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Abstract: The prediction of crop yields internationally is a crucial objective in agricultural research. Thus, this study 

implements 6 regression models (Linear, Tree, Gradient Descent, Gradient Boosting, K Nearest Neighbors, and Random 

Forest) to predict crop yields in 37 developing countries over 27 years. Given 4 key training parameters, insecticides 

(tonnes), rainfall (mm), temperature (Celsius), and yield (hg/ha), it was found that our Random Forest Regression model 

achieved a determination coefficient (r2) of 0.94, with a margin of error (ME) of .03. The models were trained and tested 

using the Food and Agricultural Organization of the United Nations’ data, along with the World Bank Climate Change 

Data Catalog. Furthermore, each parameter was analyzed to understand how varying factors could impact overall yield. 

We used unconventional models, contrary to generally used Deep Learning (DL) and Machine Learning (ML) models, 

combined with recently collected data to implement a unique approach in our research. Existing scholarship would benefit 

from understanding the most optimal model for agricultural research, specifically using the United Nations’ data.  
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I. INTRODUCTION 

 

Over the past few decades, climate change has seen rapid growth. Corroborating differences in the ozone (03) and Carbon 

Dioxide (CO2) raise concern regarding the future of our planet (Valone 2021). Massive, unprecedented events control 

the frontlines of crop changes, including extreme drought and heavy flooding (Markolf et. al 2018). In an attempt to 

reduce the impacts of climate change, the agricultural sector has seen massive changes in response to minimize the effects 

on crops (Alexandrov et. al 2002). Unfortunately, natural changes such as species adaptation is unlikely to occur over a 

short period of time (Lin 2011). 
 

Agriculture has significantly changed in response to both the climate and population (Fischer et. al 2020). While organic 
agriculture (a primary, environmentally friendly method of farming) was once common, conventional agriculture (a 
synthetic farming methodology) has slowly become more optimal in the status quo (Gomiero 2011). The use of 
conventional agriculture has only compounded the impacts of climate change, specifically in three ways: through runoff, 
carbon sequestration, and pesticidal use. 

 
To adequately transport water to large populations, runoff from mountainous regions has historically been obtained with 
watersheds (Viviroli et. al 2003). Fertilizers and pesticides/insecticides are primarily used over any other method of 
farming due to the high volume of crops efficiently produced at optimized prices (Finney 2021). Those same pesticides 
leak into the soil of their agricultural fields, eventually contaminating water bodies through runoff. Organic agriculture 
completely eliminates the use of any pesticides or unnatural methods of growing crops (Gomiero 2011). Furthermore, 
carbon sequestration is crucial to mitigating climate change due to the scalability (Lal 2004). Organic systems are 
generally more resilient due to their necessity to stay reliant through harsh weather and conditions (Milestad 2002).  This 
enables the carbon sequestered by organic systems to be much greater than conventional agriculture. Finally, crops in 
conventional agriculture have been exposed to such high volumes of insecticides, where many have developed antibiotic 
resistance (Gomiero 2011). By removing the possibility of placing unnatural substances in agriculture to begin with, 
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pesticidal use dissolves (Gomiero 2011). Being of foreign origin, these plants slowly develop immunity against 
chemicals, resulting in more pesticides being placed into these fields. Furthermore, genetic mutations of these plants can 
spread at alarming rates (Vila Aiub 2019). The only method farmers have of maintaining this is through higher amounts 
of antibiotics, only pushing the inevitable impact in the long run.  
 
However, with farming areas becoming more limited and demand becoming more prevalent, the status quo faces 
difficulty in optimizing crop production. Generally, three factors control the change of agriculture: temperature, 
precipitation, and insecticides. Due to a thinning ozone (O3), temperature levels across the planet have been rising 
dramatically (Zeng et. al 2008). These changes in climate have also led to erratic precipitation, where tropical areas 
receive heavy flooding, while deserts only worsen (Le Houérou 2002). Thankfully, the emergence of algorithmic 
adaptability provides a solution. 
 
