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Abstract: Manufacturing industries are embracing smart solutions to achieve operational excellence by enhancing 

controllability, visibility, and flexibility. An intelligent quality control system with autonomous capabilities is a critical 

enabler of smart manufacturing. The autonomous quality control mechanism integrates edge artificial intelligence and 

cloud orchestration—AI-based applications for real-time anomaly detection and predictive analysis, AI-enabled cloud 

services for system orchestration, and edge-cloud data governance. The effectiveness of the proposed approach is 

demonstrated in a case study involving a complex process using Internet-of-Things devices for data acquisition. 

Understanding the complex, repetitive, and noisy nature of manufacturing processes with advanced machine-learning 

algorithms often requires substantial data-analytics infrastructure. Moving all data to the cloud for processing and storing 

is not feasible for operational efficiency when the core functions are repetitive, time-sensitive, and performance-critical. 

Solutions deployed on edge devices provide limited performance and efficiency due to challenged computing resources. 

An edge–cloud quality-control framework with real-time anomaly detection and predictive analytics capabilities is 

proposed. AI-based applications with active learning on the edge provide constant real-time services to detect data 

anomalies in quality features from quality-control check points. AI-enabled cloud services orchestrate the entire system 

by continuously monitoring operational conditions and storing all data, validating the use of predictive-quality-control 

analysis. 

 

Keywords: Smart Manufacturing Systems, Autonomous Quality Control, Intelligent Quality Inspection, Edge Artificial 

Intelligence, Cloud-Based AI Orchestration, Edge–Cloud Integration, Real-Time Anomaly Detection, Predictive Quality 

Analytics, Industrial Internet of Things (IIoT), AI-Driven Process Monitoring, Active Learning at the Edge, 

Manufacturing Data Governance, Distributed AI Architectures, Time-Critical Industrial Analytics, Operational 

Excellence Enablement, Scalable Quality-Control Frameworks, Edge–Cloud Data Pipelines, Performance-Critical AI 

Systems, Intelligent Manufacturing Operations, AI-Orchestrated Industrial Systems.  

 

1. INTRODUCTION 

 

While the digitisation of the manufacturing sector holds great promise, guaranteeing quality and performance in complex-

smart manufacturing scenarios remains challenging. Although intelligent inspection systems seek fault-free production, 

they heavily rely on external cloud for both detection and diagnosis. Quality problems thus still jeopardize productivity 

and profits. An innovative autonomous quality-control mechanism leveraging edge-cloud collaborative artificial 

intelligence to realise real-time data analysis and decision-making addresses these concerns. Experimental results on real 

wood materials and a numerical benchmark of logistic regression with remote support illustrate the approach. 

Autonomous quality control puts data lifecycle management at the heart of the solution. Proper data storage, governance 

and privacy also support user privacy, data protection and compliance with industry regulations. 

The proposed architecture enables local detection of anomalies during production inspections, with distances-to-

classification-boundaries from edge-embedded artificial-intelligence models monitored continuously to predict 

remaining-quality levels, identify potential faults and trigger predictive-maintenance activities in advance. These 

capabilities help the operator keep production on the right track from the perception perspective, thus preventing future 

quality degradation. The deployed-edge artificial-intelligence model also monitors the trend of the most recent analysed 
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batches in anticipation of quality drop. One instance of deteriorating product quality prediction, detected by contrasting 

the trend with the normality region, is illustrated in the results. 

 

 

1.1. Overview of the Study 

Remote quality control leveraging edge computing and AI is an active area of research, but combining quality monitoring, 

predictive analytics, anomaly detection, and autonomous decision-making using a cloud–edge model is a new approach 

that facilitates rapid deployment. The field remains congested, however. Manufacturing companies that aim to rapidly 

develop reliable innovative solutions with edge–cloud features require capabilities that can process information remotely 

while being tightly governed in the cloud. The quest to shape these solutions led to the design of an autonomous quality-

control architecture. From a particular project, an edge–cloud hierarchical framework that orchestrates real-time data 

acquisition and preprocessing, edge anomaly detection systems and cloud predictive analytics is proposed. 

