
 

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 14, Issue 3, March 2025 

DOI:  10.17148/IJARCCE.2025.14318 
 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 149 

A Survey on CNN-driven Architectures for 

Medical Image Analysis: Current Trends, 

Challenges, And Innovations. 
 

Moksha Patel1, Anuradha Desai2 and Happy Patel3  

P.G. Student, Department of Computer Engineering, Silver Oak University, Ahmadabad, India.1 

Assistant Professor, Department of Computer Engineering, Silver Oak University, Ahmadabad, India.2 

P.G. Student, Department of Computer Engineering, Silver Oak University, Ahmadabad, India.3 

 

Abstract:  Convolutional neural networks, or CNNs, are now the backbone of medical image processing and have 

revolutionized the interpretation and application of different medical data in clinical image, video,- decision-making in 

different classifications With a focus on significant advancements, cutting-edge trends, and enduring difficulties in the 

area, this survey study describes the investigation of CNN-based architectures for medical image processing. 

The study began with basic models of CNN, such as LeNet, AlexNet, VGG, and ResNet, before heading to the 

advanced architectures used in DenseNet, U-Net, and Vision Transformers (ViTs). From these architectures, the 

discussion reflects their applications to medical image tasks such as disease classification, organ and lesion 

segmentation, and anomaly detection that cut across imaging modalities like  Pathology, Colonoscopy MRI, CT scans. 

The survey article provides a broad overview of Convolutional Neural Networks (CNNs), focusing on their 

applications in medical imaging. It demonstrates how various forms of CNN architectures are used for the 

interpretation of different types of medical imaging data such as x-ray, CT, MRI and ultrasound images.  

The paper covers the developments in CNN methods and their capability in analyzing complex medical data sets and 

performing tasks such as disease identification, organ delineation and abnormality recognition. In this regard, the 

survey gives an explanation of the use of CNNs in medical images, and those features provide possibilities for 

predicting changes in the course of the disease and improve the results of treatment. 

 

Keywords: Deep -learning, Medical Image, CNN Architectures, Image Classification. 

 

I. INTRODUCTION 

 

There is increased advancement within the medical sector due to advancement within computer science and artificial 

intelligence (AI). Deep learning stands out as one of the most useful AI techniques and in particular, Convolutional 

Neural Networks (CNNs) have changed the entire landscape of medical imaging as it enabled accurate and self-

sufficient diagnosis to be carried out. Medical imaging includes the use of X-rays, MRI, CT, ultrasound, and 

microscopic images and these forms of imaging greatly supports decision making in the clinic by providing a visual 

assessment of the anatomy and any pathologies. 

 

Recently, it appears that CNNs have taken over as the best formed deep learning technique for tackling the analysis of 

medical pictures thanks to their capability to learn the spatial aspects of patterns in a hierarchical manner. This has led 

to scientists putting forth CNN-based structures aimed at disease recognition, lesion detection, organ recognition and 

even tissues that are not normal in appearance. This has seen improved understanding and detection of ailments such as 

cancer, brain disorders, and issues related to the heart. 
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Fig. 1. Architecture of CNN [28] 

 

The interdisciplinary blend between computer science and the field of medical imaging is very hot. It is interesting to 

note that CNNs and other learning techniques are being designed to address such domain specific issues as lack of data, 

uneven distribution of classes and the explainable artificial intelligence paradigm for clinical use. Also, more advanced 

concepts like federated learning for secure data sharing, compact models for inferences, and three-dimensional CNNs 

for in-depth computation are further increasing the prospect for AI in medicine. 

This paper describes an exhaustive synthesis of literature regarding applications of CNNs for paramedical imaging. 

Recent developments are outlined, issues such as model risk management and data availability are addressed, and 

relevant good practices to mitigate such issues are reported. CNNs are advancing the connection between computer 

engineering and medicine and diagnosis, allowing this procedure to be automatic, accurate, and widespread that 

ultimately improves patient care and clinical efficacy. 

