
ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 13, Issue 12, December 2024

DOI: 10.17148/IJARCCE.2024.131217

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 98

Design and Implementation of Loeffler

Architecture for 2D DCT/IDCT

Prof. Sujatha S Ari1, Abhishek H R2, Chandana D A3, Druthi M4, Govind V5

Assistant professor, Electronics and communication Department, East West Institute of Technology, Bangalore, India1

Student, Electronics and communication Department, East West Institute of Technology, Bangalore, India2

Student, Electronics and communication Department, East West Institute of Technology, Bangalore, India3

Student, Electronics and communication Department, East West Institute of Technology, Bangalore, India4

Student, Electronics and communication Department, East West Institute of Technology, Bangalore, India5

Abstract: This brief presents an approach for a technique to systematically tradeoff accuracy in exchange for area, power,

and delay savings in digital circuits is proposed: gate-level pruning (GLP). The methodology is first demonstrated on

adders, achieving up to 78% energy-delay-area reduction for relative error. It is then detailed how this methodology can

be applied on a more complex system composed of a multitude of arithmetic blocks and memory: the discrete cosine

transform(DCT), which is a key building block for image and video processing applications. Even though arithmetic

circuits represent less than the entire DCT area, it is shown that the GLP technique can lead to energy-delay-area savings

over the entire system for a reasonable image quality loss. This GLP approach can be Implemented using Verilog HDL

and Simulated by Modelsim 6.4 c. Finally it’s synthesized by Xilinx tool.

Keywords: DCT, Verilog HDL, Xilinx tool.

I. INTRODUCTION

Probabilistic pruning is a design technique that consists of removing circuit blocks and their associated wires in order to

trade exactness of computation against power, area, and delay savings without any overhead. The amount of pruning is

dictated by the application’s error tolerance. A formal definition of probabilistic pruning, as well as the proof of concept,

has already been addressed where the nodes are components such as gates, and whose edges are wires. The decision to

prune a node is generally based on two criteria: the significance, which is a structural parameter, and the activity or toggle

count (TC). The nodes with the lowest significance-activity product (SAP) are pruned first. By doing so, the error

magnitude grows with the amount of pruning. Alternatively, depending on the application’s requirements, the designer

may choose to prune nodes according to the activity only in order to minimize the error rate, or by significance only in

order to shorten design time by skipping the gate-level simulation process. The activity of each wire is extracted from

the .SAIF file (Switching Activity Interchange Format) obtained through gate-level hardware simulations. This file

contains the TC of each wire, as well as the time spent at the logic levels 0 and 1 (T0 and T1), respectively. While TC is

used to rank the nodes, T0 and T1 are used later in the pruning process to set unconnected gate inputs to a specific value.

Note that to get accurate activity estimation; the system should be simulated with an input stimulus representative of the

real operation of the circuit. Pruning once the nodes are ranked according to their SAP, significance only or activity only,

the gate-level net list is modified in order to remove unessential nodes from the design. For the sake of simplicity, and in

order to maximize the use of the existing EDA tools, the probabilistic pruner does not literally remove the gates form the

net list, but it disconnects the corresponding wires. Gates whose outputs are unconnected will automatically be removed

by the synthesis tool. However, leaving gate inputs unconnected would fail the re synthesis of the design. For this reason,

and in order to minimize the error, those inputs are set to 0 if they statistically spend most of the time at 0 (i.e., T0 ≥ T1).

otherwise they are connected to 1 (i.e., T0 < T1). This should allow to statistically reducing the error magnitude.

II. PROPOSED SYSTEM

A technique to systematically tradeoff accuracy in exchange for area, power, and delay savings in digital circuits is

proposed: gate-level pruning (GLP). pruning is a design technique that consists of removing circuit blocks and their

associated wires in order to trade exactness of computation against power, area, and delay savings without any overhead.

