IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.102 :< Peer-reviewed & Refereed journal :< Vol. 13, Issue 12, December 2024
DOI: 10.17148/IJARCCE.2024.131267

Explainable Al Models for
Credit Risk Evaluation in Banking

Anumandla Mukesh

Independent Researcher, India

Abstract: Credit risk scoring systems are among the most crucial decision-making models developed by banks. These
models have become mandatory in many jurisdictions because of regulatory requirements that promote risk-sensitive
capital charge computations. However, legal requirements and the need for better customer relations now make credit-
scoring evaluation systems necessary and increase demand in the market. Regulators require understandability of
prediction models, banks are interested in interpretability to create customer relations and meet consumer-protection
laws, and customers want to understand why they were rejected, especially in cases of marginal evaluation. Additionally,
explainable artificial intelligence (xAI) models support the model-monitoring processes of banks and help the
implementation of explainable credit assessment. The complex nature of the model-jungle makes it impossible for users
and auditors to be aware of limitations, risks, and adequacy in risk management therefore clarity on how the models and
systems become really interpretable is required.

Existing XAl credit scoring evaluation models, explainable Al (xAI) model families, and classes of post-hoc explanation
techniques are examined to present a taxonomy of approaches. Based on the analysis, a set of operational and cognitive
evaluation measures and compliance-oriented explainability tests are proposed. Finally, incorporation of these concepts
into model deployment, XAl governance, and overall software life-cycle management in banks is outlined.
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1. INTRODUCTION

The evaluation of credit risk, an essential task in banking, has gained considerable attention in the last decade because of
an increasing demand for credit and the availability of a wealth of banking data. Credit scoring is traditionally performed
using well-tested logistic regression models. In recent years, however, machine learning techniques, which often
outperform logistic regression, have been applied to the problem. However, most of these models offer little or no
explanation of their predictions.

Many banks follow a “no black-box™ approach, which impedes the use of advanced machine learning techniques for
credit scoring. Explainable artificial intelligence (XAI) models are being developed to address this gap. A survey of XAl
methods applicable to credit scoring has therefore been conducted. XAl-related features and data augmentation
techniques facilitating the implementation of explainable machine learning models in banking, as well as explainability
evaluation approaches with focus on cognitive and operational criteria, and model compliance, are discussed. The
ultimate goal of this research is to obtain fully explainable models suitable for credit scoring in banking using either
purely interpretable algorithms or combinations of well-tested classifiers with post hoc explanation techniques such as
local surrogate models, feature contributions, or feature perturbation.

1.1. Overview of the Study

The growing complexity of Al models for credit scoring, combined with issues of transparency, fairness, and compliance,
limits their adoption by banks. Therefore, detecting credit risk with simple and interpretable models, integrating
explainability in non-interpretable architectures, and collecting justification data for post-hoc explanations are important.
Techniques must enable banks to explain and validate their AI models in a cognitive, operational, and compliance-
oriented manner. Addressing these issues results in a four-layered framework that guides the development of explainable
credit-scoring models. It assists the construction, evaluation, and documentation of reliable Al architectures throughout
their lifecycle while providing an operational interface for risk management and compliance functions. The contribution
includes a survey of explainable credit-scoring techniques covering simple models, hybrid approaches, and feasible post-
hoc explanations.
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More sophisticated credit-scoring models can still be investigated by banking institutions if transparency and fairness
aspects are carefully handled as part of the model development and validation processes. Governance structures allow
internal audit, data protection, and risk functions to evaluate credit-scoring models in the context of external regulators
and stakeholders. A separation of concerns by the operationalization of explainability validations empowers banks to
consume advanced credit-risk assessment techniques in a compliant manner. Consequently, the proposed graduation
contributes to the increasingly important narrative on explainable and trustworthy Al in banking by addressing the
necessary mechanisms for achieving regulatory compliance and customer trust in a sound credit-scoring business.
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Fig 1: The Trustworthy Credit Architecture: A Four-Layered Framework for Integrating Explainable Al, Governance,
and Regulatory Compliance in Banking

2. BACKGROUND AND RATIONALE

Effective and sustainable credit risk management is key to the soundness and stability of banks. Adverse selection and
moral hazard problems associated with information asymmetry are present both at the credit-lending decision stage and
during the monitoring phase. Credit risk models are widely used by banks to facilitate the quantification of credit risk
and improve regulatory compliance. However, several considerations hinder the adoption of machine learning
approaches. To assess the applicability and fitness of explainable Al solutions for credit scoring, the credit risk process
and the specific needs for explainability are analyzed from a banking business perspective. Requirements, limitations,
and perspectives emerge from the discussion.