Autonomous quality-control mechanisms are built into the framework as an integral part of the architecture. A cloud 

system takes care of decisions about quality-control policy. Information on several quality characteristics of products 

undergoes analysis in real time during manufacturing. Supported by various technical advances, remote quality 

monitoring and control are intensively studied topics. Quality-related data pertaining to manufacturing processes, 

products, and measurements from in-line sensors and signals that emerge in a process containing an edge–cloud structure 

can be exploited not just for quality monitoring but also for predictive analytics and real-time decision support. 

 

 
Fig 1: Hierarchical Edge–Cloud Architectures for Autonomous Quality Control: Orchestrating Real-Time Anomaly 

Detection and Predictive Governance in Smart Manufacturing 

 

2. BACKGROUND AND CONTEXT 

 

1. Smart Manufacturing and Quality Control 

Smart manufacturing systems combine the capabilities of Cyber-Physical Systems (CPS), Industrial Internet of Things 

(IIoT), Edge-Cloud Artificial Intelligence (AI) ecosystem and Digital Twins to enhance operational efficiency, 

productivity, safety and quality of products. Quality control is an essential part of smart manufacturing. It mainly consists 

of two processes: real-time anomaly detection and predictive quality analytics. Real-time anomaly detection verifies 

whether manufactured products satisfy predefined quality standards. Quality inspection is usually performed using 

specialized sensors and machine learning models with high predictive performance. Predictive quality analytics exploits 

historical quality-related data (other than real-time inspection data) to develop predictive models for identifying possible 

issues in product quality before the products are shipped to customers. 

Traditional quality control is primarily human-driven and requires the involvement of quality control professionals for 

carrying out all-related activities, including setting up inspection sensors, training machine learning models, checking 

inspection results, performing exploratory data analysis and implementing predictive models. An autonomous and 

human-independent quality control framework enables manufacturing inspections without human intervention. The 

framework, which adopts an edge-cloud hierarchy and edge AI techniques, employs data management mechanisms that 

address data governance, quality, protection and privacy issues. The study focuses on real-time anomaly detection and 

predictive quality analytics. 

2. Edge Artificial Intelligence 

Edge computing is a sub-distribution routing architecture that brings computing resources closer to the network edge 

(where the proximity to the end-user is closest). Therefore, the distance and the cost of transmitting bulk data over 

bandwidth-constrained links to the central cloud are reduced. Edge computing expands and complements the cloud and 
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can be applied in situations of high data volume and rapid decision-making demands. Edge AI combines edge computing 

and AI algorithms and components for executing advanced AI algorithms on edge devices. Mist computing extends cloud 

experts (Cloudlets) to the network edge and edge devices and enables a small data centre of resources making intelligent 

decision-making at the far edge with a tiny storage capability but high-speed communication. 

 
 

Equation 1) Real-time anomaly detection as a supervised classifier (logistic regression) 

1.1 Data + model definition (binary “OK vs Defect”) 

Let the training dataset be: 

{(𝐱𝑖 , 𝑦𝑖)}𝑖=1
𝑁  

• 𝐱𝑖 ∈ ℝ𝑑: feature vector (sensor values, image features, etc.) 

• 𝑦𝑖 ∈ {0,1}: label (0 = normal/OK, 1 = defect/anomaly) 

Linear score (logit): 

𝑧𝑖 = 𝐰⊤𝐱𝑖 + 𝑏 

Sigmoid to probability: 

𝑝𝑖 = 𝑃(𝑦𝑖 = 1 ∣ 𝐱𝑖) = 𝜎(𝑧𝑖) =
1

1+ 𝑒−𝑧𝑖
 

1.2 Likelihood → loss (cross-entropy) step-by-step 

For a Bernoulli target 𝑦𝑖, the probability of observing 𝑦𝑖 is: 

𝑃(𝑦𝑖 ∣ 𝐱𝑖) = 𝑝𝑖
𝑦𝑖(1− 𝑝𝑖)

