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Abstract: Power line inspection is a critical task that requires regular monitoring and maintenance to ensure the 

reliability and safety of electrical distribution infrastructure. With the advancements in robotics, artificial intelligence 

(AI), and unmanned aerial vehicles (UAVs), integrating robotic manipulators with drones and automating their 

maneuvers has emerged as a promising solution for power line inspection. This paper proposes a quadcopter design and 

implementation with a gripper mechanism to dock automatically on a power line using AI-enabled camera feedback. 

The machine learning model implemented onboard will detect the power line, align the drone to it, and activate the 

gripper for automated perching. The drone also includes a light weight three degree of freedom (DoF) robotic 

manipulator with an additional camera incorporated into it for AI-assisted power line inspection. The insulator fault 

detection can be carried out with a deep learning model. Power line inspection begins with the take-off of the drone 

from the ground and its perch on the power line. After disarming the drone, the manipulator comes into action. The arm 

is lifted through a controlled manipulator action to focus the camera on the insulators. The video of the insulators will 

be shared with a server through wireless means. A custom-trained deep-learning model in the server will identify the 

faulty insulators. 
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I. INTRODUCTION 

 

The structural integrity and robustness of power line components and infrastructure are assessed through a variety of 

techniques in power line inspection [1], [2]. Visual inspections are direct observations carried out by people at the 

power lines and related parts for any indications of wear, damage, or potential risks. Aerial inspections make rapid 

work of covering huge regions by using manned aircraft to conduct visual assessments from an elevated position. The 

popularity of drone-based inspections has grown because of their affordability and accessibility. Drones can fly near to 

electrical wires [3] while carrying cameras or sensors to take high-resolution videos and photos. By using laser sensors 

to create precise 3D models of power line structures, LiDAR technology aids in the detection of spatial correlations and 

anomalies. Infrared cameras are used in thermal imaging inspections to locate hotspots or improper connections that 

could be signs of electrical problems. Using specialized equipment [4], [5], ultrasonic testing can find weaknesses or 

abnormalities in power line conductors. Installing sensors throughout the lines as part of power line monitoring systems 

allows continuous monitoring of variables like temperature, vibration, and current while also giving real-time data for 

problem diagnosis and maintenance. A mix of these techniques may be used, depending on the needs to guarantee 

thorough examination and upkeep of power line infrastructure. 

Combining robotic manipulators and drones for power line inspection offers several potential advantages that could 

greatly improve the process efficiency, safety, and its effectiveness [6], [7]. Drones and robotic manipulators [8] work 

together to increase safety by minimizing the need for human intervention in dangerous areas. Remote inspections 

reduce the possibility of falls, electrocution, and other possible hazards brought on by conventional methods. This 

preserves the safety of the inspection team while gathering precise information. Overall, using robotic manipulators and 

drones together to examine electricity lines has advantages like better access to difficult-to-reach places, increased 

safety, increased efficiency, precise manipulation and placement, real-time data collecting, automation, and advanced 

analytics [9]. These benefits result in better planning for maintenance, earlier problem diagnosis, and increased overall 

dependability of power line infrastructure. 

Related works on drones with manipulators for power line inspection [10], highlight the increasing interest in utilizing 

aerial robotics and manipulative capabilities to enhance the efficiency and safety of powerline maintenance and 

inspection operations. Various aspects of this technology have been explored [11], aiming to address the challenges 

associated with traditional inspection methods and improve overall inspection effectiveness [12]. One area of focus in 

related works involves the integration of manipulators onto drones [13], [14] enabling them to perform precise tasks 

such as visual inspection, component maintenance, and repair.  
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These manipulators provide the necessary dexterity to access and assess powerline components in detail, facilitating 

timely interventions and reducing the need for human workers to perform potentially hazardous tasks. Moreover, 

investigations have been conducted on the use of multirotor drones or micro-UAVs for power line inspection [15]. 

These platforms offer increased agility and maneuverability, allowing them to navigate complex powerline structures, 

such as transmission towers and overhead lines. This capability enables comprehensive visual coverage and facilitates 

detailed inspections of powerline infrastructure. 