Credit risk models in banks undergo numerous evaluations and validations during the model lifecycle. Various
implementing functions require a wide range of performances beyond predictive accuracy. Addressing problems such as
the data privacy concern, such models have, in most cases, been developed over the years using classical statistical
techniques, being interpretable by human decision-makers. The more recent application of machine learning techniques,
which have become mainstream in many areas, is still restrained by a myriad of requirements that explainable Al attempts
to fulfill.
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Equation 1: Core credit-risk quantities used in scoring
1.1 Probability of Default (PD)

Let Y € {0,1} be the default indicator over a horizon (e.g., 12 months).
e Y = 1:default, Y = 0: no default
e  The score model outputs:
PD(x)=Pr(Y =11X=x)
1.2 Expected Loss (EL)
With exposure at default EAD and loss given default LGD € [0,1]:

|[EL(x) = PD(x) - LGD(x) - EAD(x)]

2.1. Credit Risk Management in Banking

Credit risk management is a key concern for banks and plays a fundamental role in their profitability, growth, and
operating model. Credit risk is defined as the risk that a borrower may default on its payments. A default occurs when a
debtor fails to fulfill any of its contractual obligations, such as the payment of interest, the repayment of capital, or the
violation of any covenant of the loan agreement. In practice, early detection of potential defaults and clear communication
are crucial factors that can help avoid a formal default. However, it is inevitable that a portion of loans will inevitably go
into default; hence the process of estimating potential losses on credit exposure.

Credit scores have been used by banks for many years as one of the most successful tools to assess credit risk. Credit-
scoring models generate quantitative estimates that guide credit decision-making and help a bank to detect high-risk
customers. Despite decades of research into credit-scoring models, the banking industry is still looking for improved
tools.

Previously separated by the large margin of success compared with other fields of predictive analytics, constrained by
banking regulations, and protected by the competitive advantage they created, credit-scoring models, particularly logistic
regression, are no longer immune to such trends. Fintech companies are aggregating and analyzing vast amounts of data,
allowing customers to receive credit decisions almost instantly. This increase in automation and decrease in turnaround
time put additional pressure on banks to reduce risk while still supporting deal flow to meet business goals.

3. METHODS FOR EXPLAINABLE CREDIT SCORING

Several families of descriptive credit scoring models have been deployed in banking that either provide inherent
interpretability or use hybrid architectures to combine the descriptive potential of interpretable models with the predictive
potential of opaque black-box models that trade-off quality for clarity. Based on models like decision trees, generalized
additive models and attribution methods, the applied views extend beyond model explanatory power to also include the
user interface for operationalization of the model and the underlying data combinations, while seeking randomness with
respect to a data leak of the training data, undesired bias and non-responsibility issues. All models are proposed in a
proper economic evaluation perspective.

With an increasingly evident growing demand for the deployment of Al in a transparent and regulated way, achieving
explainability in banking-based scoring systems stands as a critical aspect under the shaping of in-light-of the European
Commission’s proposal for an Al Act. In this perspective, contrasted evaluation functions offer non-invasive support for
the architecture choice and model priority estimation conducted by the financial institution. The external evaluation of
the predictiveness of the models with respect to a validation sample can be supported from a cognitive point of view by
also considering the stochastic nature of the models and any violation of the faithfulness property related to a possible
information leak of the training set.

3.1. Interpretable Models and Hybrid Approaches

Interpretable machine learning models and hybrid methods combining simpler-and more complex rules form an adequate
answer to credit risk evaluation within the banking domain. Classic models, such as decision trees, logistic regression
and naive Bayes, possess fundamental characteristics of explainability, like comprehensibility, performance and low
complexity. Nevertheless, they underperform compared to more advanced models (e.g., gradient boosting and deep
learning approaches). Offering competitive performance while maintaining solid explanations, hybrid models integrate
comprehensibility into their structure.