(1−𝑦𝑖) 

For the whole dataset (assuming independent samples): 

ℒ(𝐰, 𝑏) =∏𝑝𝑖
𝑦𝑖

𝑁

𝑖=1

(1− 𝑝𝑖)
(1−𝑦𝑖) 

Take log-likelihood: 

logℒ =∑[𝑦𝑖log(𝑝𝑖) + (1− 𝑦𝑖)log(1− 𝑝𝑖)]

𝑁

𝑖=1

 

We typically minimize negative log-likelihood → cross-entropy loss: 
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𝐽(𝐰, 𝑏) = −∑[𝑦𝑖log(𝑝𝑖) + (1 − 𝑦𝑖)log(1− 𝑝𝑖)]

𝑁

𝑖=1

 

(Optionally average: divide by 𝑁.) 

1.3 Gradient derivation (key training equations) 

We need 
∂𝐽

∂𝐰
 and 

∂𝐽

∂𝑏
. 

First, note: 

𝑝𝑖 = 𝜎(𝑧𝑖), 
𝑑𝑝𝑖
𝑑𝑧𝑖

= 𝑝𝑖(1− 𝑝𝑖) 

For one sample loss: 

𝐽𝑖 = −[𝑦𝑖log(𝑝𝑖) + (1− 𝑦𝑖)log(1− 𝑝𝑖)] 

Differentiate w.r.t 𝑧𝑖: 

∂𝐽𝑖
∂𝑧𝑖

=
∂𝐽𝑖
∂𝑝𝑖

⋅
∂𝑝𝑖
∂𝑧𝑖

 

Compute 
∂𝐽𝑖

∂𝑝𝑖
: 

∂𝐽𝑖
∂𝑝𝑖

= −(
𝑦𝑖
𝑝𝑖
−
1 − 𝑦𝑖
1 − 𝑝𝑖

) 

Multiply by 𝑝𝑖(1− 𝑝𝑖): 

∂𝐽𝑖
∂𝑧𝑖

= −(
𝑦𝑖
𝑝𝑖
−
1 − 𝑦𝑖
1 − 𝑝𝑖

) 𝑝𝑖(1− 𝑝𝑖) 

Simplify: 

• First term: −
𝑦𝑖

𝑝𝑖
𝑝𝑖(1− 𝑝𝑖) = −𝑦𝑖(1− 𝑝𝑖) 

• Second term: +
1−𝑦𝑖

1−𝑝𝑖
𝑝𝑖(1− 𝑝𝑖) = (1− 𝑦𝑖)𝑝𝑖 

So: 

∂𝐽𝑖
∂𝑧𝑖

= −𝑦𝑖(1− 𝑝𝑖) + (1 − 𝑦𝑖)𝑝𝑖 = 𝑝𝑖 − 𝑦𝑖 

Now use 𝑧𝑖 = 𝐰⊤𝐱𝑖 + 𝑏: 

∂𝑧𝑖
∂𝐰

= 𝐱𝑖 , 
∂𝑧𝑖
∂𝑏

= 1 

Therefore: 

∂𝐽

∂𝐰
= ∑ (𝑝𝑖 − 𝑦𝑖)

𝑁
𝑖=1 𝐱𝑖 

∂𝐽

∂𝑏
= ∑ (𝑝𝑖 − 𝑦𝑖)

𝑁
𝑖=1  

1.4 Gradient descent update rules (edge training / retraining) 

With learning rate 𝜂: 
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𝐰 ← 𝐰− 𝜂∑ (𝑝𝑖 − 𝑦𝑖)
𝑁
𝑖=1 𝐱𝑖 𝑏 ← 𝑏 − 𝜂∑ (𝑝𝑖 − 𝑦𝑖)

𝑁
𝑖=1  

 

2.1. Smart Manufacturing and Quality Control 

An autonomous quality control solution in smart manufacturing aligns with the vision outlined in Industry 4.0. Quality-

control applications that rely on artificial intelligence (AI) serve as examples aligned with this vision. These applications 

generally exploit the advances provided by edge computing technologies that enable resource-constrained components 

to process real-time data. For example, in Smart Manufacturing, the manufacturing enterprise effectively manages quality 

data acquired and analyzed in real-time by resource-constrained edge devices. Such devices apply AI models to detect 

quality anomalies and predict the quality of parts produced downstream in the process. However, the execution of 

supervision-based AI tasks typically requires advanced equipment on the cloud or in the private data center. 