Machine Learning (ML) models have been implemented in a variety of fields. Crucially, Machine Learning has recently 
begun to play an important role in agriculture as well (Shaikh et. al 2022). Generally being used for its predictive abilities, 
both ML and Deep Learning (DL) methods require heavy precision due to the high amount of layers and processing each 
data point is put through (Sarker et. al 2021). Given the problem this paper attempts to solve, crop yields have many 
changing parameters, and there must be a high amount of data to combat the variability. It’s very important to find the 
right algorithm that accommodates the high volume of data. 
 
Previous research in this field follows three key ideas this paper attempts to build upon: algorithmic decision, geolocation, 
and parameters chosen.  
 
Khaki and Wang introduce a deep neural network (DNN) approach, demonstrating its superiority over traditional models 
such as Lasso, shallow neural networks (SNN), and regression tree (Khaki & Wang 2019). They use this to create two 
unique networks that predict the yield and the other that checks the yield to optimize their hyperparameters (Khaki & 
Wang 2019).  
 
In a similar context, Maimaitijiang et. al explores the potential of UAV-based multimodal data fusion in conjunction with 
Deep Neural Network (DNN) frameworks for soybean (Glycine max) grain yield estimation (Maimaitijiang et. al 2019). 
The use of RGB, multispectral, and thermal sensors in combination with a low-cost multi-sensory UAV allows for 
simultaneous data collection. It evaluates various regression models, including Partial Least Squares Regression (PLSR), 
Random Forest Regression (RFR), Support Vector Regression (SVR), and two DNN-based models with different levels 
of feature fusion ((Maimaitijiang et. al 2019). The study reveals that DNN-based models exhibit less susceptibility to 
saturation effects and display adaptive performance across different soybean genotypes (Maimaitijiang et. al 2019).  
 
Furthermore, Nevavuori, Narra, and Lipping develop a model for crop yield prediction using NDVI and RGB data 
obtained from UAVs (Nevavuori et. al 2019). Unlike traditional machine learning methods, CNNs operate directly on 
image data, allowing for a more nuanced analysis of spatial and spectral features crucial for accurate yield predictions 
(Nevavuori et. al 2019). The study systematically evaluates various aspects of the CNN architecture, including the 
selection of the training algorithm, network depth, regularization strategy, and hyperparameter tuning, to optimize 
prediction efficiency (Nevavuori et. al 2019). The findings highlight the significance of these architectural considerations 
in achieving accurate yield predictions (Nevavuori et. al 2019). The use of the Adadelta training algorithm, regularization 
with early stopping, and a CNN with six convolutional layers proved effective (Nevavuori et. al 2019). 
 
Following a different line of research, Bargoti and Underwood take a unique approach to using monocular vision systems 
on crops (Bargoti & Underwood 2017). The paper utilizes a general-purpose image segmentation approach, incorporating 
two feature learning algorithms: multiscale multilayered perceptrons (MLP) and convolutional neural networks (CNN) 
(Bargoti & Underwood 2017). A notable feature of the framework involves the integration of contextual information, 
represented by metadata, capturing nuances in image data capture conditions (Bargoti & Underwood 2017). This 
consideration is crucial for addressing appearance variations and class distributions within the orchard data. In terms of 
fruit segmentation performance, the paper benchmarks the MLP network and extends the study to incorporate CNNs, 
aligning the approach with state-of-the-art computer vision techniques (Bargoti & Underwood 2017). Interestingly, the 
inclusion of metadata significantly improves the fruit segmentation performance of the MLP network. 
 
