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Abstract: Approximate computing is a paradigm shift in energy-efficient systems design and operation, based on the 

idea that we are hindering computer systems’ efficiency by demanding too much accuracy from them. Interestingly, large 

number of application domains, such as DSP, statistics, and machine learning. Approximate computing is suited for 

efficient data processing and error resilient applications, such as signal and image processing, computer vision, machine 

learning, data mining etc. Approximate computing circuits are considered as a promising solution to reduce the power 

consumption in embedded data processing. This paper proposes an FPGA implementation for an approximate multiplier 

based on selective fractional part based truncation multiplier circuits. The performance of the proposed multiplier is 

evaluated by comparing the power consumption, the accuracy of computation, and the time delay with those of an 

approximate multiplier based on exact computation presented. The approximate design obtained energy efficient mode 

with acceptable accuracy. As compared to conventional direct truncation proposed model significantly influences the 

performance. Therefore, this novel energy efficient rounding based approximate multiplier architecture outperformed 

other competitive model.   
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I. INTRODUCTION 

 

A multiplier is one of the key hardware blocks in most digital signal processing (DSP) systems. Typical DSP applications 

where a multiplier plays an important role include digital filtering, digital communications and spectral analysis 

(Ayman.A et al (2001)). Many current DSP applications are targeted at portable, battery-operated systems, so that power 

dissipation becomes one of the primary design constraints. Since multipliers are rather complex circuits and must 

typically operate at a high system clock rate, reducing the delay of a multiplier is  an essential part of satisfying the overall 

design. 

 

Multiplications are very expensive and slows the overall operation. The performance of many computational problems 

is often dominated by the speed at which a multiplication operation can be executed. Consider two unsigned binary 

numbers X and Y that are M and N bits wide, respectively. To introduce the multiplication operation, it is useful to 

express X and Y in the binary representation 

 
The simplest way to perform a multiplication is to use a single two input adder. For inputs that are M and N bits wide, 

the multiplication tasks M cycles, using an N-bit adder. This shift –and-add algorithm for multiplication adds together M 

partial products. Each partial product is generated by multiplying the multiplicand with a bit of the multiplier – which, 

essentially, is an AND operation – and by shifting the result in the basis of the multiplier bit’s position.  
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Similar to the familiar long hand decimal multiplication, binary multiplication involves the addition of. shifted versions 

of the multiplicand based on the value and position of each of the multiplier bits. 

 

As a matter of fact, it’s much simpler to perform binary multiplication than decimal multiplication. The value of each 

digit of a binary number can only be 0 or 1, thus, depending on the value of the multiplier bit, the partial products can 

only be a copy of the multiplicand, or 0. In digital logic, this is simply an AND function. 

 

A faster way to implement multiplication is to resort to an approach similar to manually computing a multiplication. The 

entire partial product are generated at the same time and organized in an array. A multi operand and addition is applied 

to compute the final product. The approach is illustrated in the figure 1.  This set of operation can be mapped directly 

into hardware. The resulting structure is called an array multiplier and combines the following three functions: partial 

product generation, partial-product accumulation and final addition. 

                                                 
                                 

Fig 1.1: Example of manual multiplication 

 

So the adder unit is very important for designing any multiplier(John  Rabaey (2003)).The different types of adders and 

their functions were discussed in  (Oklobdzija.V.G et al(1995)),(Pucknell (2004)),(Shalem.R et al (1999)) and  

(Zimmermann.R and Fichtner.W (1997)). From the results of (Shalem.R et al  (1999)) ,we came to know that the new 

improved 14 Transistor full adder cell  shows better result in Threshold loss problem, power dissipation and speed by  

sacrificing MOS transistor count. 
 

II. METHODS AND MATERIALS 

 

 Step 1: ANN Architecture Design ……..…..(1)          

       

Step 1: ANN Architecture Design 

 

1. Define the layers of the ANN: 

          Input layer: 4 neurons (for characters a-z encoded as 4-bit values). 

          Hidden layers: 2 or more neurons per layer, depending on the design choice. 

          Output layer: 4 neurons, corresponding to the classification results. 

 

2. Initialize Weights and Biases: 

 

Weights for each layer are hardcoded into the VHDL code (e.g., w1[1:4][1:4] for input weights, w2[1:2][1:4] for hidden 

layer weights, etc.). 

Biases for each layer are similarly initialized in the VHDL code.  

 

Step 2: Approximate Multiplier with Adaptive Truncation ..……...… (2) 

 

1. Design the Multiplier: 

 

Implement an approximate multiplier that performs multiplication with reduced precision by truncating the least 

significant bits (LSBs). 
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The truncation level adapts based on the magnitude of the operands to optimize power consumption without sacrificing 

too much accuracy. 