Autonomous powerline inspection systems have also garnered attention in related works. The development of 

intelligent algorithms and sensing technologies to enable drones with manipulators to autonomously perform inspection 

tasks has been explored in [16], [17]. By reducing the reliance on human operators, these systems enhance operational 

efficiency, minimize human error, and improve overall inspection accuracy. Sensors play a vital role in powerline 

inspection, and related works have focused on integrating advanced sensor technologies. High-resolution cameras, 

LiDAR, thermal imaging devices, and other sensors have been employed to capture precise measurements, detect 

defects or anomalies, and enable real-time monitoring of powerline conditions. The incorporation of these sensors 

enhances the quality of data collected during inspections and contributes to more informed decision making. Control 

strategies and algorithms are another critical aspect addressed in related works. Control systems to ensure stable flight 

[18], accurate manipulation, and obstacle avoidance capabilities during power line inspection missions [19], has been 

proposed. These control systems play a crucial role in maintaining the safety and reliability of drone-manipulator 

systems, enabling them to operate effectively in challenging environments. Furthermore, research efforts have been 

directed towards optimizing the overall system design of drones with manipulators, for powerline inspection. This 

includes considerations such as payload capacity, power supply, endurance, and robustness, aiming to develop reliable 

and efficient platforms specifically tailored for power line inspection applications. Collaborative efforts and 

interdisciplinary approaches have also emerged in related works [20], with researchers integrating expertise from 

various fields such as robotics, power engineering, and computer vision. This collaborative approach [21] ensures a 

comprehensive understanding of the challenges and requirements of powerline inspection, leading to more effective 

solutions. 

Here, we propose a power line inspection drone that is capable of perching automatically onto the high-tension line 

using its onboard machine learning model. It can inspect the line using a 3 DoF arm with a camera as its end-effector 

and feed this video to a server in real time. The server has a custom trained deep learning model, which can 

automatically identify faults in the electrical components such as insulators. 

 

II. METHODOLOGY  

 

The main objectives of this work are to (A) develop an aerial robot equipped with a gripper module and (B) a 3 DoF 

arm to do a vision-based automated perching and inspection of power line components. This gripper is mounted on top 

of the airframe and is designed to secure the robot in a stable position at high altitudes. Our proposed system enables 

the robot to attach its frame to a power line located above it. This setup allows for aerial manipulation operations when 

the gripper successfully captures and connects to an object. While the UAV itself is manually controlled via remote 

controls, precise positioning and management of the robotic gripper require autonomous, vision-based control. Once 

the perching is successful, the robotic arm should be expanded to do a visual inspection of the power-line components 

like the insulators by sending a live video to a server. On the server a YOLO-based machine learning model is 

implemented that can detect the faulty insulators. 

 

 
Fig.  1. The drone with gripper module, top-camera, 3 DoF arm and an arm camera. 
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2.1 The AI Enabled Gripper Module 

A webcam mounted on top of the drone captures a real-time video feed of its surroundings as in Fig.  1. This feed is 

processed using image processing and machine learning techniques to analyze and extract relevant information. The 

processed image is used to identify and track nearby power lines. Based on the detected power lines, control commands 

can be sent to the drone’s flight controller system to navigate it towards the power line, and align itself along the power 

line. Then the gripper on the drone operates automatically, closing in response to received control commands, perching 

onto the power line. 

 

2.2 The Vision Assisted 3 DoF Arm 

The proposed methodology for insulator fault detection using a 3DOF drone equipped with a manipulator as in Fig.  

1and an integrated YOLO algorithm, with a camera mounted at the end effector, is a comprehensive and innovative 

approach. The first step involves designing and building of the drone with the manipulator capable of carrying the 

camera and performing manipulative tasks. The camera is strategically placed at the end effector to capture high-

resolution images or videos of powerline insulators during the inspection process. A dataset of labeled images is 

collected, containing both faulty and non-faulty insulators, which is then used to train the YOLO algorithm for object 

detection and classification. 

After preprocessing and splitting the dataset into training and testing sets, the YOLO algorithm is fine-tuned 

specifically for insulator fault detection, ensuring optimized performance. Once the YOLO model is trained, it is 

implemented on the drone’s onboard computer for real-time object detection. The drone is programmed with navigation 

and path planning algorithms to ensure it hovers close to powerline insulators, and the manipulator is controlled to 

position the camera for detailed inspection. 

During the inspection process, the camera captures images, and the YOLO algorithm analyzes them in real-time to 

detect faulty insulators. The algorithm’s outputs are then processed to assess the severity of the faults and their potential 

impact on the powerline integrity. The drone’s decision-making algorithms prioritize, and report detected faults based 

on their severity. Real-time data and inspection reports are transmitted to operators or a centralized control system for 

further action. 

Using the proposed UAV, our procedure for performing aerial manipulation at high altitudes includes the following 

steps. 