The term convolutional, referring to the use of convolution, applies to the neural network topology in question. In a 

very broad sense, the overlapping of portions of the input data enables the network to create new features from existing 

ones. This also allows the network to generalize and recognize patterns different from those explicitly trained by the 

algorithm. It follows that in most applications, convolutional nets perform better than regular feedforward nets when 

asked to recognize and classify objects[1]. 

This section concentrates and demonstrates the above mentioned basic concepts related to development of a neural 

network based on CNN. The architecture of CNN includes a number of proliferation building blocks like convolution 

layers, pooling layers, and fully connected layers. It is commonplace to design a number of convolution layers and a 

layer for pooling repeatedly, followed by a few fully linked layers. Forward pass is the term for using these levels to 

convert the input data into the output[1]. 

 

II. THEORETICAL BACKGROUND 

 

Researchers have created methods for automatic interpretation of medical images fed into a computer, beginning from 

the 1970s to 1990s. Medical image interpretation during that period involved cut-and-try approaches that included 

image enhancement techniques involving edge and line detector filters and mathematical modeling involving the fitting 

of lines, circles and ellipses so as to build up compound rule based systems which solved specific problems. There’s a 

similarity with those expert systems that were constructed using a multitude of if-then-else, which were quite popular in 

artificial intelligence at that time. These expert systems have been characterized as GOFAI (good old-fashioned 

artificial intelligence) [1] of which many tended to be brittle; very much like rule-based image processing systems [2]. 

In the late 1990s, there was an uptrend in the use of supervised techniques in medical imaging in which a model is 

constructed from training data. Examples include active shape models (for segmentation), atlas methods (where the 

atlases that are fit to new data form the training data), and the concept of feature extraction and use of statistical 

classifiers (for computer aided detection and diagnosis). Such pattern recognition or machine learning approach is still 

very much in vogue and forms the foundation for many medical image analysis systems in the market today. So, we 

have moved from completely human-driven systems to systems that employ supervised computer training using sample 

data to form feature templates. The algorithms employed select the best possible hyperplane in the high dimensional 

feature space. A crucial step in the design of such systems is the extraction of discriminant features from the images. 

This process is still done by human researchers and, as such, one speaks of systems with handcrafted features. The next 

step would be for machines to determine the features appropriate for optimal representation of the relevant 

problem.Many deep learning algorithms rely on this principle, based on models or networks that consist of multiple 

layers which change the given data such as pictures. 
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This performance includes outputs (e.g. disease present/absent) while learning increasingly more abstraction level 

features. So far, the best models for image analysis are Convolutional neural networks (CNNs) [2]. 

The interpretation of medical images is crucial for the diagnosis and monitoring of diseases and disorders. X-ray, MRI, 

CT and ultrasound images are the examples of medical images.Since medical data is extensive, intricate, and multi-

faceted, it is difficult to interpret manually, which has led to quick growth of automated methods based on deep 

learning architectures, such as CNNs [3].  

Due to its unique architecture, CNNs have emerged as the primary framework through which deep learning is able to 

deliver image analysis. This is more critical in the medical realm where the images have subtle features and patterns or 

even anomalies that the clinicians might not be able to see. 

A CNN has convolutional, pooling and fully connected layers. Feature extraction is performed in the convolution 

process. Each convolutional layer applies a filter (or kernel) to the input image (or feature map from the previous 

layer), producing feature maps that highlight edges, textures and shapes of the images [3]. 

 

III.   EXISTING TECHNIQUES 

 

A. LeNet-5 

Yann LeCun and his fellow researchers created a convolutional neural network called LeNet-5 in the late 80s which 

was aimed at recognizing numbers but was able to be used for a range of different image processing tasks including 

images of lesions (LeCun et al, 1989). Comprising two convolutional layers, pooling layers and fully connected layers, 

its application in medical imaging was not broad as it could only allow for basic imaging and pathology lesions 

detection via images such X-rays and MRI[11]. 