The amount of pruning is dictated by the application’s error tolerance.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 13, Issue 12, December 2024

DOI: 10.17148/IJARCCE.2024.131217

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 99

Fig:1-2 D DCT BLOCK DIAGRAM

 Fig:2 1 D DCT Block

The Two-Dimensional DCT

The objective of this document is to study the efficacy of DCT on images. This necessitates the extension of ideas

presented in the last section to a 20space.

The 2-D DCT is a direct extension of the 1-D case and is given by

C(𝑢, 𝑣)=𝛼(𝑢)𝛼(𝑣)∑ ∑ 𝑓(𝑥, 𝑦)𝑁−1
𝑦=0

𝑁−1
𝑥=0 cos [

π(2x+1)u

2𝑁
] cos [

π(2y+1)v

2𝑁
]

For u,v=0,1,2,…,N −1 and α(u) and α(v) are define in above equation.

 The inverse transform is defined as

f(𝑥, 𝑦) = ∑ ∑ 𝛼(𝑢)𝛼(𝑣)C(𝑢, 𝑣) cos [
π(2x+1)u

2𝑁
] cos [

π(2y+1)v

2𝑁
]𝑁−1

𝑣=0
𝑁−1
𝑢=0

for x,y=0,1,2,…,N −1.

The 2-D basis functions can be generated by multiplying the horizontally oriented 1-D basis functions. The basis

functions for N = 8 are shown in. Again, it can be noted that the basis functions exhibit a progressive increase in frequency

both in the vertical and horizontal direction. The top left basis function of results from multiplication of the DC component

in with its transpose. Hence, this function assumes a constant value and is referred to as the DC coefficient.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 13, Issue 12, December 2024

DOI: 10.17148/IJARCCE.2024.131217

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 100

Fig: 3 Two dimensional DCT basis functions (N = 8). Neutral gray represents zero, white represents positive

amplitudes, and black represent negative amplitude

III. SIMULATION IMPLEMENTATION

HARDWARE DESCRIPTION LANGUAGE (HDL):

The dramatic increase in the logic density of silicon chips has made it possible to implement digital systems with

multimillion gates on a single chip. The complexity of such systems makes it impractical to use traditional design

descriptions (e.g., logic schematics) to provide a complete and accurate description of a design. Currently, all complex

digital designs are expressed using a hardware description language (HDL). An HDL, unlike traditional programming

languages such as C or C++, can describe functions that are inherently parallel. A major advantage of an HDL is that it

provides a better and more concise documentation of a design than gate-level schematics. Two very popular HDLs are

VHDL and VERILOG. In this text we use VHDL. VHDL is an acronym for VHSIC hardware description language;

VHSIC in turn is an acronym for very highspeed integrated circuit. The development of VHDL was funded by the U.S.

Department of Defense (DoD) in the early 1980s. The syntax of VHDL is similar to that of programming language ADA;

however, it has some significant differences from ADA. We present the important concepts of VHDL, especially the

ones that are used in digital circuit design. VHDL can provide unambiguous representation of a design at different levels

of abstraction as shown. Modern CAD (computer-aided design) tools can generate gate-level implementation of a design

from its VHDL description. A behavioral VHDL description of a circuit describes the function of the circuit in terms of

its inputs using the types of statements used in a high-level programming language. The objective is to describe the

correct operation of a circuit to be designed without being concerned with redundant details. This description does not

specify how the function is actually implemented; thus the same description may result in several implementations of a

circuit. The register transfer level (RTL) description of a circuit specifies the flow of data from an input or a register to

another register or the output of the circuit through combinational logic blocks. The RTL description is also known as

data flow description. The structural level description specifies what components a circuit is composed of and how these

components are interconnected. This is similar to the logic schematic diagram of a circuit. The purpose of this tutorial is

to describe the modeling language VHDL. VHDL includes facilities for describing logical structure and function of

digital systems at a number of levels of abstraction, from system level down to the gate level. It is intended, among other

things, as a modeling language for specification and simulation. We can also use it for hardware synthesis if we restrict

ourselves to a subset that can be automatically translated into hardware. VHDL arose out of the United States

government’s Very HighSpeed Integrated Circuits (VHSIC) program. In the course of this program, it became clear that

there was a need for a standard language for describing the structure and function of integrated circuits (ICs). Hence the

