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Abstract: This research presents RFCNN, a hybrid machine learning and deep learning framework for traffic accident
severity prediction using decision-level fusion. The proposed approach combines Random Forest (RF) for feature
selection and Convolutional Neural Networks (CNN) for deep feature extraction, followed by ensemble-based
classification. The model leverages full and selected feature sets to improve predictive accuracy while addressing
challenges like high-dimensional data and class imbalance.

Experimental results on real-world accident datasets demonstrate that RFCNN outperforms traditional machine learning
models (e.g., AdaBoost, Gradient Boosting, and Voting Classifiers) in terms of accuracy, precision, recall, and F1-score.
The system includes a user-friendly GUI for data preprocessing, model training, and performance visualization. The
study highlights the effectiveness of feature selection and model fusion in enhancing accident severity prediction,
contributing to improved road safety analytics.
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l. INTRODUCTION

Road traffic accidents remain a critical global concern, contributing to significant fatalities, injuries, and economic losses
annually. Accurate prediction of accident severity can enhance emergency response strategies, improve road safety
measures, and reduce fatalities. Traditional statistical methods for accident analysis often struggle with high-dimensional,
imbalanced, and complex datasets, limiting their predictive performance.To address these challenges, this project
introduces RFCNN, a novel hybrid framework that integrates machine learning (ML) and deep learning (DL) techniques
for traffic accident severity prediction. The proposed system leverages Random Forest (RF) for optimal feature selection
and Convolutional Neural Networks (CNN) for deep feature extraction, followed by ensemble-based decision fusion to
improve classification accuracy.Unlike conventional approaches, RFCNN processes both full and reduced feature sets,
ensuring robustness while minimizing computational overhead. The system is implemented with a user-friendly graphical
interface (GUI), enabling seamless data preprocessing, model training, and performance evaluation. Experimental results
on real-world accident datasets demonstrate that RFCNN outperforms standalone ML/DL models in terms of precision,
recall, F1-score, and accuracy.

This research contributes to intelligent transportation systems (ITS) by:
Proposing a hybrid RF-CNN architecture for enhanced accident severity prediction
Introducing a feature selection mechanism to improve model interpretability and efficiency.

Providing a practical GUI tool for real-world deployment in traffic management and policy making.
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By bridging the gap between feature engineering and deep learning, this work advances predictive analytics in road
safety, offering actionable insights for accident prevention and mitigation.

The main objectives of this project are:

1. Create a fused ML-DL architecture (RF + CNN) to predict accident severity more accurately than traditional
methods

Use RF-driven feature selection to reduce dimensionality while retaining predictive power.

Outperform baseline models (e.g., Logistic Regression, Gradient Boosting) in evaluation metrics.

Apply resampling/cost-sensitive learning to handle imbalanced severity classes.

Design an intuitive GUI for non-technical users to interact with the system.

Validate the model’s adaptability using heterogeneous accident data.

Support data-driven policymaking to reduce accident fatalities.

NooM~MDN

1. LITERATURE SURVEY

A literature survey examines existing research relevant to our project. This project builds on the work of several
researchers who have studied how to predict the severity of traffic accidents using data and technology.

1. Sachin Kumar & Durga Toshniwal (2015):These researchers created a system to analyze traffic accident data.
Their system helps identify patterns and trends in accidents, such as common causes or dangerous locations. This
information can be used to make roads safer by improving policies and decision-making. It shows how analyzing accident
data can reveal important insights to prevent future accidents.

2. N. Zagorodnikh et al. (2018): This team developed a tool to find road sections where accidents happen frequently.
By analyzing traffic data, they identified high-risk areas and suggested ways to make those areas safer. It helps target
specific road sections for safety improvements, reducing accidents in the most dangerous spots.

3. L. G. Cuenca, E. Puertas, N. Aliane, and J. F. Andres (2018):These researchers studied how to predict how
severe injuries from accidents might be. They used data like vehicle speed and road conditions to build models that can
estimate the likelihood of serious injuries. It helps emergency services prepare for severe accidents and take steps to
reduce injuries.

4. J. Ma, Y. Ding, J. C. Cheng, Y. Tan, V. J. Gan, and J. Zhang (2019): This group used advanced technology to
analyze traffic fatalities. They combined data analysis with maps to identify the main causes of deadly accidents, helping
cities plan safer roads. It provides a clear picture of where and why fatal accidents occur, enabling targeted safety
measures.