Beyond their design, though, ML models can operate in a black-box manner with post-hoc explanation methods. Such
techniques do not alter the original model but rather present results in a simplified way, enabling an understanding of the
decision. However, they remain extrinsic and, as a consequence, question the faithful representation of the model’s logic.
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Well-known examples of post-hoc explanations are LIME and SHAP. They measure the influence of each attribute on
the model prediction by perturbed instances or by decomposing the output into the contributions from each feature.

Model Complexity Model Performance

Intirinc Explainability

O
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Fig 2: Bridging the Interpretability Gap: A Comparative Analysis of Classic, Hybrid, and Post-Hoc Explainability
Frameworks in Credit Risk Evaluation

3.2. Post-hoc Explanation Techniques
Three common techniques for post-hoc explanation of credit scoring decision-making include LIME (Local Interpretable
Model-agnostic Explanations), SHAP (SHapley Additive exPlanations), and a feasible variant specifically designed for
a deep neural model. LIME explains any classifier by perturbing the dataset and generating an interpretable local
surrogate model around the prediction of interest. For a specific sampling of the test instance, new perturbed data is
produced by randomly sampling its neighborhood. The prediction of the black box model is obtained for these perturbed
data and serves as the response variable for the local surrogate. The advantage of this technique is that it not only works
as a general post-hoc procedure but also enables a whole instance-level understanding.
SHAP is a unifying framework connecting multiple explanation methods and generating an optimal explanation by
modeling the prediction of interest as a cooperative game. Each feature corresponds to a player aiming to explain a
specific prediction. The result shows the contribution of each feature in the sample instance and successfully captures
both local and global interpretability in terms of additive feature importance. The decomposition of the prediction into
the sum of feature contributions provides an intuitive understanding, while the distribution of SHAP values across the
training dataset indicates the overall importance of the feature.
Explaining a complex deep learning architecture is challenging but feasible with the appropriate techniques. The idea is
to treat individual predictions of the model as a black box and to explain them after training. The method applies SHAP
on the fully trained DNN credit scoring model to explain an individual prediction, generating a set of positive and negative
contributing features. To safeguard customers’ private information, the method swaps the values of sensitive credit
applicants in the dataset with those of non-sensitive individuals, updates the module of SHAP, and makes a prediction
privacy-preserved for CHB data.

Predicted PD Distribution (illustrative)
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4. DATA, PRIVACY, AND FAIRNESS CONSIDERATIONS

Several key aspects of data and visualization merit special consideration. Data quality is paramount; poor-quality data
can confound model interpretability and explanation efforts, as well as lead to flawed predictions. In general, for a
supervised model to be useful, the training dataset must be representative of the kind of examples the model will later
encounter. Model predictions can also be influenced by the correlation of certain input variables with the target label
throughout the data, even when the models are interpretable. Improving the representativeness of a sample's normative
context can also help make white-box experiments more trustworthy.

Data privacy of sensitive banking records is another aspect that should receive special attention. Detecting possible data
leaks in models used for explanation purposes might require separate data, which can be difficult to obtain in restricted
domains. The models themselves should also be thoroughly assessed to identify any possible flaws capable of
compromising short- to medium-term predictions.

Another concern is fairness. When examined through the lens of regulating discrimination in machine learning models,
fairness is highly domain-specific. While some banking experts advocate for a non-discriminatory approach, others assert
that accurate models should be trained regardless of fairness. Consequently, an explanation-based approach that monitors
model behavior is preferable, as it can identify biases without constraining model construction.

Equation 2: Logistic Regression
2.1 Start from odds — log-odds
Letp(x) = Pr(Y =1 | x).