VHSIC Hardware Description Language (VHDL) was developed. It was subsequently developed further under the

auspices of the Institute of Electrical and Electronic Engineers (IEEE) and adopted in the form of the IEEE Standard

1076, Standard VHDL Language Reference Manual, in 1987. This first standard version of the language is often referred

to as VHDL-87. Like all IEEE standards, the VHDL standard is subject to review at least every five years. Comments

and suggestions from users of the 1987 standard were analyzed by the IEEE working group responsible for VHDL, and

in 1992 a revised version of the standard was proposed. This was eventually adopted in 1993, giving us VHDL-93. A

further round of revision of the standard was started in 1998.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 13, Issue 12, December 2024

DOI: 10.17148/IJARCCE.2024.131217

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 101

That process was completed in 2001, giving us the current version of the language, VHDL-2002. This tutorial describes

language features that are common to all versions of the language. They are expressed using the syntax of VHDL-93 and

subsequent versions. There are some aspects of syntax that are incompatible with the original VHDL-87 version.

However, most tools now support at least VHDL-93, so syntactic differences should not cause problems.

LEVELS OF REPRESENTATION AND ABSTRACTION
A digital system can be represented at different levels of abstraction . This keeps the description and design of complex

systems manageable. Figure 1 shows different levels of abstraction.

Fig:4 Behavioral, Structural and Physical

BEHAVIORAL LEVEL

The highest level of abstraction is the behavioral level that describes a system in terms of what it does (or how it behaves)

rather than in terms of its components and interconnection between them. A behavioral description specifies the

relationship between the input and output signals. This could be a Boolean expression or a more abstract description such

as the Register Transfer or Algorithmic level.

STRUCTURAL LEVEL
The structural level, on the other hand, describes a system as a collection of gates and components that are interconnected

to perform a desired function. A structural description could be compared to a schematic of interconnected logic gates. It

is a representation that is usually closer to the physical realization of a system. For the example above, the structural

representation is shown.

Fig:5 Structural representation of a “buzzer” circuit

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 13, Issue 12, December 2024

DOI: 10.17148/IJARCCE.2024.131217

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 102

VHDL allows one to describe a digital system at the structural or the behavioral level. The behavioral level can be further

divided into two kinds of styles: Data flow and Algorithmic. The dataflow representation describes how data moves

through the system. This is typically done in terms of data flow between registers (Register Transfer level). The data flow

model makes use of concurrent statements that are executed in parallel as soon as data arrives at the input. On the other

hand, sequential statements are executed in the sequence that they are specified. VHDL allows both concurrent and

sequential signal assignments that will determine the manner in which they are executed.

VERILOG

Verilog is one of the two major Hardware Description Languages (HDL) used by hardware designers in industry and

academia Verilog is very C-like and liked by electrical and computer engineers as most learn the C language in college.

Verilog was introduced in 1985 by Gateway Design System Corporation, now a part of Cadence Design Systems, Inc.’s

Systems Division. Until May, 1990, with the formation of Open Verilog International (OVI), Verilog HDL was a

proprietary language of Cadence. Cadence was motivated to open the language to the Public Domain with the expectation

that the market for Verilog HDL-related software products would grow more rapidly with broader acceptance of the

language. Cadence realized that Verilog HDL users wanted other software and service companies to embrace the

language and develop Verilog-supported design tools.