 

2. Integrate Multiplier in Neurons: 

 

Use the multiplier within each neuron module to compute the weighted sum of inputs. 

 

 Step 3:VHDL Implementation .……...…(3) 

 

1. Write VHDL Code: 

Implement each layer of the ANN as a separate VHDL module. 

Include the activation functions and the multiplier in each module to compute the output for each neuron. 

Ensure the input data is processed through the network from input to output layers. 

 

2. Implement Reset Logic: 

Include reset logic in the VHDL code to initialize the ANN at the start of each operation.                                                                                                                             

   

 Step 4:Simulation and Testing          …………(4) 

 

1. Simulate Design in ISIM: 

Test the VHDL code using Xilinx ISIM to ensure correct functionality. Verify that the network correctly processes input 

data and produces the expected output. 

 

2. Debug and Optimize: 

Use the waveform viewer in ISIM to debug any issues and optimize the multiplier and neuron computations for energy 

efficiency. 

                                                  

 Step 5: FPGA Implementation               …………. (5) 

 

1. Synthesize the Design: 

Use Xilinx ISE 14.7 to synthesize the VHDL code and generate the netlist for the Spartan-6 FPGA. 

 

2. Generate Bitstream: 

After synthesis, generate the bitstream file for programming the FPGA. 

 

3. Program the FPGA: 

    Load the bitstream file onto the Spartan-6 FPGA using the Xilinx iMPACT tool and a B-pin USB cable. 

 

Step 6: Real-Time Testing on FPGA              ……….(6) 

 

1. Provide Input Data: 

Test the FPGA by providing input data (characters a-z) and observing the output on the FPGA. 

 

2. Measure Power and Performance: 

Measure the FPGA’s power consumption and classification accuracy to ensure the design meets the energy-efficiency 

and accuracy requirements. 

 

Step7: Final Verification and Optimization             .………(7) 

 

1. Fine-tune the Design: 

 

Adjust the weights, biases, and truncation parameters based on the performance and accuracy of the design. 

 

2. Document the Project: 

 

Document the design, implementation process, testing results, and optimization steps in a final report. 
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MATERIAL USED: 

          

SOFTWARE TOOL: 

 XILINX 14.7   

 ISIM 

 

HARDWARE MATERIAL: 

 FPGA SPARTAN 6 BOARD 

 CONNECTING WIRE 

 

 HARDWARE AND SOFTWARE IMPLEMENTATION: 

 

 Software implementation: 

To implement an energy-efficient, high-accuracy approximate multiplier with adaptive truncation using Spartan-6 FPGA 

and Xilinx ISE 14.7, the project involves creating a system entirely in VHDL, including an Artificial Neural Network 

(ANN) for processing input characters (a-z). The approximate multiplier is designed to reduce power consumption by 

truncating the least significant bits (LSBs) of the operands dynamically, based on input size, while employing error-

compensation logic to maintain accuracy. The ANN is implemented in VHDL, with layers performing fixed-point 

arithmetic using the approximate multiplier for matrix-vector multiplications. 

 

The input characters (a-z) are encoded into binary form and passed to the ANN, which consists of an input layer, one or 

more hidden layers, and an output layer. Each neuron in the network computes the weighted sum of inputs and applies 

an activation function (e.g., ReLU or sigmoid). These activation functions are implemented in VHDL using lookup tables 

(LUTs) or polynomial approximations for efficient hardware execution. The weights and biases for the ANN are pre-

defined and stored in the FPGA's block RAM (BRAM). 

 

 The design process involves writing VHDL code for the approximate multiplier, ANN layers, and data flow control. The 

system is simulated in ISIM to validate functionality and timing. After synthesis and bitstream generation in Xilinx ISE 

14.7, the design is programmed onto the Spartan-6 FPGA using a B-pin USB cable. The system is tested by providing 

character inputs (a-z) and analyzing the output for classification accuracy. Power consumption is measured to ensure the 

design meets the energy-efficiency goal.  

   

Fig: 1 – 1.proposed approximate multiplier design                        2.Block diagram of the proposed  approximate signed 

multiplier. 

  

 

1                                                                                                2  

 

HARDWAREIMPLEMENTATION:  
The hardware implementation of an energy-efficient, high-accuracy approximate multiplier with adaptive truncation, 

integrated with an Artificial Neural Network (ANN) on the Spartan-6 FPGA, involves several critical steps. First, the 

approximate multiplier is designed to perform energy-efficient multiplication by using adaptive truncation, where the 

precision of the multiplication result is dynamically reduced based on the magnitude of the input operands. This 

truncation is implemented in VHDL, where a condition checks the size of the operands, and the result is truncated to a 

lower bit-width when both operands are small, reducing energy consumption. 
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Next, the ANN is constructed in VHDL, consisting of an input layer, multiple hidden layers, and an output layer. Each 

neuron in the layers computes the weighted sum of its inputs, applies an activation function (such as ReLU or Sigmoid), 

and forwards the result to the next layer. The weights and biases for the ANN are stored in memory blocks or registers, 

and the data flows through the layers sequentially. The ANN layers utilize the energy-efficient multiplier instead of a 

conventional multiplier, enabling adaptive truncation during the weighted sum computation. 