Research was conducted to develop a solution that satisfies the concept of autonomous edge-cloud orchestration for 

quality-control applications in a Smart Manufacturing environment, with a focus on the Windows OS platform. Based 

on this approach, resource-constrained edge devices apply AI models for autonomous quality control in the Smart 

Manufacturing production line. Specifically, the AI models detect deviations in the normal conditions of the produced 

parts and predict the quality of parts that may be produced downstream. Since the execution of the models requires the 

use of advanced equipment, a cloud-based data-flow management strategy is introduced to enable the use of both edge 

and cloud devices. 

 

2.2. Edge Artificial Intelligence 

Systems built on the edge-cloud hierarchy introduce localized intelligence into smart manufacturing systems, aiming to 

mitigate operations expenses through localized services and accelerate the response times and interactivity to physical-

process changes at the edge. Edge intelligence lowers bandwidth consumption, reduces the traffic to cloud resources, and 

increases the service quality and reliability to final users. An empowered edge has an AI Neuro-Computing Unit and a 

data-kernel marketplace, where apps can self-assemble; the kernel forwards the values of registered variables to the apps, 

which exchange JSON packages with other apps. Optimal-placement algorithms enhance resource exploitation and 

respect real-time constraints inside an AI cloud. Business processes merge AI services and physical processes into a 

single smart entity, acting as a supplier and consumer of these services using interest-driven data communication. 

In-depth insight into the quality of a product at the same time as its production is still a challenge in current smart-factory 

applications. By packaging the output of the production line and comparing it with the product at the origin, the quality-

control inspection represents a major bottleneck in the flow of goods. Anomaly detection on the production line combined 

with predictive quality analytics and AI explainable models acts autonomously at the edge and anticipatively on cloud 

resources. 

 

Scenario End-to-end latency (ms) Upstream bandwidth (MB/s) 

Edge inference 18 0.2 

Cloud inference (+network) 220 8.0 

Hybrid (edge detect + cloud predict) 70 1.4 

 

3. SYSTEM ARCHITECTURE 

 

A hierarchical architecture that integrates edge computing and cloud orchestration enables autonomous quality control in 

smart manufacturing. The orchestration layer ensures proper overarching functioning of the autonomous quality control 

solution. 

The hierarchical smart manufacturing architecture exploits edge computing and cloud orchestration. Quality control 

issues at smart manufacturing facilities are resolved through a set of autonomous mechanisms that utilize distributed edge 

devices. A dedicated edge-cloud architecture supports data acquisition and real-time detection of defects. Visual 

anomalies on product surfaces are detected at the edge through an edge-artificial-intelligence solution. Post anomaly 

detection, cloud processing orchestrates a preventive measure to ascertain quality at a predictive level. For all factory-
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level quality and predictive-quality concerns, a top-layer cloud implementation leverages facilities across product life-

cycles, addresses anomalies timeously, and enables predictive analytics that can identify the need for product-leak testing. 

 

3.1. Edge-Cloud Hierarchy 

The proposed solution comprises an edge-cloud data acquisition and orchestration hierarchy. Quality-relevant data are 

continuously captured from the production process by distributed sources, packaged, and uploaded to a data repository 

for training, validation, and testing. The deployment of specialized models at the edge detects quality-relevant 

abnormalities in real time and generates edge-generated quality analytics. Time-series data generated by quality-

controlling measurement instruments are also subjected to predictive analytics concerning measures of final product 

quality—information that is critical for production planning and needs to be relayed to the planning module in the cloud. 

