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Abstract: Chronic Kidney Disease (CKD) is a major noncommunicable disease (NCD) that affects a significant fraction 

of the millions of people annually who are negatively impacted by NCDs worldwide. This paper presents an artificial 

intelligence (AI) model trained on publicly available chronic kidney disease data that could be incorporated into a chronic 

kidney disease diagnosis module within a modular and comprehensive artificial intelligence-driven healthcare system. 
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I. INTRODUCTION 

 

The World Health Organization (WHO) reports that kidney diseases comprise one of the top ten causes of mortality 

globally [1] and are among the major noncommunicable diseases that lead to millions of deaths annually around the 

world [2]. Those adversely affected include people residing in low- and middle-income countries (LMICs) who are 

among the most vulnerable populations with inadequate healthcare facilities and abysmally low doctor to patient ratios 

exacerbated by the emigration of qualified medical practitioners to developed countries in search of greener pastures. 

 

In order to help proffer solutions to these issues, Ekpar [3] created a comprehensive artificial intelligence (AI)-powered 

healthcare system that is scalable and that significantly improves the productivity and performance of medical doctors 

wielding the tool by dramatically reducing the time and effort required to diagnose, predict and manage a wide variety 

of health conditions including, but not limited to, heart disease and diabetes. The system also ameliorates medical 

professional burn-out and associated staff attrition and shortages.  

 

Researchers have utilized algorithms and systems amenable to implementation on computers including artificial 

intelligence and deep learning in the diagnosis of a wide range of health conditions [4] – [22]. These systems are 

characterized by diverse strengths and weaknesses. 

 

Studies have been carried out involving a wide variety of approaches to the computer-aided diagnosis of diseases 

including the use of AI and related algorithms and systems with a variety of merits and demerits  

 

This paper harnesses publicly available chronic kidney disease data to build and AI model that could be incorporated into 

the comprehensive artificial intelligence-driven healthcare system [3] for utilization in the Kidney Disease Module. 

 

II.  MATERIALS AND METHODS 

 

Participant Recruitment 

Participants willingly engaged in the studies that contributed to the creation of the advanced AI-driven healthcare system. 

Each participant provided informed consent before participating in the research. 

 

Ethical Approval 

Ethical clearance for the studies was granted by the Health Research Ethics Committee at the Institute of Biomedical 

Research, University of Uyo. The research adhered to all applicable ethical and regulatory standards, and publicly 

available data were used in accordance with the licensing terms set by their creators. 
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Methodology 

To improve publicly accessible healthcare datasets, local experimental and data collection efforts are integrated, 

enhancing the training of AI models for actionable predictions from new data. Public datasets are sourced from 

organizations such as the Centers for Disease Control, University of California Irvine Machine Learning Repository, 

American Epilepsy Society, and Kaggle. 

 

Including local data enhances model robustness, reduces bias, and supports inclusivity and global applicability. This 

project uniquely combines diagnostic measurements, which may involve electrocardiographic results, with EEG data 

from both traditional and novel three-dimensional multilayer EEG systems. 

 

For the local data collection efforts, ethical approval has been secured from the relevant research ethics committees in 

the area where the studies are conducted. Furthermore, the project has obtained the cooperation of licensed medical 

doctors who have direct patient access and are providing anonymized clinical data for AI model validation. 

 

The developed AI models may be integrated into a comprehensive healthcare system to offer clinical decision support to 

medical professionals and to generate brain-computer interfaces (BCIs). These systems will use actionable insights and 

predictions from new clinical data to assist in the early detection, diagnosis, treatment, prediction, and prevention of 

various conditions such as diabetes, cardiovascular diseases, stroke, autism, and epilepsy. 

 

The project emphasizes open science, reproducibility, and collaboration. Therefore, the generated data will be made 

publicly available on platforms like GitHub. 

 

System Design and Implementation 

The healthcare system described here is designed with a modular architecture, where each module addresses a specific 

condition (for example, heart disease, diabetes mellitus, stroke, epilepsy, autism). This design allows for the future 

addition of modules for new conditions and easy updates to existing modules with new data. BCIs, including those based 

on the motor imagery paradigm, will use EEG data to generate actionable commands and responses. 