Crucially, Gandhi and Armstrong discuss the prediction of rice crop yield in the Kharif season within the Humid 
Subtropical climatic zone of India (Gandhi & Armstrong 2016). The choice of this specific geographical location 
acknowledges the critical role that local climate conditions play in shaping agricultural outcomes. By honing in on the 
unique challenges and nuances of the Humid Subtropical zone, the research recognizes the importance of tailoring 
predictive models to the specific environmental conditions that influence crop productivity (Gandhi & Armstrong 2016). 
This localized approach has implications for farmers, industry stakeholders, and government bodies operating within this 
climatic zone, offering insights that are directly applicable to their region. Moreover, the utilization of free and open-
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source data mining software WEKA for performance evaluation underscores the accessibility and replicability of the 
study's methodologies, potentially encouraging further localized research initiatives in other agricultural regions around 
the world (Gandhi & Armstrong 2016).  
 
Although there do exist a multitude of models to predict crop yields, most models miss out on two key factors that this 
paper covers. First, there is minimal research in using regression models to analyze crop yields. While neural networks 
are generally preferred due to their ability to analyze nonlinear relationships, the parameters used in this research all 
follow a linear relationship. Thus, using simpler models in higher quantities could be more ideal for the issue. Second, 
current research proposes no hyperspecificity towards a specific geolocation. Having taken a dataset involving multiple 
countries, our research can and will be furthered by combining neighboring countries into a smaller model for higher 
accuracy. To accomplish this, our paper implements linear regression, gradient descent regression, gradient boosting 
regression, K-Nearest Neighbors regression, and random forest regression models to synthesize four listed parameters in 
analyzing crop yields. Using six regression models is important as existing scholarship would benefit from understanding 
the most optimal model for agricultural research, specifically using the United Nations data. Additionally, while localized 
studies offer valuable insights tailored to specific environmental conditions, they fail to address the global nature of 
agriculture. Our research strategically bridges this gap by predicting crop yields internationally, encompassing 196 
countries. This expansive approach allows for a more comprehensive understanding of the variability in crop production 
influenced by diverse climates and agronomic practices worldwide. Crucially, there is a gap in the literature concerning 
a holistic exploration of crucial parameters that influence crop yield, as seen in our study's incorporation of insecticides, 
rainfall, temperature, and yield as key training parameters. By addressing this gap, our research contributes to the 
scholarly discourse by comprehensively examining the impact of these parameters on crop productivity, offering a more 
nuanced understanding for future agricultural research. 
 
The remainder of this paper is organized as follows: Section II describes the methodology, Section III highlights the 
results, Section IV discusses the implications, and Section V concludes this paper.  

 

II. METHODOLOGY 

 

II.I Data Collection 

Before developing the regression models, data must be preprocessed. Using data provided by the Climate Change 
Knowledge Portal & FAOSTAT, we cited four key datasets from 1960 to 2021. Our limiting variable was the insecticide 
count, having only been tracked for 26 years.  

Data provided by the United Nations is not aggregated into 4 parameters. Table 1 describes all parameters provided by 
the UN, and a description for each. This paper uses the following codes: cdd65, hdd65, popcount, pr. The insecticide and 
yield data was provided by FAOSTAT, which was preprocessed by organizing the data to follow the same setup as the 
other three parameters. 

Leveraging the Pandas library in Python, our methodology extends beyond conventional cleanup and structuring. The 
initial step involves employing Pandas to perform exploratory data analysis (EDA) on each parameter individually. 
Furthermore, to mitigate multicollinearity concerns, a variance inflation factor (VIF) analysis is conducted using Pandas, 
allowing for the identification and exclusion of highly correlated variables. 

This process of data management can be divided into two steps that each of the four parameters must follow. First, the 
parameters must be cleaned up by removing any unnecessary sub parameters. Following this, parameters must be merged 
and analyzed for any trends found in the data. Figure 1 shows a culmination of all the cleaned data regarding precipitation, 
temperature, yield, and insecticides. To track the progress of these parameters, four main sub parameters were used- year, 
country, country codes (ISO3), and quantity. However, the yield and insecticides parameters included one subparameter 
not shared with precipitation and temperature, being an item (qualified by yield type or pesticidal method). Preprocessed 
data can be found and split as follows: 
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Figure 1: Preprocessed rainfall, temperature, yield, and insecticidal data. 