Data governance constitutes a major consideration at every step of the data-lifecycle management process. Data 

acquisition from smart-manufacturing processes involves four concerns: the exposure of sensitive data to third parties, 

compliance with data-associated privacy regulations such as the General Data Protection Regulation (GDPR) in Europe, 

the adverse impact of such exposure on the company’s intellectual property (IP) and commercial interests, and protection 

against cybersecurity threats. 

 
Fig 2: Secure Edge-Cloud Orchestration: A Multi-Tiered Data Governance Framework for Real-Time Quality 

Analytics in Smart Manufacturing 

 

3.2. Data Acquisition and Preprocessing 

An industrial Internet of Things (IoT) platform governs the data acquisition and preprocessing subsystems. The data 

acquisition subsystem connects to a factory's IoT platform for the collection of production and operational data, including 

product attributes, product impregnation statuses, process environments, equipment conditions, and inspection results. 

Collected data may be polluted with noise, defects, or out-of-range sensor or label values. Thus, the data preprocessing 

subsystem removes invalid data records and pollutants that hinder the subsequent learning and analytical processes. It 

detects anomalous values by leveraging process correlations of other sensor measurements or Boolean inspection modes. 

The conditions for anomalous-value detection and ranges for valid sensor values are factory-specific know-how. 

Integrating these conditions and values requires data-provenencing logics or the support of quality engineers with IoT 

visions by domain expertise. 

Considering the heterogeneity of the acquired data and varying frequencies and proportions, the data-preprocessing 

subsystem aggregates all data records to a common frequency and desensitizes the signal variations by adjusting the 

sampling intervals. These pretreatment steps yield suitable training data for the subsequent training of the edge edge-

artificial-intelligence (AI) service by leveraging a temporal sequence predictive algorithm. Agnarasen et al. relate to the 

prediction of an object attribute according to the values of a set of other correlated sensors. By reducing the richness of 

the input features through correlation analysis, attention-based temporal sequence networks can provide satisfactory 
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object attribute detection. Grouping these networks into subnets with shared model parameters makes the training process 

easier without sacrificing the detection precision. 

 

4. AUTONOMOUS QUALITY CONTROL MECHANISMS 

 

Autonomous quality control operations are supported through real-time detection of critical or excessive deviations from 

normal data patterns. Such deviations uncharacteristically affect a key quality indicator of the manufacturing processes 

and/or products. In addition, a predictive optimizer provides advance decision-support based on trend analysis of the data 

relating to that quality indicator. The predictive module evaluates the potential quality degradation and recommends 

technological or organizational interventions that will minimize or even avert non-conformance to quality standards. 

The mechanisms are implemented at the edge level. One mechanism detects abnormal domain data streams and the other 

predicts the future values of the root causes, most affecting quality. Both mechanisms rely on a historical model of the 

factory, and warn factory personnel about critical developments in real time and in advance of the occurrence, 

respectively. Data with reference to a key quality characteristic is being continuously recorded and analysed for training 

the mechanism for predictive quality analytics. The results provide a basis for earlier intervention and control in relation 

to process and product quality, and associated business losses. 

 
 

Equation 2) Distance-to-classification-boundary  

For a linear classifier boundary: 

𝐰⊤𝐱 + 𝑏 = 0 

2.1 Signed distance derivation (step-by-step) 

Distance from point 𝐱 to the hyperplane is: 

1. The hyperplane normal vector is 𝐰. 

2. The projection of 𝐱 onto the unit normal direction 
𝐰

∥𝐰∥
 gives distance scale. 

The signed distance: 

𝑑(𝐱) =
𝐰⊤𝐱 + 𝑏

∥ 𝐰 ∥
 

• 𝑑(𝐱) > 0: on the “defect” side (depending on label convention) 

• 𝑑(𝐱) < 0: on the “OK” side 
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• |𝑑(𝐱)|: margin/confidence 

2.2 Mapping distance → “remaining quality level” 

A common, simple mapping is to interpret the logit magnitude as confidence and use sigmoid: 

Because 𝑧 = 𝐰⊤𝐱 + 𝑏, 

𝑝(defect ∣ 𝐱) = 𝜎(𝑧) 

