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Abstract: Manufacturing industries are embracing smart solutions to achieve operational excellence by enhancing
controllability, visibility, and flexibility. An intelligent quality control system with autonomous capabilities is a critical
enabler of smart manufacturing. The autonomous quality control mechanism integrates edge artificial intelligence and
cloud orchestration—Al-based applications for real-time anomaly detection and predictive analysis, Al-enabled cloud
services for system orchestration, and edge-cloud data governance. The effectiveness of the proposed approach is
demonstrated in a case study involving a complex process using Internet-of-Things devices for data acquisition.
Understanding the complex, repetitive, and noisy nature of manufacturing processes with advanced machine-learning
algorithms often requires substantial data-analytics infrastructure. Moving all data to the cloud for processing and storing
is not feasible for operational efficiency when the core functions are repetitive, time-sensitive, and performance-critical.
Solutions deployed on edge devices provide limited performance and efficiency due to challenged computing resources.
An edge—cloud quality-control framework with real-time anomaly detection and predictive analytics capabilities is
proposed. Al-based applications with active learning on the edge provide constant real-time services to detect data
anomalies in quality features from quality-control check points. Al-enabled cloud services orchestrate the entire system
by continuously monitoring operational conditions and storing all data, validating the use of predictive-quality-control
analysis.
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1. INTRODUCTION

While the digitisation of the manufacturing sector holds great promise, guaranteeing quality and performance in complex-
smart manufacturing scenarios remains challenging. Although intelligent inspection systems seek fault-free production,
they heavily rely on external cloud for both detection and diagnosis. Quality problems thus still jeopardize productivity
and profits. An innovative autonomous quality-control mechanism leveraging edge-cloud collaborative artificial
intelligence to realise real-time data analysis and decision-making addresses these concerns. Experimental results on real
wood materials and a numerical benchmark of logistic regression with remote support illustrate the approach.
Autonomous quality control puts data lifecycle management at the heart of the solution. Proper data storage, governance
and privacy also support user privacy, data protection and compliance with industry regulations.

The proposed architecture enables local detection of anomalies during production inspections, with distances-to-
classification-boundaries from edge-embedded artificial-intelligence models monitored continuously to predict
remaining-quality levels, identify potential faults and trigger predictive-maintenance activities in advance. These
capabilities help the operator keep production on the right track from the perception perspective, thus preventing future
quality degradation. The deployed-edge artificial-intelligence model also monitors the trend of the most recent analysed
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batches in anticipation of quality drop. One instance of deteriorating product quality prediction, detected by contrasting
the trend with the normality region, is illustrated in the results.

1.1. Overview of the Study

Remaote quality control leveraging edge computing and Al is an active area of research, but combining quality monitoring,
predictive analytics, anomaly detection, and autonomous decision-making using a cloud—edge model is a new approach
that facilitates rapid deployment. The field remains congested, however. Manufacturing companies that aim to rapidly
develop reliable innovative solutions with edge—cloud features require capabilities that can process information remotely
while being tightly governed in the cloud. The quest to shape these solutions led to the design of an autonomous quality-
control architecture. From a particular project, an edge—cloud hierarchical framework that orchestrates real-time data
acquisition and preprocessing, edge anomaly detection systems and cloud predictive analytics is proposed.

Autonomous quality-control mechanisms are built into the framework as an integral part of the architecture. A cloud
system takes care of decisions about quality-control policy. Information on several quality characteristics of products
undergoes analysis in real time during manufacturing. Supported by various technical advances, remote quality
monitoring and control are intensively studied topics. Quality-related data pertaining to manufacturing processes,
products, and measurements from in-line sensors and signals that emerge in a process containing an edge—cloud structure
can be exploited not just for quality monitoring but also for predictive analytics and real-time decision support.
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Fig 1: Hierarchical Edge—Cloud Architectures for Autonomous Quality Control: Orchestrating Real-Time Anomaly
Detection and Predictive Governance in Smart Manufacturing