DEVICE UTILIZATION SUMMARY:

IV. RESULTS

Selected Device: Vertex

5vlx50tff665-1

Area Delay

 LUT Slices Register Overall

Delay

Gate Delay Path

Delay

Modified 112 42 64 3.344ns 3.008ns 0.336ns

Proposed 355 243 792 3.259ns 2.923ns 0.336ns

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 13, Issue 12, December 2024

DOI: 10.17148/IJARCCE.2024.131217

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 103

V. CONCLUSION

In this paper, we have proposed a recursive algorithm to obtain orthogonal approximation of DCT where approximate

DCT of length could be derived from a pair of DCTs of length at the cost of additions for input preprocessing. The

proposed approximated DCT has several advantages, such as of regularity, structural simplicity, lower-computational

complexity, and scalability. Comparison with recently proposed competing methods shows the effectiveness of the

proposed approximation in terms of error energy, hardware resources consumption, and compressed image quality. We

have also proposed a fully scalable reconfigurable architecture for approximate DCT computation where the computation

of 16-point DCT could be configured for parallel computation of two 16-point DCTs or four 8-point DCTs. This paper

presented a methodology and a CAD tool integrated in a standard digital flow to automatically trade a determined amount

of accuracy in exchange for area power and delay savings. While gains achieved on adder circuits are already interesting,

reduction area for adders, those could be insignificant since an adder generally only represents a small fraction of the

system it is placed in. It is therefore interesting to apply hardware accelerator such as the DCT with the state-of-the-art

distributed arithmetic architecture, which is built out of multiple arithmetic circuits and memory.

REFERENCES

[1]. S. Jankowski, J. Covello, H. Bellini, J. Ritchie, and D. Costa, “The Internet of Things: Making sense of the next

mega- trend,” Goldman Sachs, 2014. [Online]. Available: http://www.goldmansachs.com/ourthinking/

pages/internet-of-things/iot-report.pdf

[2]. K. V. Palem, “Energy aware computing through probabilistic switching: A study of limits,” IEEE Trans. Comput.,

vol. 54, no. 9, pp. 1123–1137, Sep. 2005.

[3]. S. Cheemalavagu, P. Korkmaz, K. V. Palem, B. E. Akgul, and L. N. Chakrapani, “A probabilistic CMOS switch and

its realization by exploiting noise,” in Proc. IFIP Int. Conf. VLSI, Oct. 2005, pp. 535–541.

[4]. P. Korkmaz, B. E. S. Akgul, K. V. Palem, and L. N. Chakrapani, “Advocating noise as an agent for ultra-low energy

computing: Probabilistic complementary metal–oxide–semiconductor devices and their characteristics,” Jpn. J.

Appl. Phys., vol. 45, no. 4B, p. 3307, 2006.

[5]. G. Karakonstantis and K. Roy, “Voltage over-scaling: A cross-layer design perspective for energy efficient systems,”

in Proc. 20th Eur. Conf. Circuit Theory Design (ECCTD), Aug. 2011, pp. 548–551.

[6]. J. George, B. Marr, B. E. S. Akgul, and K. V. Palem, “Probabilistic arithmetic and energy efficient embedded signal

processing,” in Proc. Int. Conf. Compil., Archit. Synth. Embedded Syst., Ser. (CASES), New York, NY, USA, Oct.

2006, pp. 158–168. [Online]. Available: http://doi.acm.org/10.1145/1176760.1176781

[7]. D. Ernst et al., “Razor: A low-power pipeline based on circuitlevel timing speculation,” in Proc. 36th Annu.

IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2003, pp. 7–18.

[8]. P. K. Krause and I. Polian, “Adaptive voltage over-scaling for resilient applications,” in Proc. Design, Autom. Test

Europe Conf. Exhibit. (DATE), Mar. 2011, pp. 1–6.

[9] S. Ghosh, S. Bhunia, and K. Roy, “CRISTA: A new paradigm for lowpower, variation-tolerant, and adaptive circuit

synthesis using critical path isolation,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 11, pp.

1947–1956, Nov. 2007.

0

200

400

600

800

1000

Modified Proposed

Area Graph

LUT Slices Register

0

1

2

3

4

Modified Proposed

Delay Graph

Overall Delay Gate Delay Path Delay

https://ijarcce.com/
https://ijarcce.com/
http://www.goldmansachs.com/ourthinking/