If you want “remaining quality” as higher = better, define: 

𝑄(𝐱) = 1− 𝑝(defect ∣ 𝐱) = 1 − 𝜎(𝑧) = 𝜎(−𝑧) 

Or in distance form (since 𝑧 =∥ 𝐰 ∥⋅ 𝑑(𝐱)): 

𝑄(𝐱) = 𝜎(−∥ 𝐰 ∥  𝑑(𝐱)) 

 

4.1. Real-Time Anomaly Detection 

Correlating inputs and outputs in manufacturing workflows enables manufacturers to identify states of the workflow and 

to monitor the appearance of quality-related problems in real time. A supervised anomaly detection model classifies the 

quality state of the products or the overall workflow according to a set of quality-related input-output signals. During the 

learning phase the quality states are annotated and then used to train the classification model. The annotated states can 

be labelled by an expert operator, for example in a low-frequency batch production scenario, or automatically produced 

by a predictive maintenance model in a high-frequency scenario. The trained model can then run to classify the products’ 

quality in real time. As for any classification model, the real-time observations are compared with the predictions. When 

a divergence (an anomaly) occurs, the corresponding information is propagated as an alarm (i.e., anomaly detected) to 

the quality-control supervisor. 

For collaborative production with multiple production workflows involved, such as the example case of jewelled watch 

production with watch case, watch movement, and watch strap assembly workflows running on different production 

systems, the correlation of quality-related input-output signals of the collaborative production workflows can be built to 

detect the potential quality issues of product collaboration quality. 

 

4.2. Predictive Quality Analytics 

Predictive quality analytics examine quality trends over time with a view to estimating future quality across sets of similar 

products and providing timely alerts to possible quality issues. By preventing deviations from quality norms, especially 

in large-scale manufacturing, production costs can be reduced. The analytics process begins with the automatic selection 

of relevant continuous quality attributes or measurements from the repository of finally approved quality data. The next 

step is to collect the values of the selected measurements from their respective databases in a predefined window length. 

After prediction model development, the model is deployed for real-time inference. 

Whenever the incoming values for the selected measurements exceed the trigger point for alert generation, a predicted 

quality alert is raised. When at least a fixed number of consecutive alerts are raised, or whenever a predefined period of 

continuous alerts is reached, a possible future quality issue alert is generated. The predictive quality analytics framework 

has been successfully implemented in a simulated hard-disk drive manufacturing unit. Data from the publicly available 

SECOM dataset, a process for manufacturing the production floor piece with real-time attempt and anomaly detection, 

and prospects for helping edge devices for past production analysis are presented. 

 

 Pred 0 Pred 1 

Actual 0 (OK) 930 30 

Actual 1 (Defect) 45 95 

 

5. DATA GOVERNANCE, SECURITY, AND PRIVACY 
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Data governance promotes data quality, manageability, and security. Creating a variety of data for multiple users opens 

the possibility of sensitive information being destroyed or released unexpectedly. This section outlines the data protection 

quality-control process and the applicable regulations. 

The Data Protection Act 2018 regulates the processing of personal data within the United Kingdom. It is based on the 

EU General Data Protect Regulation, the EU Law Enforcement Directive, and the Regulation of Investigatory Powers 

Act. The regulation is compliant with the Council of Europe’s Convention for the Protection of Individuals with regard 

to Automatic Processing of Personal Data and the United Nations Convention on the Rights of Persons with Disabilities. 

A data protection officer is designated to monitor compliance. Data are processed in accordance with the data subject’s 

rights, including the right of access to their personal data. Appropriate technical measures are in place to protect data. 

Data sharing is controlled and written data-sharing agreements are put in place. 

Most other jurisdictions support freedom of data publication, with appropriate privacy protections. Even when not 

required by law, granting unrestricted access to sensitive data can lower their value. Organisational policies are reinforced 

to make sure no data modification becomes irreversible. As much as possible, all modifications are reversible. 

Furthermore, only datasets that are legally permitted to be shared without restriction are published. 