 

The system includes instructions for adapting traditional EEG systems to new three-dimensional multilayer EEG systems, 

as developed by Ekpar [23], [24]. These novel systems leverage approximations of carefully chosen features of bio-signal 

sources to characterize or manipulate the biological system. 

 

For each condition-specific module, robust AI models are developed and trained on well-formatted data. These models 

may incorporate genetic, environmental, lifestyle, and other relevant factors to accurately represent the participants' 

circumstances. 

 

In Figure 1, the system is depicted with representations of the health conditions (for example, chronic kidney disease, 

diabetes mellitus, stroke, epilepsy) captured in the modules hosting the trained AI models and high-level representations 

of their functional relationships. 
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Fig. 1: System Schematic Design Diagram for the Comprehensive AI-Driven Healthcare System and Brain Computer 

Interface System. The New Conditions component is a placeholder for additional health conditions that can be 

incorporated into the system by leveraging new modules. 

 

Synthesis of AI Models 

The AI models are developed using four (4) distinct methods: 

 

1. Direct Application of Large Language Models (LLMs): Leveraging large language models (LLMs) like 

GPT-4 as inference engines with data formatted into multidimensional input vectors. This approach may include fine-

tuning the LLM to improve its performance. 

 

2. Prompt Engineering with LLMs: Using prompt engineering techniques with LLMs such as Bard and GPT-4 

(and their future iterations) to outline the steps for developing the AI system. These steps are then executed using the 

creator’s expertise in AI, neural networks, deep learning, Python programming, TensorFlow, Keras, and other machine 

learning and visualization tools like Scikit-learn and Matplotlib. 

 

3. Automated AI Model Generation: Utilizing the capabilities of LLMs like Bard and GPT-4 (and their future 

versions) through an automated pipeline to generate specific AI models. 

 

4. Manual AI Architecture Design: Creating an appropriate AI architecture based on the creator’s extensive 

knowledge and experience with AI, neural networks, deep learning, Python, TensorFlow, Keras, and other machine 

learning and visualization tools. 

 

All processes and tools used in the development of the solution are thoroughly documented to ensure easy transfer and 

reuse of the system. 

 

The performance of the generated AI models is evaluated and compared based on metrics such as specificity and 

sensitivity, as well as their suitability for addressing the identified challenges. 
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III. CHRONIC KIDNEY DISEASE MODULE 

 

The implementation of the Chronic Kidney Disease Diagnosis sub-system, relying on the generation of an appropriate 

AI architecture based on the creator’s expertise, is expounded in this section. Sequel to development, testing and 

validation, the sub-system could be integrated into the comprehensive AI-driven healthcare system under consideration. 

 

A wide variety of input variables were solicited from each participant. These variables include patient information such 

as demographic particulars and lifestyle factors (age, gender or sex, ethnicity, education level, socioeconomic status, 

body mass index, physical activity, smoking, alcohol consumption, diet quality, sleep quality), medical history (family 

history of kidney disease, family history of hypertension, family history of diabetes, previous acute kidney injury, urinary 

tract infections), diagnostic measurements (systolic blood pressure, diastolic blood pressure, fasting blood sugar level, 

hemoglobin A1c level, serum creatinine level, blood urea nitrogen level, glomerular filtration rate, protein levels in urine, 

albumin-to-creatinine ratio, serum sodium level, serum potassium level, serum calcium level, serum phosphorus level, 

hemoglobin level, total cholesterol level, low-density lipoprotein cholesterol level, high-density lipoprotein cholesterol 

level, triglycerides level), medications (use of ACE inhibitors, use of diuretics, frequency of NSAIDs use, use of statins, 

use of antidiabetic medications), symptoms and quality of life (presence of edema, fatigue level, frequency of nausea 

and vomiting, frequency of muscle cramps, itching severity, quality of life score), environmental and occupational 

exposures (exposure to heavy metals, occupational exposure to harmful chemicals, quality of water), and health 

behaviors (frequency of medical check-ups per year, medication adherence score, health literacy score). 

 

The artificial neural network (ANN) that underpins the AI model for the sub-system was constructed by utilizing the 

Python programming language and leveraging the TensorFlow framework and the Keras application programming 

interface (API) package [25] – [26]. After extensive experimentation, two (2) hidden layers with 64 units each were 

incorporated into the ANN which further comprised an input layer with 51 units (each unit representing one of the 51 

clinical measurements embedded in the data and outlined in the foregoing) and an output layer with a single unit standing 

in for the diagnostic outcome. Sigmoid activation units were used in the output layer while rectified linear units were 

used in the rest of the ANN. The ANN featured dense sequential layers and connections. 