▪ Flying to the designated work area. 

▪ Grasping the desired power line to stabilize and secure the robot frame. 

▪ Conducting the manipulation task, which, in this case, involves inspecting the insulator for faults. 

▪ Disengaging and landing. 

 

2.3 Design 

The design of the drone includes the following major subsections. 

A. Drone Frame Design 

 

 
Fig.  2. The frame of the quadcopter’s skeleton, where various components are mounted. 

 

To build the quadcopter, one must start by selecting a suitable frame and affixing four brushless motors that provide the 

necessary thrust for flight as shown in Fig.  2 Matching propellers are then chosen to ensure optimal lift and stability. 

Fig.3 shows the quad copter manipulator design in Fusion360.  
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Fig.  3. Block diagram of drone. The flight controller, ESC, and BLDC motor, while the radio telemetry and receiver 

enable communication between the drone and the ground. 

 

Electronic speed controllers (ESCs) and necessary peripherals as shown in Fig.  3 are connected to the motors and 

flight controller, regulating motor speed based on inputs received from the KK2.1.5. Pairing the flight controller with a 

compatible radio transmitter and receiver allows for seamless remote control. A power distribution board is 

implemented to efficiently channel power from the battery to the flight controller and ESCs. Following the assembly of 

all components onto the frame and proper wiring, the flight controller is calibrated using the built-in menu system. This 

crucial step ensures accurate orientation and enables fine-tuning of control settings for stable flight. 

 

B. Gripper Module Design 

 
(a) Gripper design– side view.                    (b) Gripper design – isometric view 

Fig.  4. 3D model of the gripper design in Fusion360 attached to the upper body of the drone. 

 

 
Fig.  5. Dimensions of gripper module. 
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The gripper module consists of several components, including gripper jaws, an electric actuator, a transmission 

element, a base, and linkages as in Fig.  4. This module features a twin-finger arrangement, with its motion controlled 

by spur gears. The motor is coupled with the spur gear; as the motor rotates, the spur gear engages, enabling the 

gripper's movement. The fingers of the gripper move to grasp objects, providing a simple yet effective design. At the 

point of contact, the gripping force is always perpendicular to the surface, ensuring maximum grip strength on the 

object.  

 

 
Fig.  6. Arm design in Fusion360 attached to the lower body of the drone. 

 

Additionally, the location of the contact points does not affect the gripping force. The jaws use frictional force to secure 

the item, and an electric actuator drives the spur gears to open the jaws. The connecting link rotates using these gears, 

facilitating the gripping action. The design dimensions of the gripper are detailed in Fig.  5. 

 

C. Manipulator System Design 

 

 
Fig.  7. Dimensions of arm module. 

 

With the help of a battery as a counter balance, the manipulator is fixed to the base side of the aerial vehicle. Four 

motors are placed on the tip of the quadcopter’s X-shaped frame construction as shown in Fig.  6. 
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Each motor’s propeller, which produces downward thrust as it turns, is fixed to the top of the motor. To regulate the 

thrust, the motor’s rotations per minute (RPM) are altered.  

The first motor of the manipulator is mounted on a holder that is bolted to the drone. OneDoF revolute joints are used 

to serially connect three links. As a result, the manipulator has three degrees of freedom (DoF) and is an RRR arm. 

Mechanical servo motors with rotational axes of 180 or 360power the joints.A servo motor is a kind of actuator that 

offers rotary or linear motion as well as feedback on the present location. The links are connected to the servo motor’s 

shaft, which rotates to position the links at the proper rotatory angle. The end of the third link has an end-effector 

attached to it. Depending on the task, the end-effector could be a camera, a gripper, or any other device. Here, we use a 

camera for the inspection work.The manipulator was designed in Fusion 360, and the dimension sketches are shown 

in Fig. 7. The final model of the drone attached to the gripper module and the arm, is shown in Fig. 8. 

 

2.4 3D printing 

The arm in this design was 3D printed to ensure strength and reduce weight. Poly Lactic Acid (PLA) material was used 

to 3D print the gripper module and the manipulator pieces.All the connections were tightened as well to increase their 

durability.The total weight of the manipulator with motors is 93 grams. Since two motors were being used as servos, 

each link’s motor connection point had a unique design. Depending on the task, the lower portion of the last link was 

kept as flattened to accommodate any needed end-effector. To ensure strength with little weight was a top priority when 

printing the arm. 