 

 
Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, for digits`digits`recognition An important milestone 

was achieved in 2012 as the team from Toronto (Alex Krizhevsky et al.) won the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC)[31]. 
 

B. AlexNet 

Another known neural network further assisting medical imaging is the AlexNet. In the year 2012, the neural network 

gained attention after clinching number one in the ImageNet challenge of the same year, hence demonstrating the 

capabilities of deep learning networks in modern medical practice(Krizhevsky et al. 2012). An application of the 

AlexNet in medical practice includes identifying diseases embedded in chest x-rays, MRI and mammograms[12]. 

 

 
Fig 3. Architecture of Alexnet. From left to right (input to output) five convolutional layers with Max Pooling after 

layers 1,2, and 5, followed by a three layer fully connected classifier (layers 6-8). The number of neurons in the output 

layer is equal to the designed number of output classes[32]. 

 

C. VGGNet (VGG16, VGG19) 

VGGNet, which was presented by Simonyan and Zisserman (2014), is famous for its elegant and care-free design 

which employs uniform use of multiple 3x3 convolution filters. The depth of the model (which can be either 16 or 19 

layers) alongside the small size of the filters help the model in acquiring very detailed spatial information, making it 

robust for medical images. It has been employed in the localization of tumors and in disease classification based on 

different forms of medical images such as MRI, CT scans, X-rays[13]. 
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Fig 4. The structure of the VGG16 model[33]. 

 

D. ResNet (Residual Networks) 

ResNet, proposed by He et al. (2015), adding skip connections alongside residual learning allows these networks to be 

very deep and solves the issue of vanishing gradients. This explains the growing use of the ResNet model for medical 

images; even complex tasks such as training on the model for the purposes of deeper radiology scans can be done 

accurately[14]. 

ResNet is broadly applied for tasks such as detailed analysis of radiology scans to identify diseases in brain MRIs or 

CT scans. Therefore, it ensures accurate outcomes for very deep architectures in critical medical applications. 

Along with other very important scientific advances, the ResNet (Residual Network) introduced a new paradigm of 

deep learning with the concept of residual learning with skip connection, which enables the training of very deep 

networks without the problem of vanishing gradients. The working principle of ResNet commences from an input 

image into the network which is processed in the initial stage involving some convolution and pooling which are 

intended to capture low-level features[29]. 

 

 
Fig 5. The residual network architecture. Specifically, ResNet-50, which has 3, 4, 6, and 3 blocks in each stage, from 

input to output[30]. 

 

What makes ResNet stand out is its use of residual blocks through which each block receives its input composed of one 

or more convolutional layers that have been skipped. As a feature, this “shortcut” enables the maintenance of important 

low level information while also guaranteeing effective gradient flow in backpropagation, thereby allowing the network 

to be able to learn higher levels of representation[29]. 
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Every two to three convolutional layers within a residual block, batch normalization and ReLU activation are applied 

before the residual block is completed. These are particularly effective in learning the residual or difference between 

the input and output, thus making the learning process easier. The multiple residual blocks are compiled then 

processed, the output feature maps are then pooled globally to form a vector of a set length. That vector history is sent 

through dense layers with the intent of classifying the images or performing other functions. The construction of the 

network is modular, which allows for efficient scaling, and such networks like ResNet-50, ResNet-101, and ResNet-

152 of increasing depth are suitable for large tasks[29]. 

 

E. U-Net 

Developed by Ronneberger et al. (2015), the U-Net is a type of convolutional neural network which features a U 

Shaped architecture. The use of spatial encoder-decoder architecture with skip connections makes this neural network 

very effective in basic tasks such as segregation of anatomy. This Neural net has also been widely used for medical 

purposes for tumor segregation, organs that need outlining and recognition of anatomy lesions on ultrasound scans, CT, 

and so forth[15]. 

 

 
Fig 6.  Convolutional neural network (CNN) architecture, based on UNET. Boxes represent cross-sections of square 

feature maps.[27]. 