2. BACKGROUND AND CONTEXT

1. Smart Manufacturing and Quality Control

Smart manufacturing systems combine the capabilities of Cyber-Physical Systems (CPS), Industrial Internet of Things
(110T), Edge-Cloud Artificial Intelligence (Al) ecosystem and Digital Twins to enhance operational efficiency,
productivity, safety and quality of products. Quality control is an essential part of smart manufacturing. It mainly consists
of two processes: real-time anomaly detection and predictive quality analytics. Real-time anomaly detection verifies
whether manufactured products satisfy predefined quality standards. Quality inspection is usually performed using
specialized sensors and machine learning models with high predictive performance. Predictive quality analytics exploits
historical quality-related data (other than real-time inspection data) to develop predictive models for identifying possible
issues in product quality before the products are shipped to customers.

Traditional quality control is primarily human-driven and requires the involvement of quality control professionals for
carrying out all-related activities, including setting up inspection sensors, training machine learning models, checking
inspection results, performing exploratory data analysis and implementing predictive models. An autonomous and
human-independent quality control framework enables manufacturing inspections without human intervention. The
framework, which adopts an edge-cloud hierarchy and edge Al techniques, employs data management mechanisms that
address data governance, quality, protection and privacy issues. The study focuses on real-time anomaly detection and
predictive quality analytics.

2. Edge Artificial Intelligence

Edge computing is a sub-distribution routing architecture that brings computing resources closer to the network edge
(where the proximity to the end-user is closest). Therefore, the distance and the cost of transmitting bulk data over
bandwidth-constrained links to the central cloud are reduced. Edge computing expands and complements the cloud and
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can be applied in situations of high data volume and rapid decision-making demands. Edge Al combines edge computing
and Al algorithms and components for executing advanced Al algorithms on edge devices. Mist computing extends cloud
experts (Cloudlets) to the network edge and edge devices and enables a small data centre of resources making intelligent

decision-making at the far edge with a tiny storage capability but high-speed communication.
Logistic (Sigmoid) Function o(z)=1/(1+e"{-z})
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Equation 1) Real-time anomaly detection as a supervised classifier (logistic regression)

1.1 Data + model definition (binary “OK vs Defect”)
Let the training dataset be:
{(x, Y3,

e x; € R%: feature vector (sensor values, image features, etc.)

o y; €{0,1}: label (0 = normal/OK, 1 = defect/anomaly)
Linear score (logit):

Zi=W'X;+b

Sigmoid to probability:

1
I+e %

pi=Pyi=11x)=0(z)=

1.2 Likelihood — loss (cross-entropy) step-by-step
For a Bernoulli target y;, the probability of observing y; is:

P(y; 1 %) = p]'(1 = p)U=>0
For the whole dataset (assuming independent samples):

N
HAw,b) = npiy" (1 =p)U=?
i=1

Take log-likelihood:

log? = Z[yilog(pi) + (I = yplog(I — py)]
i=1

We typically minimize negative log-likelihood — cross-entropy loss:
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J(w,b) = — Z[inOg(pi) + (I —y)log( — py)]

i=1

(Optionally average: divide by N.)

1.3 Gradient derivation (key training equations)
aJ aj

We need o and e

First, note:

dp;
pi = 0(z), d_z: =p,(I —py)

For one sample loss:
Ji = —lyilog(p) + (I — y)log( — p)]
Differentiate w.r.t z;:
o _ o) om
dz; Op; 0z;
Compute g—z]’ii:
i ()’i I = }’i)

o \p I-pi

Multiply by p; (1 — p;):

a/; Z_(J’i 1=y

9z, \pi I-p

)Pi(l —pi)
Simplify:

e First term: —%pi(l -p) =—-y;(I—p)
e Second term: +%pi(1 —-p) =U—-y)pi

So:

o;
o, = il =p) + U —ydpi =pi — ¥
l

Now use z; = w'x; + b:

Ozi _ 6Zi _ 1
ow ' 3p
Therefore:

i F]
2= §V=1(Pi -y X é = {V=1(Pi —¥i)

ow

1.4 Gradient descent update rules (edge training / retraining)

With learning rate n:
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2.1. Smart Manufacturing and Quality Control

An autonomous quality control solution in smart manufacturing aligns with the vision outlined in Industry 4.0. Quality-
control applications that rely on artificial intelligence (Al) serve as examples aligned with this vision. These applications
generally exploit the advances provided by edge computing technologies that enable resource-constrained components
to process real-time data. For example, in Smart Manufacturing, the manufacturing enterprise effectively manages quality
data acquired and analyzed in real-time by resource-constrained edge devices. Such devices apply Al models to detect
quality anomalies and predict the quality of parts produced downstream in the process. However, the execution of
supervision-based Al tasks typically requires advanced equipment on the cloud or in the private data center.

Research was conducted to develop a solution that satisfies the concept of autonomous edge-cloud orchestration for
quality-control applications in a Smart Manufacturing environment, with a focus on the Windows OS platform. Based
on this approach, resource-constrained edge devices apply Al models for autonomous quality control in the Smart
Manufacturing production line. Specifically, the Al models detect deviations in the normal conditions of the produced
parts and predict the quality of parts that may be produced downstream. Since the execution of the models requires the
use of advanced equipment, a cloud-based data-flow management strategy is introduced to enable the use of both edge
and cloud devices.

2.2. Edge Artificial Intelligence

Systems built on the edge-cloud hierarchy introduce localized intelligence into smart manufacturing systems, aiming to
mitigate operations expenses through localized services and accelerate the response times and interactivity to physical-
process changes at the edge. Edge intelligence lowers bandwidth consumption, reduces the traffic to cloud resources, and
increases the service quality and reliability to final users. An empowered edge has an Al Neuro-Computing Unit and a
data-kernel marketplace, where apps can self-assemble; the kernel forwards the values of registered variables to the apps,
which exchange JSON packages with other apps. Optimal-placement algorithms enhance resource exploitation and
respect real-time constraints inside an Al cloud. Business processes merge Al services and physical processes into a
single smart entity, acting as a supplier and consumer of these services using interest-driven data communication.
In-depth insight into the quality of a product at the same time as its production is still a challenge in current smart-factory
applications. By packaging the output of the production line and comparing it with the product at the origin, the quality-
control inspection represents a major bottleneck in the flow of goods. Anomaly detection on the production line combined
with predictive quality analytics and Al explainable models acts autonomously at the edge and anticipatively on cloud
resources.

Scenario End-to-end latency (ms) | Upstream bandwidth (MB/s)
Edge inference 18 0.2
Cloud inference (+network) 220 8.0
Hybrid (edge detect + cloud predict) | 70 14

3. SYSTEM ARCHITECTURE

A hierarchical architecture that integrates edge computing and cloud orchestration enables autonomous quality control in
smart manufacturing. The orchestration layer ensures proper overarching functioning of the autonomous quality control
solution.

The hierarchical smart manufacturing architecture exploits edge computing and cloud orchestration. Quality control
issues at smart manufacturing facilities are resolved through a set of autonomous mechanisms that utilize distributed edge
devices. A dedicated edge-cloud architecture supports data acquisition and real-time detection of defects. Visual
anomalies on product surfaces are detected at the edge through an edge-artificial-intelligence solution. Post anomaly
detection, cloud processing orchestrates a preventive measure to ascertain quality at a predictive level. For all factory-
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level quality and predictive-quality concerns, a top-layer cloud implementation leverages facilities across product life-
cycles, addresses anomalies timeously, and enables predictive analytics that can identify the need for product-leak testing.

