Vukmirović, P. (2017). Assessing the impact of service workers on

the energy efficiency of progressive web apps. In Proceedings of the 4th International Conference on Mobile

Software Engineering and Systems (pp. 35-45).

[7] Majchrzak, T. A., Biørn-Hansen, A., & Grønli, T. M. (2018). Progressive web apps: the definite approach to cross-

platform development?. In Proceedings of the 51st Hawaii International Conference on System Sciences.

[8] Dirksen, J. (2013). Learning Three.js: The JavaScript 3D Library for WebGL. Packt Publishing Ltd.

[9] Mwalongo, F., Krone, M., Reina, G., & Ertl, T. (2016). State-of-the-art report in web-based visualization. Computer

Graphics Forum, 35(3), 553-575.

[10] Rego, A., White, M., & Leite, L. (2018). WebGL and web-based visualization. In Encyclopedia of Computer

Graphics and Games (pp. 1-6). Springer, Cham.

[11] Cibin, R., & Zanellato, G. (2019). WebGL-based Product Visualization in a Progressive Web App. In Proceedings

of the 24th International Conference on 3D Web Technology (pp. 1-4).

https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 8, August 2021

DOI: 10.17148/IJARCCE.2021.10830

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 201

ISSN (O) 2278-1021, ISSN (P) 2319-5940

[12] Mochocki, J., & Lahiri, S. (2020). Optimizing WebGL Performance in Progressive Web Apps. In Proceedings of

the 9th International Conference on Mobile Computing and Sustainable Informatics (pp. 1-6).

[13] MDN Web Docs. (n.d.). Web App Manifests. https://developer.mozilla.org/en-US/docs/Web/Manifest

[14] van Eck, D. (2018). The State of Progressive Web Apps. A List Apart. https://alistapart.com/article/the-state-of-

progressive-web-apps/

[15] Osmani, A. (2017). The App Shell Model. Google Developers.

https://developers.google.com/web/fundamentals/architecture/app-shell

[16] LePage, P. (2019). Installable Web Apps. Google Developers.

https://developers.google.com/web/fundamentals/app-install-banners/

[17] Archibald, J. (2016). Instant Loading Web Apps with an Application Shell Architecture. Google Developers.

https://developers.google.com/web/updates/2015/11/app-shell

[18] Osmani, A., & Gaunt, M. (2017). Offline Storage for Progressive Web Apps. Google Developers.

https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/offline-for-pwa

[19] Firt, S. (2020). Progressive Web Apps. Manning Publications.

[20] Tal, A., & Cibin, R. (2020). Building Progressive Web Apps. Manning Publications.

[21] Keith, J., & Andrew, R. (2017). Going Offline. A Book Apart.

[22] Hume, A. (2017). Progressive enhancement. A List Apart. https://alistapart.com/article/progressive-enhancement/

[23] Google Developers. (n.d.). Workbox. https://developers.google.com/web/tools/workbox

[24] Cantor, D., & Jones, B. (2012). WebGL Beginner's Guide. Packt Publishing Ltd.

[25] Parisi, T. (2012). WebGL: Up and Running. O'Reilly Media, Inc.

[26] Three.js. (n.d.). Three.js - JavaScript 3D Library. https://threejs.org/

[27] Babylon.js. (n.d.). Babylon.js: Powerful, Beautiful, Simple, Open - Web-Based 3D At Its Best.

https://www.babylonjs.com/

[28] Jankowski, J., & Ressler, S. (2013). A Survey of Web-Based 3D Graphics Rendering and Visualization: 2013

Update. ACM Computing Surveys (CSUR), 46(2), 1-37.

[29] Lavoué, G., Chevalier, F., & Dupont, F. (2013). Streaming compressed 3D data on the web using JavaScript and

WebGL. In Proceedings of the 18th International Conference on 3D Web Technology (pp. 19-27).

[30] Frost, B., & Keith, J. (2015). Resilient Web Design. https://resilientwebdesign.com/

[31] Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., ... & Bastien, J. (2017). Bringing the

web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming

Language Design and Implementation (pp. 185-200).

[32] Trevett, N. (2019). WebGPU. In ACM SIGGRAPH 2019 Talks (pp. 1-2).

[33] Heitkötter, H., Hanschke, S., & Majchrzak, T. A. (2013). Evaluating cross-platform development approaches for

mobile applications. In International Conference on Web Information Systems and Technologies (pp. 120-138).

Springer, Berlin, Heidelberg.

[34] https://www.softkraft.co/web-application-architecture

https://ijarcce.com/
https://developers.google.com/web/tools/workbox