 

U-Net is characterized by its “U” shaped deep neural network architecture, consisting of an encoder and a decoder. The 

encoder downsampled the input image in order to retrieve its features, whereas the decoder upsamples and recovers the 

spatial dimensions of the previous image by making a prediction of a segmentation map in which every pixel of the 

image is associated with a certain label, like a tissue, an organ or a background[26]. 

MaxPooling Convolutional Neural Network, which is an encoder, is an imaging sequence of convolutional layers with 

max-pooling which downsamples the image and still maintains high-level features. These layers are responsible for 

important features regarding the structure of the image. The decoder on the other hand uses transposed convolution 

layers to upsample the feature maps step by step. This combines features for certain spatial dimensions of higher 

resolution while providing necessary detail for segmentation[26]. 

A significant feature of U-Net is the use of skip connections. Connections allow direct forwarding of the feature maps 

from the encoder to the decoder on the same scaling levels. This prevents the loss of fine details during downsampling 

from being recovered in the respective upsampling resulting from the U-Net, improving the segmentation accuracy[26]. 

 

F. FCN (Fully Convolutional Networks) 

According to Long et al. (2015), Fully convolutional networks as the name suggests, have done away with the fully 

connected layers that traditional neural networks contain and replaced them with convolution layers for each pixel, 

making them apt for classification and segmentation tasks. In the fields of medical diagnosis, FNCs have found wide 

application, especially in segmenting tissues, lesions, and organs such as in CT scans for lungs and brain tumors[16]. 
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Fig 7. Architecture of FCN[25]. 

 

An FCN needs a standard convolution and pooling layers as its first step in the working process in order to get 

necessary features from the input image. These layers preserve the vital semantic high-level information while lowering 

the spatial resolution. In order to do this the FCN has to perform deconvolution layers (or also known as transposed 

convolutions) so as to up sample the feature maps to the original image dimensions. This up sampling assists the 

network in producing a segmentation map in which every pixel has been assigned a class such as tissue organ, and 

background tissue to name but a few. 

In FCN architectures, the u-net contains skip connections which are used to link earlier layers to later ones. By doing 

this, low level information from shallow layers and high level information from deep layers are fused which increases 

the accuracy of the segmentation. They are applicable in CT scan and MRI images as well as ultrasound data to 

segment and locate organs, analyze tissues and tumors. 

FCNs can offer a high degree of accuracy on pixel-level classification however one important aspect they consider is 

the way they handle the boundaries in order to provide very good smooth segmentation. This notwithstanding owing to 

the quality and accuracy of the predictions made by FCN they are fast turning out to be the norm in the medical 

imaging field. 

 

G. Inception Network (GoogLeNet) 

GoogLeNet, introduced by Szegedy et al. in 2015, features a unique architecture known as the “Inception module.” 

This module employs various convolution filters of different sizes at each layer, enabling the model to effectively 

capture multi-scale features. Inception has found applications in medical image analysis, especially for tasks such as 

disease classification and organ detection in CT and MRI scans[17]. 

 

 
Fig 8. Basic 3D CNN architecture[23]. 

 

The Inception Network, known as GoogLeNet, works on a specific design called the Inception module, which 

processes an image at multiple scales simultaneously. When an image is fed into the network, the Inception module 

applies filters of different sizes: 1×1, 3×3, and 5×5. 

5×5, pool operation. This helps allow the network to look not only at small details within the image but also much 

larger patterns, ensuring that the network doesn't miss very important features. After processing, the outputs coming 

from these filters are taken together, creating a strong and detailed representation of what's going on in that image. 

To make it efficient, GoogLeNet adopts 1×1 convolutions to reduce the number of calculations before applying larger 

filters.  
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This approach lowers the computational cost without reducing accuracy. Another feature of the network is global 

average pooling that replaces traditional fully connected layers at the end. This reduces the size of the network and also 

minimizes overfitting. 