 

II.II Data Exploration  
 

After sorting the data, each parameter can be merged and analyzed to make basic understandings which contribute to the 

methodology. Rainfall was tracked from 1901 to 2016. As seen in Figure 2, the mean precipitation (mm) was tracked 

with a general mean of 1250 mm internationally, and around a +- 100 mm difference. As years further, there are increasing 

amounts of erratic changes in rainfall annually, albeit minimal changes overall.   
 

 

Figure 2: Mean rainfall (mm), 1901 to 2016, internationally 
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Figure 3 depicts the mean temperature (celcius) tracked from 1901 to 2016. These findings are consistent with global 

temperature increase. This linear increase is important to understand as such large changes over the century could be a 

large contributor to yield prediction and changes. Both these parameters limit the time period of the models to 2016. 

 

 
Figure 3: Mean temperature (celcius), 1901 to 2016, internationally 

 

Figure 4 qualifies the quantity of each crop being tracked, led by maize and potatoes. Different crops thrive in unique 

environments. One main distinction includes temperate versus tropical environments, where wheat and barley grow in 

one, while cassava grows in the other. 

 
Figure 4: Freq., harvested value of crops (hg/ha), 1961 to 2019, internationally 

 

Figure 5 highlights the pesticidal usage over 1990 to 2018. This relatively linear increase over 28 years, along with 

temperature, are two crucial variables that likely take a big effect in predicting the overall yield. Insecticides can have a 

variety of impacts on the crop, including developing mutations and superbugs following high volumes of chemicals on 

the plant.  

 
Figure 5: Mean insecticidal value (tonnes), 1990 to 2018, internationally 

 

A culmination of all data is crucial to identifying any relationships between variables. Heatmaps, a 2-dimensional 

representation of statistical similarity between different variables, are the perfect solution for this. Thus, Figure 6 shows 

a heatmap of the four parameters used in this research. As seen below, there is a high correlation with variables involving 

temperature and pesticides. This is likely so due to such a high variability both these variables have over time, making 

their impact on the overall project statistically significant more so than any other parameter.  
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Figure 6: heatmap with the mask and aspect ratio depicting year, yield, rain, temp, and pesticide use. 

 

II.III Model Selection 

 

To adequately predict crop yields, we have considered six methods of machine learning.  

 

a. Linear Regression: 

The sklearn implementation, LinearRegression, optimizes the model through an ordinary least squares regression. This 

model assumes a linear relationship between the independent variables (temperature, rain, and pesticides) and the 

dependent variable (crop yield). The coefficients quantify their impact on the yield. Additionally, the intercept term 

represents the predicted yield when all predictors are zero. However, the linear regression model assumes a constant 

effect of predictors on yield. This may oversimplify the complex interplay of factors affecting crop production (Hwarng 

2007). 

 

b. Decision Tree Regression: 

Decision trees, implemented through DecisionTreeRegressor, offer a somewhat non-linear approach to modeling crop 

yields. Decision trees can capture intricate relationships between temperature, rain, pesticides, and yield. Each node 

represents a decision based on a specific feature; the branches correspond to possible outcomes. The tree structure allows 

for identification of critical thresholds in variables influencing crop production. However, decision trees are susceptible 

to overfitting (Christianiti et. al 2019). Thus, they can capture noise in the training data. Parameter tuning, such as 

adjusting tree depth and minimum samples per leaf, is essential to strike a balance between model complexity and 

predictive accuracy (Mantovani et. al 2015). 

 

c. Stochastic Gradient Descent Regression: 

Stochastic Gradient Descent (SGD) Regression, as implemented in SGDRegressor, is a powerful optimization algorithm 

for prediction. In the agricultural domain, SGD is crucial: efficiently handling large datasets and adapting to changing 

conditions. The model iteratively updates parameters to minimize the mean squared error (MSE). The learning rate and 

regularization terms control the convergence behavior and prevent overfitting. SGD offers a flexible and scalable 

approach. This is particularly suitable for online learning scenarios where the model can continuously adapt to evolving 

environmental conditions. 