3.1. Edge-Cloud Hierarchy

The proposed solution comprises an edge-cloud data acquisition and orchestration hierarchy. Quality-relevant data are
continuously captured from the production process by distributed sources, packaged, and uploaded to a data repository
for training, validation, and testing. The deployment of specialized models at the edge detects quality-relevant
abnormalities in real time and generates edge-generated quality analytics. Time-series data generated by quality-
controlling measurement instruments are also subjected to predictive analytics concerning measures of final product
quality—information that is critical for production planning and needs to be relayed to the planning module in the cloud.
Data governance constitutes a major consideration at every step of the data-lifecycle management process. Data
acquisition from smart-manufacturing processes involves four concerns: the exposure of sensitive data to third parties,
compliance with data-associated privacy regulations such as the General Data Protection Regulation (GDPR) in Europe,
the adverse impact of such exposure on the company’s intellectual property (IP) and commercial interests, and protection
against cybersecurity threats.
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Fig 2: Secure Edge-Cloud Orchestration: A Multi-Tiered Data Governance Framework for Real-Time Quality
Analytics in Smart Manufacturing

3.2. Data Acquisition and Preprocessing

An industrial Internet of Things (10T) platform governs the data acquisition and preprocessing subsystems. The data
acquisition subsystem connects to a factory's loT platform for the collection of production and operational data, including
product attributes, product impregnation statuses, process environments, equipment conditions, and inspection results.
Collected data may be polluted with noise, defects, or out-of-range sensor or label values. Thus, the data preprocessing
subsystem removes invalid data records and pollutants that hinder the subsequent learning and analytical processes. It
detects anomalous values by leveraging process correlations of other sensor measurements or Boolean inspection modes.
The conditions for anomalous-value detection and ranges for valid sensor values are factory-specific know-how.
Integrating these conditions and values requires data-provenencing logics or the support of quality engineers with 10T
visions by domain expertise.

Considering the heterogeneity of the acquired data and varying frequencies and proportions, the data-preprocessing
subsystem aggregates all data records to a common frequency and desensitizes the signal variations by adjusting the
sampling intervals. These pretreatment steps yield suitable training data for the subsequent training of the edge edge-
artificial-intelligence (Al) service by leveraging a temporal sequence predictive algorithm. Agnarasen et al. relate to the
prediction of an object attribute according to the values of a set of other correlated sensors. By reducing the richness of
the input features through correlation analysis, attention-based temporal sequence networks can provide satisfactory
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object attribute detection. Grouping these networks into subnets with shared model parameters makes the training process
easier without sacrificing the detection precision.

4. AUTONOMOUS QUALITY CONTROL MECHANISMS

Autonomous quality control operations are supported through real-time detection of critical or excessive deviations from
normal data patterns. Such deviations uncharacteristically affect a key quality indicator of the manufacturing processes
and/or products. In addition, a predictive optimizer provides advance decision-support based on trend analysis of the data
relating to that quality indicator. The predictive module evaluates the potential quality degradation and recommends
technological or organizational interventions that will minimize or even avert non-conformance to quality standards.
The mechanisms are implemented at the edge level. One mechanism detects abnormal domain data streams and the other
predicts the future values of the root causes, most affecting quality. Both mechanisms rely on a historical model of the
factory, and warn factory personnel about critical developments in real time and in advance of the occurrence,
respectively. Data with reference to a key quality characteristic is being continuously recorded and analysed for training
the mechanism for predictive quality analytics. The results provide a basis for earlier intervention and control in relation
to process and product quality, and associated business losses.

lllustrative Logistic-Regression Decision Boundary

e Class 0 (normal/OK)
44 Class 1 (defect/anomaly)
- Decision boundary (w-x=0)

Feature 2
o

-2

Feature 1

Equation 2) Distance-to-classification-boundary
For a linear classifier boundary:

w'x+b=0
2.1 Signed distance derivation (step-by-step)

Distance from point x to the hyperplane is:

1. The hyperplane normal vector is w.
2. The projection of x onto the unit normal direction ﬁ gives distance scale.

The signed distance:

w'x+b

4 =5

e d(x) > 0:on the “defect” side (depending on label convention)

e d(x) < 0: on the “OK” side
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e |d(x)|: margin/confidence

2.2 Mapping distance — “remaining quality level”
A common, simple mapping is to interpret the logit magnitude as confidence and use sigmoid:
Because z = w'x + b,
p(defect | X) = o(z)
If you want “remaining quality” as higher = better, define:
Q(x) =1—p(defect | x) =1 —0(z) = 0(—2)
Or in distance form (since z =|| w |- d(X)):

QX =o(-llwi dX)

4.1. Real-Time Anomaly Detection

Correlating inputs and outputs in manufacturing workflows enables manufacturers to identify states of the workflow and
to monitor the appearance of quality-related problems in real time. A supervised anomaly detection model classifies the
quality state of the products or the overall workflow according to a set of quality-related input-output signals. During the
learning phase the quality states are annotated and then used to train the classification model. The annotated states can
be labelled by an expert operator, for example in a low-frequency batch production scenario, or automatically produced
by a predictive maintenance model in a high-frequency scenario. The trained model can then run to classify the products’
quality in real time. As for any classification model, the real-time observations are compared with the predictions. When
a divergence (an anomaly) occurs, the corresponding information is propagated as an alarm (i.e., anomaly detected) to
the quality-control supervisor.

For collaborative production with multiple production workflows involved, such as the example case of jewelled watch
production with watch case, watch movement, and watch strap assembly workflows running on different production
systems, the correlation of quality-related input-output signals of the collaborative production workflows can be built to
detect the potential quality issues of product collaboration quality.

4.2. Predictive Quality Analytics

Predictive quality analytics examine quality trends over time with a view to estimating future quality across sets of similar
products and providing timely alerts to possible quality issues. By preventing deviations from quality norms, especially
in large-scale manufacturing, production costs can be reduced. The analytics process begins with the automatic selection
of relevant continuous quality attributes or measurements from the repository of finally approved quality data. The next
step is to collect the values of the selected measurements from their respective databases in a predefined window length.
After prediction model development, the model is deployed for real-time inference.

Whenever the incoming values for the selected measurements exceed the trigger point for alert generation, a predicted
quality alert is raised. When at least a fixed number of consecutive alerts are raised, or whenever a predefined period of
continuous alerts is reached, a possible future quality issue alert is generated. The predictive quality analytics framework
has been successfully implemented in a simulated hard-disk drive manufacturing unit. Data from the publicly available
SECOM dataset, a process for manufacturing the production floor piece with real-time attempt and anomaly detection,
and prospects for helping edge devices for past production analysis are presented.

Pred O | Pred 1
Actual 0 (OK) 930 30
Actual 1 (Defect) | 45 95

5. DATA GOVERNANCE, SECURITY, AND PRIVACY
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Data governance promotes data quality, manageability, and security. Creating a variety of data for multiple users opens
the possibility of sensitive information being destroyed or released unexpectedly. This section outlines the data protection
quality-control process and the applicable regulations.

The Data Protection Act 2018 regulates the processing of personal data within the United Kingdom. It is based on the
EU General Data Protect Regulation, the EU Law Enforcement Directive, and the Regulation of Investigatory Powers
Act. The regulation is compliant with the Council of Europe’s Convention for the Protection of Individuals with regard
to Automatic Processing of Personal Data and the United Nations Convention on the Rights of Persons with Disabilities.
A data protection officer is designated to monitor compliance. Data are processed in accordance with the data subject’s
rights, including the right of access to their personal data. Appropriate technical measures are in place to protect data.
Data sharing is controlled and written data-sharing agreements are put in place.

Most other jurisdictions support freedom of data publication, with appropriate privacy protections. Even when not
required by law, granting unrestricted access to sensitive data can lower their value. Organisational policies are reinforced
to make sure no data modification becomes irreversible. As much as possible, all modifications are reversible.
Furthermore, only datasets that are legally permitted to be shared without restriction are published.