The GoogLeNet also includes auxiliary classifiers in the middle of the network. They are more miniature networks that 

guide learning, making sure even deeper layers of the network will be well-trained. Additionally, this avoids problems, 

including vanishing gradients, where gradients vanish in very deep networks. As for these features, GoogLeNet is able 

to analyze complex images efficiently with a great number of its applications, such as finding diseases in medical 

imaging and also recognising objects in real time. 

 

H. Dense Net 

According to Huang et al. (2017), DenseNet is a new architectural design that connects every layer to all the other 

layers in a feedforward manner in order to increase the rate of feature reuse and improve the efficiency of the network 

in both training time and performance. Images in dense networks have shown good performance in various medical 

image classification tasks, such as chest X-ray abnormalities, brain scans, and mammograms [18]. 

 

 
Fig 9. Framework of Densenet, which contains 3 Dense blocks, and each block contains 16 convolution layers[24]. 

 

This design encourages feature reuse, in that each layer can utilize the outputs of all previous layers without needing to 

relearn redundant information. The network is therefore more efficient both in terms of computation and memory 

usage. 

When an image is processed in DenseNet, each layer receives the combined features from all the earlier layers and adds 

its own learned features. These combined outputs are passed to the next layer. This dense connectivity helps the 

network extract both low-level and high-level features, which improves its performance in tasks like image 

classification and segmentation. 

Another important feature of DenseNet is that it applies batch normalization, ReLU activation, and 1×1 convolutions to 

reduce the size of feature maps before adding new layers, making sure the network remains computationally efficient. 

The network finally applies global average pooling and fully connected layers for prediction. 

 

I. 3D U-Net 

A 3D U-Net referred to as Cicek et al (2016), is a variant of U-Net that allows for volumetric image segmentation. It 

employs 3D convolution which makes it appropriate for medical image segmentation in volumetric imaging data sets 

like mri or CT. It is considered a standard method to segment organs or cavities for nuclear imaging diagnostic 

tasks[19]. 
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Fig 10. The architecture of the standard 3D U-Net[22]. 

 

The 3D U-Net performs a much needed task in the medical field as it segregates target organs in a medical image. 

Broadly speaking, the task is performed with the aid of MRI and CT imaging, and is a form of segmentation. 

Essentially a 3D U-Net is simply a broader and more complex 2D U-Net in the sense that it takes 3 dimensional volume 

data while being able to work on organ targeting and solving a multitude of other tasks. 

 

First of all, it’s important to remember that a 3D U-Net consists of an encoder-decoder architecture. Because this again 

is a neural network that aims to target depth information in medical imaging. 

1) Starting with the encoder: Since the task is based on depth, volumetric images get passed through multiple 

3D convolutions along with a max pooling layer. Such steps as these also allow for spatial dimension reduction to aid 

targeting. Eventually the encoder captures all relevant features from the initial input, starting from the most basic to the 

most complex structures. 

2) Bottleneck layer: From a higher level perspective: when looking at the entire architecture at once, this can be 

thought of as the most condensed version of the image. Most parameters are lost and only the significant features of the 

image are captured.  

3) The Decoder: As the aim is to reach a complex volumetric organ targeting tasks, this is why the image gets 

progressively upsampled through 3D up-convolutions. Such methods allow for the integration of the detailed features 

captured by the encoder upon reconstruction. 

The skip connections are fundamental components of 3D U-Net. They transport some features from the encoder 

directly to the decoder which makes it possible for the network to keep in memory the original shape of the image. This 

guarantees that the last result is complete and precise. 

Eventually, the output returned by the network is a three-dimensional one, for instance a segmented volume within 

which it is possible to delineate the regions of interest such as tumors, organs, or cavities. 

Due to its ability to deal with large volumes of data with good segmentation outputs, the 3D U-Net is increasingly 

becoming the go to approach in medical imaging applications. It has achieved relatively good results in tasks such as 

brain tumor segmentation, lung nodule detection and cardiac structures analysis in nuclear imaging. 