 

The design is synthesized and optimized using Xilinx ISE 14.7 for the Spartan-6 FPGA, where the VHDL code is 

converted into a netlist. This netlist is then placed and routed, mapping the design onto the FPGA’s logic blocks, memory, 

and I/O pins. A bitstream file is generated, which is used to configure the FPGA with the final design. The design is then 

tested and validated using ISim, a simulator provided by Xilinx, to verify the functionality and performance of the ANN 

and the multiplier. After successful simulation, the bitstream is loaded onto the Spartan-6 FPGA, and the design is 

validated by running it on the actual hardware, ensuring that the ANN operates correctly with the energy-efficient 

approximate multiplier. This step-by-step approach ensures that the system is both energy-efficient and accurate, 

optimized for FPGA implementation. 

 

 
 

Fig: 2 FPGA SPARTAN-6 BOARD                           Fig:3 Hardware implementation on FPGA 

 

Table 3.1.1 Features Offered In FPGA 

                            

Features Xilinx virtex II Pro    Altera stratix                  Actel 

Accelerator 

Lattice is pXPGA 

Clock management      DCM  Up to 12  PLL Up to 12 PLL  Up to 8 Sys CLOCK 

 PLL  up to 8 

Embedded memory 

blocks 

Block RAM  

Up to 10 Mbit 

Tri Matrix 

Memory 

Up to10 Mbit 

Embedded 

   RAM  

Up to 338K 

Sys MEM 

   Blocks       Up to 

414K 

 

Data processing CLB and  

18-bitx 18-bit 

Multipliers 

LE’s and 

embedded 

multipliers 

Logic modules 

(C-cell &R-cell) 

PFU based 

Programmable I/O 

s 

Select IO Advanced IO 

Support 

Advanced  

IO Support 

Sys IO 

Special features Embedded power 

PC405 

Cores 

DSP blocks Per pin 

FIFO’s for bus 

application 

Sys Hs 1 for high 

speed serial 

interface 

  

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 13, Issue 12, December 2024 

DOI:  10.17148/IJARCCE.2024.131219 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 117 

III. RESULT 

 

Simulation result: 

 

This simulation shows digital circuit signals over time. The clock signal controls the circuit's actions, and the reset signal 

initializes it. Data signals like y1 and y2 demonstrate the circuit's processing.  

 

 

Fig:4 Simulation 

 

Device utilization  Plot : 

 

This bar graph shows the Slice Logic Utilization and resource usage of an FPGA design. The key metrics include Slice 

LUTs, Slice Registers, and Logic Utilization, with red bars representing high utilization. Additional metrics like IOBs, 

BUFGs, and fanout are also shown for detailed resource analysis.  

 

 
                                                                              

Fig:5 device utilization  Plot 
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Power report: 

 

                
                                                               

Fig:6 power report 

 

This report provides a power analysis summary for an FPGA design implemented on a Spartan-6 xc6slx9 device: 

 

1. Power Breakdown: It reports total power consumption as 0.015 W, consisting of dynamic power (0.001 W) and 

quiescent power (0.014 W). 

2. Resource Utilization: The utilization of various logic blocks like Clocks, Logic, Signals, and I/Os is presented, e.g., 

Logic is 23% utilized. 

3. Supply Summary: Voltages (1.2V, 2.5V) and corresponding total, dynamic, and quiescent currents are detailed for 

power sources like Vccint, Vccaux, and Vcco25. 

4. Thermal Analysis: With an ambient temperature of 25°C, the junction temperature is 25.6°C, and the effective thermal 

resistance (TJA) is 38.4°C/W. 

5. Environment and Parameters: No airflow, heat sink, or custom thermal values were applied in this analysis, as indicated 

in the Environment section. The radiation pattern, analysed using HFSS and shown in "Fig 6" depicts energy distribution 

in space. It highlights directivity and beamwidth, ensuring effective power radiation in desired directions for optimal 

performance.                                                              

 

IV. CONCLUSION 

 

Here, we investigated the energy and area-efficiency of approximate multiplier in which the input operands were 

truncated with two different lengths, t and h, and then rounded to the nearest odd numbers to reduce the error resulted by 

the truncation operation. The proposed multiplier was scalable and outperformed other approximate multipliers in terms 

of speed, area, and energy using FPGA hardware synthesis. 
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