Odds:
_ p)
odds(x) = T—o00) ()
Log-odds (logit):
log (—1 f(;ch) =)

Logistic regression assumes 7(x) is linear:
n() =Pfo+px
2.2 Solve for p(x) step by step

From
p
log (m) =Po+BTx
Exponentiate both sides:
p Bo+BTx
— = gho
1-p
Multiply both sides by (1 — p):
p=efotFTx(1-p)
Expand RHS:
p et eB0+BTx —_ peﬁO"'ﬁTx
Bring p terms together:
p+ peﬁo+ﬁTx = gPotBTx
Factor p:
p(l + eBO"'BTx) — eBO+BTx
Divide:

eﬁO+ﬁTx 1

p(x) =

1+ ePotBTx 1+ e-BotB 0

2.3 Likelihood, loss, and gradient (training derivation)
Given data {(x;, y;) Y1, with p; = p(x;).
Bernoulli likelihood:
Pr(y; | x) = p'(1 —p)t™
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Log-likelihood:

£(8) = ) [ydogp; + (1 = ydlog(1 - )]
i=1

Negative log-likelihood (cross-entropy loss):

J(B) = =€() = ) [~yilogp; — (1 yDlog(1 )]
i=1
Gradient (key step):
e Since pi =By + B x;) and % =0(2)(1-0(2)),
you get:

V] (B) = Z(pi =Y x

This is what optimizers (GD/L-BFGS/etc.) use.

4.1. Data Quality and Representativeness
High-quality datasets that accurately reflect the target domain are essential for training effective models. Various factors
— such as data provenance, sampling strategies, information completeness, and relevance — also exert strong influence.
For instance, representative samples comprising diverse customer segments enhance the generalizability of trained credit
scoring models. Likewise, privacy and fairness-based data management strategies for recurrent patterns associated with
"discriminatory" sensitive attributes (e.g., origin, age, gender) ensure the avoidance of biased empirical discrimination in
model predictions.
Interpretable, augmented, or hybrid credit-scoring solutions demand available data or knowledge (e.g., similar past cases,
associated risk categories, expert guidance) for implementing explanation methods. Prior research indicates a need both
for reliable detection of classification-relevant instances and for supplementary input on classification decisions. Such
solutions also risk producing girls-bias-fairness in-class conditional discrimination of prediction quality and label
distribution without integrated mitigations during the data-collection stage. Lawyers stipulating understandable or
"explainable" algorithmic decisions require such provisions.

—5 Local Feature Contributions (LIME-like, illustrative)
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5. EVALUATION FRAMEWORKS FOR EXPLAINABILITY

Two classes of evaluation metrics help assess the extent to which the explainable Al model fulfills its objectives. The
first group incorporates cognitive and operational metrics to evaluate the attribute-intensity-shaped explanatory artifacts
directly and indirectly affecting human cognition and decision-making processes. The second group seeks to address
existing regulatory requirements defining level of explanation dignity and explanations' relevance to their recipients.
The need for an operationalized Conceptual Framework for Explainable Al supporting explainability aspects, depth, and
fidelity of the proposed explaining models and functionally placed as an embedding or stand-alone module connected
with explainable model runs is important neither only from a conceptual nor from a compliance-oriented perspective. It
aims to provide a guidelines, workflow, and testing-assurance map to the banking industry by articulating the links among
the cognitive-understanding, operation, and compliance paths and requirements.
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Important regulatory documents such as the European Commission's White Paper on Al call for mandatory assessment
of advanced models in high-risk sectors such as finance — a demand backed by the European Banking Authority's Data
Guidelines, which recommend duly considered proprietary models, compliant documentation, legal and risk-operating
interfaces guaranteeing state-of-the-art level fulfilment.

Ethically responsible banking demands compliance-oriented scrutiny of even interpretable models before their
deployment. Despite their pattern-recognition core, these models may still require secondary explanation even after a
documentation-illustrated predictive run supporting the answer to the question "How have we reached this conclusion?"

Conceptual Framewark

for Explainable Al
Cogntive & Operational Metrics
o )
(o] 0
Regulatiory & O-& = w ©-O Compliance &
Ethical Metrics L < Trustwonensiss
N 3 ‘ 3
:‘\ 1 k Explainability z_ 4 Compliance & / @
= Depth Trustworhneiss ©
4 w

O
Cogntive & Operational Metrics

Workflow & Testing Assurance Map

N
-E@E%

EC White Paper on Al EBA Data Guidelines

Fig 3: The Operationalized XAI Framework: Multi-Dimensional Evaluation Metrics and Regulatory Compliance
Pathways for High-Risk Financial Models

5.1. Cognitive and Operational Metrics

A well-known challenge of machine learning models is that they are often not interpretable by default. This hinders their
utilization in high-stake domains such as banking, law, or medicine, where explanations from the predictive algorithm
are an essential requirement for the stakeholders. Therefore, dedicated frameworks, methods, and models allowing
domains experts to understand how and why a specific decision was made or revealing how the model behaves in general
became widely developed and investigated in recent years. While these explanation techniques can make any given model
interpretable, the goal of generating pertinent explanations should ideally be built into the modelling process, beginning
from the moment when experts re-think the predictive task to the selection and the implementation of the machine
learning model. A useful strategy is thus the construction of inherently interpretable models while using hybrid methods
that combine a common black-box approach to learn a predictive function with a comprehensible post-hoc interpretative
layer.