5.1. Data Management Strategies and Compliance Frameworks

As advanced manufacturing systems embrace business process optimization and data governance, so Al-augmented
autonomous quality control solutions also address management and compliance related to data sensitivity, legal
ownership, and security. Indeed, due to privacy concerns, errors, and the potential for Al-based solutions to present fake
or misleading information, explainability, fairness, security, and quality control processes must also be considered within
data management plans. Consequently, data at rest as well as in transit and use demand protection based on fundamental
principles.

An in-depth explanation of a Data Management Plan Strategy considers processes, methodologies, and tools dedicated
to the protection of users’ sensitive data within an Intelligent Cloud-Edge System. To guarantee the proper use of data
security mechanisms, a DPM framework, encompassing authentication, authorization, audit, confidentiality, integrity,
and availability, provides a set of processes, methodologies, and tools designed to secure all users’ data resources against
threats across cloud-edge-based services. Such a DPM guarantees confidentiality by defining a role-based access
mechanism, integrity through a watermarking strategy, availability by implementing redundancy mechanisms, and
protection against malicious operations via an audit procedure, and it supports cloud-edge security by adopting a privacy-
preserving cloud-edge service selection algorithm.

Intelligent Cloud-Edge System
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Fig 3: Securing the Intelligent Frontier: A Holistic Data Management Plan (DMP) Framework for Al-Augmented
Cloud-Edge Manufacturing

5.2. Best Practices for Data Protection and Regulatory Compliance
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To mitigate the risk of incidents arising from improper data management practices, the identified data governance
framework must be aligned with established industry standards and best practices. These provide a roadmap for
businesses to implement appropriate security control mechanisms and ensure effective data governance across the entire
lifecycle of Al systems. Within the proposed architecture, data protection is crucial, as the control units contain real-time
quality data and models that detect quality anomalies and predict product quality.

Moreover, European General Data Protection Regulation policies must be rigorously followed, as small manufacturing
companies face fragile data protection policies. Regardless of the high value of cameras in the production environment,
their data can be rarely stored or used for model training. Edge-cloud data management must follow a cloud-inclusive
setup, allowing data capturing for training purposes only when strictly needed and with consent from supervisors. These
best practices enable small companies to keep cloud expenses low while fulfilling GDPR rules.

Metric Value

Accuracy 0.9318181818181818
Precision (Defect) | 0.76

Recall (Defect) 0.6785714285714286
F1 (Defect) 0.7169811320754718

6. EVALUATION AND VALIDATION

To validate autonomous quality control capabilities, an edge-cloud ecosystem orchestrates predictive quality analytics
through Al-enabled cloud solutions. Edge devices enable real-time anomaly detection using Al models trained on sensor
metadata and images, with inference occuring directly on-board. Sensor measurements are securely transmitted to the
cloud for predictive quality modelling. Data transfer is controlled by a dedicated data governance module, which
automatically selects the most relevant records for quality modelling and ensures compliance with data-security
regulations. Results from a smart factory-quality dataset demonstrate the feasibility and performance of the edge Al
solutions for real-time detection of anomalous samples, while future work aims to complete the end-to-end system and
address data governance, security, and compliance challenges when using cloud datasets.

The growing concern of data security regulations, together with the increasing need to demonstrate compliance with
regulations such as the European General Data Protection Regulation (GDPR), has promoted the development of data
governance solutions and strategies for data protection when storing and sharing information. Within an edge-cloud
context, these solutions and strategies have been typically considered in the cloud zone, verifying and controlling data
transfer from the edge devices to the central repository. Such approaches generally allow for developing highly accurate
ad hoc models while ensuring data security. However, as regulations evolve and change, the need for up-to-date data
becomes crucial.