 

5.1. Data Management Strategies and Compliance Frameworks 

As advanced manufacturing systems embrace business process optimization and data governance, so AI-augmented 

autonomous quality control solutions also address management and compliance related to data sensitivity, legal 

ownership, and security. Indeed, due to privacy concerns, errors, and the potential for AI-based solutions to present fake 

or misleading information, explainability, fairness, security, and quality control processes must also be considered within 

data management plans. Consequently, data at rest as well as in transit and use demand protection based on fundamental 

principles. 

An in-depth explanation of a Data Management Plan Strategy considers processes, methodologies, and tools dedicated 

to the protection of users’ sensitive data within an Intelligent Cloud-Edge System. To guarantee the proper use of data 

security mechanisms, a DPM framework, encompassing authentication, authorization, audit, confidentiality, integrity, 

and availability, provides a set of processes, methodologies, and tools designed to secure all users’ data resources against 

threats across cloud-edge-based services. Such a DPM guarantees confidentiality by defining a role-based access 

mechanism, integrity through a watermarking strategy, availability by implementing redundancy mechanisms, and 

protection against malicious operations via an audit procedure, and it supports cloud-edge security by adopting a privacy-

preserving cloud-edge service selection algorithm. 

 

 
Fig 3: Securing the Intelligent Frontier: A Holistic Data Management Plan (DMP) Framework for AI-Augmented 

Cloud-Edge Manufacturing 

 

5.2. Best Practices for Data Protection and Regulatory Compliance 
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To mitigate the risk of incidents arising from improper data management practices, the identified data governance 

framework must be aligned with established industry standards and best practices. These provide a roadmap for 

businesses to implement appropriate security control mechanisms and ensure effective data governance across the entire 

lifecycle of AI systems. Within the proposed architecture, data protection is crucial, as the control units contain real-time 

quality data and models that detect quality anomalies and predict product quality. 

Moreover, European General Data Protection Regulation policies must be rigorously followed, as small manufacturing 

companies face fragile data protection policies. Regardless of the high value of cameras in the production environment, 

their data can be rarely stored or used for model training. Edge-cloud data management must follow a cloud-inclusive 

setup, allowing data capturing for training purposes only when strictly needed and with consent from supervisors. These 

best practices enable small companies to keep cloud expenses low while fulfilling GDPR rules. 

 

Metric Value 

Accuracy 0.9318181818181818 

Precision (Defect) 0.76 

Recall (Defect) 0.6785714285714286 

F1 (Defect) 0.7169811320754718 

 

6. EVALUATION AND VALIDATION 

 

To validate autonomous quality control capabilities, an edge-cloud ecosystem orchestrates predictive quality analytics 

through AI-enabled cloud solutions. Edge devices enable real-time anomaly detection using AI models trained on sensor 

metadata and images, with inference occuring directly on-board. Sensor measurements are securely transmitted to the 

cloud for predictive quality modelling. Data transfer is controlled by a dedicated data governance module, which 

automatically selects the most relevant records for quality modelling and ensures compliance with data-security 

regulations. Results from a smart factory-quality dataset demonstrate the feasibility and performance of the edge AI 

solutions for real-time detection of anomalous samples, while future work aims to complete the end-to-end system and 

address data governance, security, and compliance challenges when using cloud datasets. 

The growing concern of data security regulations, together with the increasing need to demonstrate compliance with 

regulations such as the European General Data Protection Regulation (GDPR), has promoted the development of data 

governance solutions and strategies for data protection when storing and sharing information. Within an edge-cloud 

context, these solutions and strategies have been typically considered in the cloud zone, verifying and controlling data 

transfer from the edge devices to the central repository. Such approaches generally allow for developing highly accurate 

ad hoc models while ensuring data security. However, as regulations evolve and change, the need for up-to-date data 

becomes crucial. 