 

J. 3D CNN 

The 3D CNNs are the traditional networks that are characterized by 2D convolutions but extended to include the 

processing of three-dimensional medical images scans such as MRI or CT. These types of models employ 3D 

convolutions to model slice spatial relationships and have been used for a wide range of applications such as tumor 

detection and organ segmentation. This has a high application in volumetric data of imaging such as in brain tumor 

detection or lung segmentation[20]. 

 

 
Fig 11. Basic 3D CNN architecture[21]. 

 

The 3D CNN (Three-Dimensional Convolutional Neural Network) uses volumetric data such as those obtained from 

MRIs and CT scans by extending the consideration of the spatial relationships to height, width and depth.  
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A volumetric image, which can be viewed as a stack of multiple two-dimensional images, is represented in the form of 

a three-dimensional array which serves as the input to 3D CNN. The network starts off using 3D convolutional filters 

that span all 3 dimensions and perform feature extraction such as texture, shape, and spatial context. With each 

convolution a ReLU activation function is added to the output in order to inject some non-linearity and hence enable 

the network to learn more complicated patterns. 

The network goes on to employ 3D pooling layers such as max-pooling or average pooling for down sampling of the 

feature maps. This step contributes in terms of making the network less computational intensive. The convolution and 

pooling operations are further carried out in deeper layers to get more higher level features of the data. In the end, the 

structured feature maps are converted to 1D arrays and through global pooling layers are used to classify or create a 

vector for some other descriptive measure like regression.  

 A 3D CNN may eventually classify a tumor as a yes / no depending on its designed output. So it can tell the 

probability score for the examples that are meant for classifying the subjects (ex: tumor vs no tumor) or for 3D 

segmentation tasks, it may create a volumetric map where every voxel is assigned a number as an index of a category. 

This systematic representation of the 3d cnn model is suitable for processing volumetric errors and reconstruction 

patterns along with the context in the era of medical application for recognizing the existence of tumors, performing 

organ partitioning as well as classifying certain ailments. 

 

K. Deep CNNs and Their Evolution 

The beginning CNN architectures, like AlexNet, VGG, and ResNet, made primary blocks and initiated the journey 

toward developing enthralling networks focusing on specific domains; that is, for medical purposes. Contemporary 

trends drift deeper toward networks with much more intricate architectures for attempting to capture hierarchy in 

features embedded in more complex medical images. 

 

L. Transfer Learning 

Transfer learning for medical image application is being proved as popular by pre trained CNNs such as ResNet, 

DenseNet, and Inception models. Transfer learning uses pretrained models to adapt a very small but more domain-

related dataset of medical images since these pretrained models are usually developed using a different, much larger 

dataset. 

 

M. Attention Mechanisms: 

 CNNs have been combined with attention mechanisms to highlight an image's most critical features. This is 

particularly true for certain areas in a medical image, such as a tumor or lesion, when an image is to be accurately 

evaluated. 

 

N. Hybrid Models 

More ‘hybrid’ architectures where CNNs are used with other approaches such as reinforcement learning, generative 

adversarial networks (GANs), and transformers are increasing. This encourages even better, more versatile and efficient 

solutions. 

 

IV. ANALYSIS OF DEEP LEARNING TECHNIQUES 

 

TABLE I. Analysis of Medical Images Detection Techniques 

 

 

Sr. 

No. 