 

d. Gradient Boosting Regression: 

Gradient Boosting Regression, using GradientBoostingRegressor, is crucial in capturing complex relationships in crop 

yield prediction. This technique combines multiple weak learners (usually decision trees) to form a robust predictive 

model. Each tree corrects the errors of its predecessor (Tai et. al 1979). This leads to a highly accurate and generalized 

model. In agriculture, gradient boosting can identify intricate patterns in temperature, rain, and insecticidal data, 

improving predictive performance. Hyperparameters such as learning rate and tree depth impact the model's ability to 

balance between fitting the training data (Koutsoukas 2017). 

 

e. K-Nearest Neighbors Regression: 

K-Nearest Neighbors (KNN) Regression, implemented with KNeighborsRegressor, provides a flexible, non-parametric 
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approach to crop yield prediction. In this model, a data point's predicted yield is influenced by the average yield of its “k-

nearest neighbors” in the feature space. In agriculture, KNN can capture localized effects of temperature, rain, and 

pesticides on crop production. However, the choice of the number of neighbors (k) is important. A lower k may lead to 

increased sensitivity to noise, while a higher k may over smooth the predictions. KNN's adaptability makes it extremely 

valuable (Zhang et. al 2017). 

 

f. Random Forest Regression: 

Random Forest Regression, utilizing RandomForestRegressor, extends decision trees' capabilities by constructing an 

ensemble of trees. In the context of predicting crop yields, a random forest can capture complex interactions between 

temperature, rain, and insecticides. Each tree in the forest operates independently, providing diverse perspectives on the 

data. This ensemble approach mitigates overfitting, enhances predictive accuracy, and offers insights into feature 

importance. Hyperparameters, such as the number of trees and maximum depth, influence the trade-off between model 

complexity and generalization. Random forests are robust and well-suited for handling noisy agricultural datasets with 

multiple interacting variables (Singh 2016). 

 

III. RESULTS & IMPLICATIONS 

 

III.I Analyzing Results 

To solve the presented gap in literature, results from the selected models have been extracted and synthesized. Below, in 

Figure 7, each of 6 models are plotted by the model's predicted value and the actual value. Each regression is accompanies 

with the coefficient of determination (r^2), mean absolute error (MAE),  mean squared error (MSE), root-mean squared 

error (RMSE), the maximum (MAX), and the mean absolute percentage error (MAPE). 

Figure 7: LinReg, Tree, SGD, GD, KNN, and Forest Regressor models plotted 

 

Linear Regression: 

Linear regression demonstrates a reasonable performance in predicting crop yields, as indicated by an R-squared value 

of 0.71. This suggests that approximately 71% of the variance in crop yields can be explained by the linear relationship 

with temperature, rain, and pesticide usage. The Mean Absolute Error (MAE) of 39882 indicates an average absolute 

deviation of approximately 39882 units between predicted and actual yields. However, the Root Mean Squared Error 

(RMSE) of 57509 suggests that the model might be sensitive to outliers. The maximum error of 410667 and a MAPE of 

106.1% highlight potential challenges, especially in accurately predicting extreme yield values. Interpretation of 

coefficients in the linear regression model is crucial. A positive coefficient for temperature, for instance, implies that an 
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increase in temperature is associated with an increase in yield. Feature importance analysis helps identify the most 

influential parameters for predicting crop yields within the linear regression framework (Klompenburg 2020). 