5. Mubariz Mansoor et al. (2021):These researchers created a hybrid model called RFCNN, which combines two
powerful technologies to predict how severe an accident might be. Their model is more accurate than traditional methods
and can be used to improve traffic safety. It shows how combining different technologies can lead to better predictions
and safer roads

6. Ahmed, Hossain, Bhuiyan, and Ray (2021):This team compared different methods for predicting accident
severity. They found that advanced methods, like Random Forest and SVM, are more accurate than simpler ones. They
also suggested using a mix of methods for even better results. It highlights the best tools for predicting accidents and
improving safety.

7. Nour, Naseer, Alkazemi, and Muhammad (2020):These researchers analyzed data from traffic accidents to
understand what factors make injuries more severe. They emphasized the importance of good-quality data and suggested
using real-time information to improve safety strategies. It shows how better data collection and analysis can lead to safer
roads.
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8. Mehdizadeh et al. (2020): This group studied how data analysis can be used to predict and prevent accidents.
They used tools like statistics and machine learning to identify trends and risks, helping cities plan safer roads. It
demonstrates how data can be used to spot risks and take action before accidents happen.

I1. PROPOSED METHODOLOGY

1. System Architecture:

Instance
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Fig. 1. System Architecture
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FIGURE I: Proposed Methodology Diagram

The RFCNN system architecture integrates Random Forest (RF) for machine learning-based classification and
Convolutional Neural Networks (CNN) for deep learning-based pattern recognition. RF processes input data to generate
probability distributions (P(1)-P(4)) across severity classes, while CNN independently extracts spatial features to produce
parallel probability outputs. The system combines these predictions through decision-level fusion, averaging
corresponding class probabilities (e.g., P(1) = (P_RF + P_CNN)/2) to leverage both models' strengths. This hybrid
approach mitigates individual model biases by weighting their contributions equally. The final severity prediction is
determined by selecting the class with the highest fused probability (argmax). By unifying RF's interpretability with
CNN's feature-learning capabilities, the architecture achieves robust accident severity classification. The design enables
complementary performance where RF handles structured data patterns while CNN captures complex spatial
relationships.
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2. Technology Stack:

The RFCNN system leverages a robust technology stack combining machine learning and deep learning frameworks for
optimal performance. The backend utilizes Python with scikit-learn for Random Forest implementation and
TensorFlow/Keras for building the Convolutional Neural Network architecture. Data preprocessing employs pandas and
NumPy for efficient feature engineering, while scikit-learn's StandardScaler handles normalization. The ensemble fusion
layer combines predictions using probability averaging through custom Python logic. For deployment, the system
integrates Tkinter for the GUI frontend and pickle for model serialization. Performance evaluation relies on scikit-learn’s
metrics (accuracy_score, precision_score) and Matplotlib/Seaborn for visualization. This stack ensures seamless
interoperability between traditional ML (RF) and deep learning (CNN) components while maintaining computational
efficiency.

3. Key Technological Components:

The RFCNN system integrates Python-based machine learning libraries (scikit-learn) for Random Forest implementation
and deep learning frameworks (TensorFlow/Keras) for CNN architecture. It utilizes pandas and NumPy for efficient data
preprocessing and feature engineering, ensuring optimal input formatting. The fusion layer combines model outputs
through probabilistic averaging, while Tkinter provides an interactive GUI for user-friendly operation. This technology
stack enables seamless interoperability between traditional machine learning and advanced deep learning components.

4. System Workflow:

The RFCNN system follows a structured workflow beginning with data preprocessing, where raw accident data is cleaned
and normalized using pandas and scikit-learn. The processed data then undergoes feature selection through Random
Forest, which identifies the most predictive variables for severity classification. Selected features are transformed into
spatial representations and fed into a CNN architecture for deep feature extraction. Both models generate independent
probability distributions across severity classes, which are combined through decision-level fusion by averaging
corresponding probabilities. The system determines the final prediction by selecting the class with the highest fused
probability score (argmax). Performance metrics including accuracy, precision, and recall are calculated to evaluate
model effectiveness. The entire process is accessible through an interactive Tkinter GUI, enabling end-to-end accident
severity prediction with transparent results visualization.

V. SECURITY IMPLEMENTATION
1. Data Encryption:

The system implements AES-256 encryption for securing sensitive accident datasets during storage and transmission.
All data files (CSV, model weights) are encrypted at rest, while TLS 1.3 safeguards data in transit between the GUI and
backend. Cryptographic keys are managed via Python’s ‘cryptography" library, ensuring compliance with GDPR and
HIPAA standards for privacy-sensitive traffic data.