Alternatively, post-hoc explanations of black-box models can be achieved by explanation methods specifically designed
with a supporting role in the interpretative process. Explanations are then seen as an additional output layer that assists
the human experts in reviewing the already predicted responses of the black-box model, increasing the trustfulness of
those decisions without requiring characterizing knowledge about the black-box model or the prediction function itself.
Nevertheless, many banks around the world decide to rely on interpretable models not simply because of their
transparency, but also for enabling a more systematic study of the business problem under scope. Indeed, whenever
developing a new model, banks usually follow a defined modelling lifecycle that collects and thoroughly analyzes
historical data, building one or more predictive functions that become part of a structured documentation model.

5.2. Compliance-Oriented Validation

Compliance-oriented validation of model explainability and trustworthiness emphasizes a risk-averse perspective. Here,
the probability of classification failure serves as a quality criterion, measuring the likelihood that the model fails to assess
new customers correctly. The acceptance threshold is set at levels acceptable by the bank’s credit decision-makers. A
post-hoc explanation can then be reported as trustworthy when the final classification agrees with the provided
explanation and classification failure lies below the acceptance threshold.

This evaluation framework enables the bank to operate the model as a quasi-black-box when credit institutions are not
specifically requesting explanation. In this case, the bank relies on the predictive performance assessed by the risk
management function and ensures regulatory compliance with respect to fairness. In the event that a credit institution
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seeks explanation, the model can be used as a white-box and explanations can be provided with guaranteed
trustworthiness.

6. MODEL DEPLOYMENT AND GOVERNANCE IN BANKS

Deployment of Al credit scoring systems in banking requires consideration of several primary aspects to ensure proper
usage and compliance with regulations, notably eXplainable Artificial Intelligence (XAI) guidelines. The specific factors
in model deployment and governance generally cover these items: the model lifecycle and documentation needed for
deployment, and the interplay with risk management and compliance functions.

The life cycle of analytics models servicing banks and their supporting processes involves many similar aspects to that
of traditional risk models—development, validation, deployment, monitoring, and updating—but is more elaborate. A
documentation package in line with the bank's internal policies must accompany the model at the deployment stage,
containing details suitable for boards and top management, model stage summaries (development, validation,
deployment, etc.), a user manual, and a record of the data used for testing. The explanation component of the model
should also be formally documented, integrating the analysis of the choice of algorithms and parameters and the
description of surrogate models, if developed. Explicit links to the bank's risk management and compliance functions
also need verification, with a special emphasis on fair lending regulations.

Additive Contributions (SHAP-like for Logistic Regression, illustrative)
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6.1. Model Lifecycle and Documentation

At banks, credit scoring models are evaluated by different stakeholders and used for different purposes. The fact that
model governance is a regulatory requirement implies that comprehensive documentation of the model development
process is a prerequisite for compliance-oriented validation. Such a model accountability system ensures that a fair and
sound model is selected for deployment in the bank's technology infrastructure. Banks must keep credit scoring models
updated throughout their life cycle, controlling performance in relation to recent defaults and customers that have become
creditworthy through default curing or market rebound. Model owners must ensure that risk factors remain significant,
data are not outdated and dubious relationships with other variables are avoided. Credit-scoring model versioning tracks
these changes. At a more operational level, some banks have begun to implement prediction monitoring systems that
notify model owners if the model score output deviates from what is expected given the recent behaviour of the
application file.