Distance-to-Classification-Boundary Trend (lllustrative)

Signed distance d(t)

—— Distance-to-boundary d(t)
0.0 1 ==~ Healthy mean p

=== Normality lower p-20

-= Trigger (u-2.50)

0 20 40 60 80 100 120
Batch index t

Equation 3) Trend monitoring + “normality region” detection (early warning)

Let d; be the signed distance (or any quality indicator) for batch/time index t.
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3.1 Build a normality region from healthy history

Using a baseline “healthy” window t € 4.
Mean:

#=@Zdt

teAH

Std (sample):

1
o=ﬁ%_]§}¢—m2

tex
Normal band (example):
[t — 20, u+ 20]
Trigger threshold (stricter):
T=u—250

(Choose sign depending on whether decreasing distance indicates degradation.)

3.2 Smooth the trend (moving average)

Moving average over window W:

_ )
do= ) di
k=0
Alert if smoothed indicator crosses trigger:
A = {1 d, <t
t — .
0 otherwise

6.1. Future Directions and Insights

Increasingly complex manufacturing environments demand effective data governance strategies that facilitate intelligent
decision-making while minimizing risks to product quality, equipment reliability, and labour force safety. The emergence
of edge artificial intelligence (Al) accelerates data delivery timelines and enhances information security, but the subset
of fast-response quality management systems remains limited. Advanced analytics on data hovering close to the source
provide accelerated support for autonomous quality control over production setups equipped with integrated vision
systems. Novel mechanisms for real-time anomaly detection and predictive quality analytics have been devised.
Validated via a smart manufacturing demonstrator, the control techniques support rapid identification of non-conforming
products for corrective action or removal from the normal flow, as well as prediction of product quality indicators based
on sensor data and feature extraction from production images. Coordination between cloud services and an edge Al
gateway harnesses the combined power of the edge and cloud compute capabilities. However, the architecture and the
development of such capabilities must be enriched with data governance strategies to achieve autonomous data operation
without compromising security and privacy.

7. CONCLUSION

The proposed architecture and algorithms address the needs for autonomous and non-intrusive quality control in smart
manufacturing. Orchestration of Al services and data at the edge and cloud levels aims to minimize latency and energy
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consumption while maximizing security and compliance. Real-time anomaly detection enables early identification of
deviations from the expected production quality; predictive quality analytics avoids defective products and any associated
manufacturing costs, thus ensuring financial sustainability. Making these Al services available as a catalog empowers
any stakeholder to autonomously monitor the production quality through convenient interfaces and without direct
involvement of skilled personnel in the development, training, maintenance, or execution of the models. Most
importantly, such autonomous quality control is realized in compliance with industry regulations, proactively preserving
production data confidentiality and privacy.

The research and development jointly performed at Politecnico di Milano, Palo Alto University, RMIT, and lIstituto
Italiano di Tecnologia open further opportunities to benefit from edge-cloud collaboration in multimodal data
management by exploiting the rich information present in the datasets involved in the aforementioned production quality
control activities.

Architecture Resource Distribution

Security & Compliance

Predictive Analytics

Edge-Cloud Orchestration

Fig 4: Architecture Resource Distribution

7.1. Final Thoughts and Implications for Industry

The proposed approach represents a step toward autonomous production quality control. Operationalizing this capability
reduces the need for human oversight while gaining operational and production performance advantages. Self-managed
edge Al solutions can restore their own real-time control apply of damage prediction and mitigation operational
playbooks. Cloud-based dynamic workload allocation can optimize the TCO of human resources.

Evidence obtained from an actual implementation indicates that effecting predictive quality analytics improves
production performance and reduces the overall cost of quality. Future work will continue extending the two autonomous
quality control mechanisms—real-time anomaly detection and predictive quality analytics—through the data governance,
security, and privacy lenses. Cloud-based dynamic workload orchestration support ensure enterprise-wide cost-effective
delivery. The solution is expected to be especially valuable for production environments where human supervision is
limited or impractical, yet a stable production quality is vital for retaining customers and ensuring safety.
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