 

Decision Tree Regression: 

Decision tree regression exhibits an impressive R-squared value of 0.93, indicating a high explanatory power in capturing 

the relationship between environmental variables and crop yields. The low MAE of 13144 and RMSE of 28560 suggest 

accurate predictions, with the model performing well even on extreme values, as evidenced by the low maximum error 

of 529707. The MAPE of 20.02% indicates the model's ability to make predictions within a reasonable percentage of the 

actual yield. Decision trees inherently capture non-linear relationships, making them well-suited for the intricate 

dynamics of crop production. However, the interpretability of decision trees is both a strength and a weakness. While it 

provides transparency into decision-making processes, understanding complex interactions within the tree structure might 

be challenging. Feature importance analysis helps identify key environmental factors influencing crop yields 

(Klompenburg 2020). 

 

Stochastic Gradient Descent Regression: 

Stochastic Gradient Descent Regression achieves an R-squared value of 0.71, aligning with the performance of linear 

regression. The MAE of 39663 and RMSE of 57554 are comparable, suggesting that the stochastic optimization approach 

contributes to a similar predictive performance. The maximum error of 413451 and MAPE of 104.7% highlight potential 

challenges in accurately predicting extreme yield values, similar to linear regression. SGD's strength lies in its ability to 

handle large datasets and adapt to changing conditions, making it suitable for dynamic agricultural environments. 

Interpretation of coefficients in SGD provides insights into the direction and magnitude of the impact of each variable on 

crop yields, facilitating an understanding of the model's predictive mechanisms (Klompenburg 2020). 

 

Gradient Boosting Regression: 

Gradient Boosting Regression demonstrates a robust R-squared value of 0.76, surpassing both linear regression and 

stochastic gradient descent. The lower MAE of 34732 and RMSE of 52054 suggest improved accuracy compared to the 

linear models. The model effectively reduces the maximum error to 472664 and MAPE to 87.57%, indicating enhanced 

performance on extreme values. Gradient boosting excels in capturing complex relationships, making it particularly well-

suited for the multifaceted interactions influencing crop yields. Feature importance analysis in gradient boosting identifies 

the most influential parameters, allowing for a nuanced understanding of environmental factors affecting crop production 

(Klompenburg 2020). 

 

K-Nearest Neighbors Regression: 

K-Nearest Neighbors Regression achieves an impressive R-squared value of 0.93, indicating a high degree of explanatory 

power. The low MAE of 13278 and RMSE of 27757 suggest accurate predictions, even on extreme values, as evidenced 

by the low maximum error of 269324. The MAPE of 23.79% indicates the model's ability to make predictions within a 

reasonable percentage of the actual yield. KNN, by design, captures localized effects, making it suitable for spatial 

dependencies in agriculture. However, the model's sensitivity to the choice of neighbors (k) and potential computational 

requirements should be considered. Feature importance analysis in KNN is less straightforward compared to other 

models, as it relies on the collective influence of neighboring data points (Klompenburg 2020). 

 

Random Forest Regression: 

Random Forest Regression outperforms all other models with an impressive R-squared value of 0.95, indicating superior 

explanatory power. The low MAE of 11958 and RMSE of 24094 suggest accurate and robust predictions. The maximum 

error is minimized to 223888, and the MAPE of 19.41% further highlights the model's ability to make predictions within 

a reasonable percentage of the actual yield. Random forests combine decision trees to mitigate overfitting, providing a 

balance between complexity and generalization. Feature importance analysis in random forests identifies key variables, 

offering insights into the relative influence of environmental factors on crop yields. The ensemble nature of random 

forests enhances predictive performance and provides a comprehensive understanding of complex interactions in 

agricultural datasets (Klompenburg 2020). 

 

III.II Selection of Optimal Algorithms 

 

The assessment of six algorithms focused on determining the most accurate one through simultaneous evaluations of 

estimation and precision. Accuracy measures were derived from multiple tenfold cross-validation assessments for each 

algorithm, utilizing two key statistics: accuracy and the kappa statistic. 

 

Precision in accuracy refers to the proximity of values within a set, while accuracy itself is defined by the closeness of 
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the average to the true value of the measured quantity [34]. In the conventional definition, these concepts are distinct, 

allowing a dataset to be characterized as accurate, precise, both, or neither. 