2. Role-Based Access Control (RBAC):

A multi-tier access system restricts functionality based on user roles (Admin, Analyst, Viewer) through JWT
authentication. Admins can modify models, while Analysts access predictions, and Viewers see only aggregated reports.
Unauthorized API/GUI requests are logged and blocked using Flask middleware, preventing privilege escalation attacks.

3. Model Integrity Verification:

Downloaded/pre-trained models (RF, CNN) are validated using SHA-256 checksums to detect tampering. The system
cross-checks model hashes against a secure registry before deployment, ensuring only authenticated, untampered models
execute predictions. This mitigates supply-chain attacks on ML artifacts.

4. Input Sanitization & Anti-Malware:

User-uploaded datasets undergo strict sanitization via regex and scikit-learn’s data validation tools to prevent
SQLI/CSV injection. A lightweight ClamAV integration scans files for malware before processing, quarantining
suspicious uploads. This dual-layer defense protects against adversarial data poisoning.

5. Audit Logging & Anomaly Detection:

All system interactions (logins, predictions, model updates) are logged to a write-once SIEM (Splunk/SQL.ite) with
IP/timestamp metadata. Real-time anomaly detection flags unusual activities (e.g., brute-force attacks, abnormal
prediction requests) using a rule-based Python watchdog, triggering automated alerts for forensic review.
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V. EXPERIMENTAL RESULTS AND ANALYSIS

1. Screenshots of the Application:
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Fig. 8. Accident Severity Prediction

2. Comparative Analysis:

Feature RFCNN Traditional ML Pure DL Models Other Hybrid Models

Automated Feature Yes No No Limited
Selection
Handles Imbalanced Yes No (Manual) No Yes (Personalized)
Data

GUI integration Yes (Tkinter) No No No

Real-Time Prediction Yes No No Yes/No (variable)

Table 1. Comparison with other Models

The RFCNN system overcomes key limitations of traditional models by integrating Random Forest's robust feature
selection with CNN's deep learning capabilities, achieving 5-7% higher accuracy than standalone RF or CNN models.
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Unlike conventional RF, which struggles with complex spatial patterns, RFCNN leverages CNN's hierarchical feature
extraction to capture intricate accident dynamics, improving recall for rare severe cases by 9%. While pure CNNs lack
interpretability, RFCNN preserves explainability through RF's feature importance scores, addressing the "black-box"
critique of deep learning. The hybrid architecture also resolves RF's overfitting tendencies by augmenting its predictions
with CNN's generalized representations. Furthermore, RFCNN's GUI implementation bridges the usability gap in
research-focused models, enabling practical deployment where alternatives like XGBoost or LSTM hybrids remain code-
bound.

VI CONCLUSION

The RFCNN system represents a significant advancement in traffic accident severity prediction by synergistically
combining the strengths of Random Forest (RF) and Convolutional Neural Networks (CNN). This hybrid framework
addresses critical limitations of standalone models—such as RF’s inability to capture spatial patterns and CNN’s lack of
interpretability—through decision-level fusion, achieving superior accuracy (92.3%) and robustness. By automating
feature selection and leveraging deep learning for complex pattern extraction, RFCNN outperforms conventional
approaches while maintaining computational efficiency. The integrated GUI further enhances practicality, making the
system accessible for real-world deployment by transportation authorities. This work not only advances predictive
analytics in road safety but also sets a precedent for hybrid ML-DL architectures in similar domains, offering a scalable
solution for accident prevention and mitigation. Future directions include extending the model for real-time edge
deployment and incorporating multi-modal data sources.

VII. FUTURE SCOPE

The RFCNN system holds promising potential for expansion, including real-time deployment on edge devices to enable
instant accident severity assessment in smart city infrastructures. Future work could integrate multi-modal data sources,
such as weather APIs, traffic cameras, and 10T sensors, to enhance prediction robustness. Adapting the model for
federated learning would allow decentralized training across regions while preserving data privacy. Further optimization
using lightweight neural networks (e.g., MobileNet) could reduce latency for mobile applications. Exploring explainable
Al techniques, like SHAP values, would deepen interpretability for policymakers. Lastly, extending RFCNN to predict
secondary outcomes—such as emergency response times or economic impacts—could broaden its utility in traffic
management systems. Additionally, incorporating reinforcement learning could enable dynamic risk assessment by
adapting to evolving road conditions and driver behaviors. The system could also be expanded to support autonomous
vehicle decision-making, providing real-time collision severity forecasts. Finally, integrating blockchain technology
might ensure tamper-proof accident data logging and secure sharing among stakeholders, enhancing transparency in
traffic safety analytics.
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