Regulatory validation of a credit scoring model occurs before deployment and must be repeated by an independent team
using a different software tool than that used for modelling. This requirement helps prevent model owners from
"cheating" during validation. An interpretable model that also follows a transparent development process greatly
facilitates the validation work. Banks take advantage of the information gleaned from operational monitoring and develop
their own model validation processes. Unlike the regulatory exercise, which focuses on operational risk mitigation, local
validation aims to check the correctness and adequacy of scores for risk-based pricing. Even though credit-scoring
predictions are assumed to be probabilities of default, they are rarely used in such a way.

Equation 3: Decision Trees
Decision trees are listed among classic interpretable models.
3.1 Gini impurity (binary classification)

At a node, let class proportions be p (defaults) and 1 — p (non-defaults).
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[Gini =1—p> = (1-p)* = 2p(1 = )]

3.2 Information gain (split selection)

Let parent node have impurity I (parent). Split into left/right with weights w;, wg.

|AI = I(parent) — (WLI(L) + WRI(R))I

The best split maximizes A1.

6.2. Risk Management and Compliance Interfaces

Ensuring proper governance involves integrating model development and deployment with risk management and
compliance processes that maintain controls throughout the model lifecycle. A framework specifically designed for credit
risk models can delineate the roles of the three functions, highlight their dependencies, and ensure that all the
requirements are appropriately addressed. Such a framework is particularly relevant for the approval of new models, the
qualification of models that are already in use, and the periodic assessment of existing models.

The objectives associated with the provision of credit risk scoring models for risk management, credit, and operational
risk, as well as for compliance, cover the range of potential use cases and any required checks. Also important are the
risk and compliance interfaces that ensure proper governance, usually reflected in individual model documents. The roles
of the three main functions supporting these activities typically include risk management validating that the model is
appropriate, credit providing input to the development process, operational risk ensuring that sufficient documentation is
provided, compliance confirming that regulatory requirements are met, and senior management approving model use.

7. CONCLUSION

The potential factors that determine credit risk in the context of traditional credit scoring models have been extensively
investigated. However, risk evaluation remains primarily a black-box process. Model risk manifests in unintended bias,
miscalibration, overfitting to historical data, invariances not present in a bank's broader economic exposure, and other
aspects. The introduction of more sophisticated Al models has not advanced model transparency and risk mitigation in
credit scoring. Instead, the analysis of opacity has shifted toward establishing a framework of explainability and fair AL
This framework is rich in sophistication and detail but provides little practical direction for explainable risk evaluation.

While it is accompanied by a useful taxonomy of potential explanations and alignments, these perspectives have not yet
translated into practical implementation guidance for banks. The translation of explainability from a mere metric to a
governance mechanism requires a detailed understanding of the banking model lifecycle, including design,
documentation, model risk interfaces with the operational control and compliance functions, and customer data privacy
arrangements with the credit risk systems. Addressing explainability in design coordinates the solution's architecture with
anik board and regulatory expectations. Integrating cognitive and operational metrics into validation ensures that business
managers and supervisory authorities share the same platform. It also allows feedback from sensitive decision-making

areas such as capital adequacy and liquidity to guide the selection of complex solution.
Governance Domain Distribution

Business &
Liquidity Ops

Data Privacy
Systems

20.15%

\ 35.25%

Model Risk \\ 28.50%

Management
Compliance &
/, Regulatory

&
-
S —

Fig 4: Governance Domain Distribution

7.1. Final Insights and Future Directions
Ensuring adequate credit risk assessment is crucial for the stability and profitability of banks. Machine and deep learning
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models, owing to their superior predictive performance in numerous risk-related tasks, are being increasingly adopted.
However, their inherent unexplainability poses challenges to their acceptance in the banking domain that requires
transparency and cognitive compliance. Proposed explainable models have addressed the explanation needs of both data-
scientist- and bank-customer related users; yet, they are primarily post-hoc approaches either based on black-box
predictors or on the local explanation paradigm.

A comprehensive overview of the existing methods for explainable credit scoring in banking was conducted, taking into
account the aspects of model interpretability, the characteristics of the datasets and the requirements imposed by
regulators. The survey revealed several unexplored areas that should be tackled in future research. Most notably, while
cognitive metrics for evaluating the quality of explanations received considerable attention, operational metrics that
ascertain the quality of the explanation process have so far seen only limited contribution. Also, while compliance-
oriented model evaluation became a critical task, only few works have conducted risk-oriented validation of biometric
models.
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