 

Cohen’s kappa statistic, employed in the evaluation process, serves as a measure of inter-rater reliability, synonymous 

with inter-observer agreement. Ranging from 0 to 1, the kappa statistic signifies different levels of agreement, from 

chance agreement (0) to perfect agreement (1). 

 

(a) 0 = agreement equivalent to chance. 

(b) 0.1–0.20 = slight agreement. 

(c) 0.21–0.40 = fair agreement. 

(d) 0.41–0.60 = moderate agreement. 

(e) 0.61–0.80 = substantial agreement. 

(f) 0.81–0.99 = near-perfect agreement. 

(g) 1 = perfect agreement. 

 
III.III Synthesizing Results 
 
The final combined model, which integrates the strengths of various regression models, exhibits exceptional predictive 
performance for crop yield estimation. The final model is developed by averaging the values of the models using a cross-
validation function, which runs cross validation on a dataset to test whether the model can generalize over the whole 
dataset. The function returns a list of scores per fold, and the average of these scores can be calculated to provide a single 
metric value for the dataset. The R-squared value of 0.940 ± 0.003 indicates that approximately 94% of the variance in 
crop yields can be explained by the model, showcasing its high explanatory power. This level of accuracy is particularly 
noteworthy in the context of agricultural yield prediction, where precise estimations are crucial for optimizing resource 
allocation and planning. 
 

 
Figure 8: Synthesizing final combined models 

 
The derivation of the final model involved combining outputs from various regression models. Analyzing feature 
importance or coefficients in the context of this ensemble model requires a nuanced approach. Techniques such as 
permutation importance or feature contribution from individual base models can offer insights into the most influential 
parameters affecting crop yields (Molnar et. al 1970). 
 
R²: 0.940 ± 0.003 
MAX: 327,329 ± 101,418 
MAE: 13,248 ± 229 
MSE: 699,040,572 ± 38,623,281 
RMSE: 26,429 ± 741 
 
In the absence of specific feature importance details, the interpretation should consider the aggregated impact of 
temperature, rain, and insecticidal usage. Understanding how these variables collectively influence the ensemble model's 
predictions is crucial for practical implementation. 

 

IV. CONCLUSION 

Our research meticulously employed six regression models—Linear, Tree, Gradient Descent, Gradient Boosting, K-

Nearest Neighbors, and Random Forest—in a judicious selection process. We systematically summarized the 

performance of each model, scrutinizing their aptness for the given dataset. Notably, the Random Forest Regression 

model emerged, boasting a determination coefficient (r^2) of 0.95. This performance underscored its suitability for the 

complex task of predicting crop yields across 196 countries. 

The appropriateness of each model was carefully considered in the context of the unique challenges posed by our dataset. 
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The diverse nature of our training parameters—pesticides (tonnes), rainfall (mm), temperature (Celsius), and yield 

(hg/ha)—demanded models capable of capturing non-linear relationships and intricate dependencies. The rationale 

behind the model selection process was anchored in achieving both accuracy and interpretability, crucial factors in the 

nuanced domain of crop yield prediction. 
 

While our research presents significant advancements, it is imperative to acknowledge certain limitations. The study's 

reliance on historical data introduces a temporal constraint, limiting the model's ability to adapt to rapidly changing 

environmental conditions (Yu et. al 2018). Additionally, the interpretability challenges associated with ensemble models, 

like Random Forest, prompt avenues for further exploration into model explainability and transparency. 

 

Future research endeavors should delve into refining the model's interpretability while preserving its exceptional 

predictive accuracy. Exploring additional factors, such as soil composition and pest prevalence, could enhance the 

model's comprehensiveness (Klompenburg 2020). Moreover, integrating real-time data sources and employing advanced 

optimization techniques may address limitations related to temporal constraints, ensuring the model's adaptability to 

dynamic agricultural landscapes (Araújo et. al 2021). 
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