Research Title  

Publication & 

Year 

 

Learning 

Paradigm 

Method Challenges 

1 Optimized Deep Learning 

Model for Comprehensive 

Medical Image Analysis 

Across Multiple Modalities 

Elsevier - 

2024 

Supervised 

Learning, 

Transfer 

Learning, 

Multimodal 

Learning 

CNNs, Multi-Task 

Learning, Hybrid 

Models, Attention 

Mechanisms, GANs 

[4] 

Data Imbalance, 

Data Privacy, 

Multimodal Fusion, 

Model 

Generalization, 

Interpretability, 

Computational 

Resources 
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2 Enhancing Early Detection 

of Brain Aneurysms: A 

CNN-Driven, Real-Time 

Approach with 

Angiography Imaging 

 

IEEE - 2024 Supervised 

Learning 

CNNs, Real-Time 

Imaging Processing, 

Feature Extraction 

from Angiography 

Images[5] 

Real-Time 

Processing, Data 

Imbalance, Need for 

High Accuracy, 

Model 

Generalization, 

Limited Dataset 

3 Medical Internet of Things 

Using Deep Learning 

Techniques for Skin 

Cancer Detection 

IEEE - 2022 Supervised 

Learning, IoT 

Integration 

CNNs, Deep 

Learning-based Skin 

Cancer Detection, 

Internet of Things 

Integration [6]  

Data Privacy, 

Hardware 

Integration, 

Generalization 

across Devices, 

Data Imbalance 

4 Revolutionizing diabetic 

retinopathy diagnosis 

through advanced deep 

learning techniques: 

Harnessing the power of 

GAN model with transfer 

learning and the DiaGAN-

CNN model 

Elsevier - 

2024 

Deep 

Learning, 

Transfer 

Learning, 

Generative 

Adversarial 

Networks 

(GANs) 

GAN-based model 

combined with 

transfer learning and 

DiaGAN-CNN 

architecture [7] 

Data imbalance, 

high computational 

cost, model 

interpretability, and 

achieving high 

accuracy in 

complex retinal 

images 

5 Deep Learning-Based 

Diagnosis of Alzheimer’s 

Disease Using FDG-PET 

Images 

Elsevier - 

2023 

Supervised 

Learning 

CNNs, FDG-PET 

Image Analysis, 

Feature Extraction 

for Alzheimer’s 

Detection [8] 

Data Imbalance, 

Image Quality 

Variability, Data 

Privacy, Lack of 

Large Annotated 

Datasets 

6 Brain Tumor Segmentation 

from MRI Images Using 

Hybrid Convolutional 

Neural Networks 

Elsevier - 

2020 

Supervised 

Learning 

Hybrid CNNs for 

Tumor 

Segmentation, Data 

Augmentation 

Techniques [9] 

Data Imbalance, 

Variability in MRI 

Quality, 

Generalization 
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Deep Learning 
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Supervised 

Learning 
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ConvL-Net 
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Robust Image 

Segmentation [10] 

Data Imbalance, 

High Computational 

Cost, Lack of Large 

Datasets, Model 

Generalization, 

Accuracy in 

Segmentation 

across Modalities 

 

V. CONCLUSION 
 

CNNs have revolutionized the analysis of medical images, which in turn has helped to significantly improve the 

accuracy of diagnosis, detection of diseases and automatic interpretation. This survey that was conducted sought to 

assess the changes in the application of CNN in this field and the developments, problems and new ideas around there.   

Hybrid models such as those removing the limitations of supervised training with recurrent networks have been used in 

many cases where both spatial and temporal features are essential while U-Net architectures have been used for 

segmentation purposes.  
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The increasing proportion of these specialized architectures reinforce the rationale to treat complex tasks as specified 

problems. Deep supervision and multi-scale learning are examples of approaches aimed at tackling the multi-scale 

feature nature of medical images in order to enhance robustness and accuracy of the models being developed. 

There is good potential for CNN based models in the field of medicine especially in the analysis of images. Still, there 

are several hurdles such as data scarcity, explain ability, and legal endorsement that must be addressed in order to make 

this a reality. From a clinical point of view, considering a wide variety of tasks, it is also necessary to develop 

interpretable models that will work with confidence across the healthcare system. The fact that researchers, clinicians, 

and regulatory agencies will collaborate is the key to the development of the CNN based analysis of medical images so 

that these systems will assist in availing better healthcare and to have better results in dealing with patients. As 

technology continues to change so will the medical field, including CNN’s integration into everyday practice. 
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