 

Figure 2 shows the pictorial representation of the ANN where CM1, CM2, ..., CMN depict the clinical measurements (a 

total of N=51 as listed earlier) and CD depicts the clinical diagnosis or output of the artificial neural network. 

 

 
 

Fig. 2: Schematic Graphical Representation of Artificial Neural Network (ANN) Architecture. CM1, CM2, ..., CMN 

represent the inputs while CD represents the output indicating the suggested clinical diagnosis. 

 

 

The Kaggle dataset repository is the source of the chronic kidney disease dataset under consideration. The dataset 

comprised 1659 rows and 52 columns of usable data. Each row represents a participant or patient. The first usable 51 

columns represent the clinical measurements outlined earlier while the last usable column represent the diagnosis 

indicating the presence (value of 1) or absence (value of 0) of chronic kidney disease. 
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Data Availability 

 

The chronic kidney disease dataset under consideration is available from the Kaggle dataset repository at 

https://www.kaggle.com/datasets/rabieelkharoua/chronic-kidney-disease-dataset-analysis. 

 

IV. RESULTS 

 

In order to train, test and validate the synthesized ANN, the chronic kidney disease dataset was split into a training dataset 

with 60% of the data and a testing and validation dataset with 40% of the data. Preprocessing involved shuffling the data 

at random to ameliorate bias. The Adam Optimizer [27] – [28] was employed for optimization. Training was carried out 

over 500. Binary cross-entropy loss function was harnessed in the ANN. The learning rate and batch size utilized were 

the default values of 0.001 and 32, respectively. 

 

The performance of the trained AI model on the validation dataset was characterized by a precision in the range of 92% 

to 98%, a sensitivity in the range of 92% to 98% and a specificity in the range of 38% to 56%. Measured sensitivity and 

precision metrics were impressively high but the measured specificity was not as high, possibly owing to the 

preponderance of positive diagnostic results and paucity of negative diagnostic outcomes in the dataset under 

consideration. 

 

Figure 3 illustrates a subset of clinical measurements featuring the diagnostic measurements, age and sex of a selected 

patient and the corresponding inference indicating the clinical decision suggested by the trained AI. The outcome is 

positive (presence of chronic kidney disease) for this patient. 

 

 
 

Fig. 3: Positive Chronic Kidney Diagnosis Output of Trained AI Model and Underlying Clinical Measurements. 
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Computation of the performance metrics of sensitivity, precision and specificity for the trained AI model was carried out 

in accordance with the equations below. 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏          =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

       

 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚       =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

 

 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚       =  
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

 

 

In the equations specified, TN represents true positives, FP represents false positives, FN represents false negatives, and 

TN refers to true negatives. Negative here indicates the normal or chronic kidney disease-free condition while positive 

refers to the presence of chronic kidney disease. 

 

Implementing the comprehensive AI system described here will provide actionable insights for clinical decision support, 

potentially saving lives and enhancing quality of life. It will reduce the economic, social, psychological, and physical 

burdens associated with predicted conditions, leading to more efficient prevention, early detection, diagnosis, treatment, 

and management. 

 

Electronic Health Records (EHR), including clinical diagnostic measurements and EEG data, will be created by 

participating medical doctors and their affiliated colleagues. EEG data may also be collected through experiments 

involving brain-computer interfaces (BCIs). These datasets will be gathered in line with ethical approvals and will be 

anonymized before being published in publicly accessible repositories, along with related scholarly research articles. 

 

V. CONCLUSION 

 

This study introduced an AI-based model for chronic kidney disease diagnosis. This model could be part of a broader AI 

healthcare system that assists doctors in making clinical decisions. The system is flexible enough to leverage various data 

points like lifestyle, genetics, and environment to provide more accurate predictions and diagnoses. By permitting the 

integration of local data, the system aims to be more effective globally and to reduce bias. The system is designed to be 

flexible and can be expanded to diagnose other diseases or improve existing features based on fresh data and insights. 
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