 

 
 

Equation 3) Trend monitoring + “normality region” detection (early warning) 

Let 𝑑𝑡 be the signed distance (or any quality indicator) for batch/time index 𝑡. 
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3.1 Build a normality region from healthy history 

Using a baseline “healthy” window 𝑡 ∈ ℋ: 

Mean: 

𝜇 =
1

|ℋ|
∑𝑑𝑡
𝑡∈ℋ

 

Std (sample): 

𝜎 = √
1

|ℋ| − 1
∑(𝑑𝑡 − 𝜇)2

𝑡∈ℋ

 

Normal band (example): 

[𝜇 − 2𝜎,  𝜇 + 2𝜎] 

Trigger threshold (stricter): 

𝜏 = 𝜇 − 2.5𝜎 

(Choose sign depending on whether decreasing distance indicates degradation.) 

3.2 Smooth the trend (moving average) 

Moving average over window 𝑊: 

𝑑‾𝑡 =
1

𝑊
∑ 𝑑𝑡−𝑘

𝑊−1

𝑘=0

 

Alert if smoothed indicator crosses trigger: 

𝐴𝑡 = {1 𝑑‾𝑡 < 𝜏
0 otherwise

 

 

6.1. Future Directions and Insights 

Increasingly complex manufacturing environments demand effective data governance strategies that facilitate intelligent 

decision-making while minimizing risks to product quality, equipment reliability, and labour force safety. The emergence 

of edge artificial intelligence (AI) accelerates data delivery timelines and enhances information security, but the subset 

of fast-response quality management systems remains limited. Advanced analytics on data hovering close to the source 

provide accelerated support for autonomous quality control over production setups equipped with integrated vision 

systems. Novel mechanisms for real-time anomaly detection and predictive quality analytics have been devised. 

Validated via a smart manufacturing demonstrator, the control techniques support rapid identification of non-conforming 

products for corrective action or removal from the normal flow, as well as prediction of product quality indicators based 

on sensor data and feature extraction from production images. Coordination between cloud services and an edge AI 

gateway harnesses the combined power of the edge and cloud compute capabilities. However, the architecture and the 

development of such capabilities must be enriched with data governance strategies to achieve autonomous data operation 

without compromising security and privacy. 

 

7. CONCLUSION 

 

The proposed architecture and algorithms address the needs for autonomous and non-intrusive quality control in smart 

manufacturing. Orchestration of AI services and data at the edge and cloud levels aims to minimize latency and energy 
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consumption while maximizing security and compliance. Real-time anomaly detection enables early identification of 

deviations from the expected production quality; predictive quality analytics avoids defective products and any associated 

manufacturing costs, thus ensuring financial sustainability. Making these AI services available as a catalog empowers 

any stakeholder to autonomously monitor the production quality through convenient interfaces and without direct 

involvement of skilled personnel in the development, training, maintenance, or execution of the models. Most 

importantly, such autonomous quality control is realized in compliance with industry regulations, proactively preserving 

production data confidentiality and privacy. 

The research and development jointly performed at Politecnico di Milano, Palo Alto University, RMIT, and Istituto 

Italiano di Tecnologia open further opportunities to benefit from edge-cloud collaboration in multimodal data 

management by exploiting the rich information present in the datasets involved in the aforementioned production quality 

control activities. 

 
Fig 4: Architecture Resource Distribution 

 

7.1. Final Thoughts and Implications for Industry 

The proposed approach represents a step toward autonomous production quality control. Operationalizing this capability 

reduces the need for human oversight while gaining operational and production performance advantages. Self-managed 

edge AI solutions can restore their own real-time control apply of damage prediction and mitigation operational 

playbooks. Cloud-based dynamic workload allocation can optimize the TCO of human resources. 

Evidence obtained from an actual implementation indicates that effecting predictive quality analytics improves 

production performance and reduces the overall cost of quality. Future work will continue extending the two autonomous 

quality control mechanisms—real-time anomaly detection and predictive quality analytics—through the data governance, 

security, and privacy lenses. Cloud-based dynamic workload orchestration support ensure enterprise-wide cost-effective 

delivery. The solution is expected to be especially valuable for production environments where human supervision is 

limited or impractical, yet a stable production quality is vital for retaining customers and ensuring safety. 
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