 

2.5 Controlling manipulator 

Tkinter, a Python library for creating graphical user interfaces (GUIs), can be used effectively to control motor rotation. 

First, the necessary hardware interface is established to connect the GUI with the motor. Using Tkinter, GUI elements 

such as buttons or sliders are created to represent motor control parameters. Event-driven programming in Tkinter 

enables the definition of functions to handle user interactions with these GUI elements. 

 

 
Fig.  8. Final design of the drone in Fusion360 where both the gripper and the arm are attached. 

 

III. MATHEMATICAL MODELING 

 

Mathematical modeling of the drone primarily includes the calculation of empty weight fraction and Denavit-

Hartenberg (D-H) parameters for the 3 DoF arm, as discussed in the following subsections. 

 

3.1 Weight 

The weight of each component should be taken into consideration for calculating the empty weight and total carrying 

weight. The calculations of weight estimation are as follows. 

 

𝑊𝑇 = 𝑊𝐹 + 𝑊𝑀 + 𝑊𝐸𝑆 + 𝑊𝐵𝑎𝑡𝑡 + 𝑊𝑃𝑎𝑦  

 

Where WT, WF, WM, WES, WBatt, and WPay represent the takeoff gross weight, frame weight, motor weight, ESC’s 

weight, battery weight, and payload weight, respectively. 

The empty weight can be calculated as 

 

𝑊𝑒 = 𝑊𝐹 + 𝑊𝑀 + 𝑊𝐸𝑆 
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If the quadcopter is electrically equipped, the takeoff gross weight will remain constant. Thus, the total gross weight is 

given by 

 

𝑊𝑇 = 𝑊𝑒 + 𝑊𝐵𝑎𝑡𝑡 + 𝑊𝑃𝑎𝑦  

 

The empty weight fraction is then computed as 

 

𝐸𝑚𝑝𝑡𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑊𝑒

𝑊𝑇

 

 

3.2 Denavit-Hartenberg Parameters 

The Denavit-Hartenberg Convention is used to determine the forward and inverse Kinematics Solution. The 

manipulator’s mobility will be controlled using these solutions. The Kinematics and Inverse Kinematics solution for 

each leg are calculated using four D-H parameters as shown in Fig. 9. 

1) Twist angle ∝𝑖−1: The angle between the lines along joints𝑖 − 1and 𝑖 measured about �̂�𝑖−1which is the common 

perpendicular.  

2) Link length 𝑎𝑖−1: The distance between the lines 𝑖 − 1 and 𝑖. 
3) Link offset 𝑑𝑖: The distance along �̂�𝑖 from the line parallel to �̂�𝑖−1 to the line parallel to �̂�𝑖. 

4) Rotation angle 𝑖: The angle between �̂�𝑖−1 and �̂�𝑖 measured about �̂�𝑖. 

This method for calculating D-H parameters only takes into account rotary or prismatic joints with a single degree of 

freedom. Any joint with more than one degree of freedom is regarded as having several 1DoF joints. For a prismatic 

joint, the parameter di will have a variable value whereas the parameter i will be constant. In contrast, for a rotary 

joint, the parameter i will be changeable and the parameter di will always have the same value. Other parameters may 

have negative values even though the value of ai−1 is always positive.  

 

 
Fig.  9. Intermediate links and D-H parameters. 

 

3.3 Jacobian Matrix 

To determine the subsystem linear and angular velocities, the Jacobian matrix (J) is used. The Jacobian matrix can be 

obtained by formulating the linear and angular velocity vectors as a matrix equation. The coefficient matrix is what 

relates to the derivative of the state. The components of J are nonlinear functions of states, and for a non-autonomous 

system, J will be a function of time. The matrix’s linear and angular velocity components are typically expressed as two 

halves and J ∈  Rm∗n, where m is the number of coordinates required to represent the motion in Cartesian space and n is 

the dimension of the state vector. By obtaining the inverse of the J matrix, we can calculate the necessary joint variable 

velocities for the supplied linear and angular velocities. For this function to occur, the J matrix’s determinant must not 

be zero. Robotics singularity analysis primarily depends on the Jacobian matrix. 
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3.4 System Modeling 

Kinematics equations and dynamics equations are the two types of calculations used in robotics to explain each 

individual robot. The kinematics equations describe the system’s kinematics, or the way the end-effector motion differs 

once the joint variables change. It does not take into account the cause of the change.  

The dynamics of a system, on the other hand, consider the cause of motion. The dynamics of a model is expressed by 

its equations of motion. This unique collection of equations of a particular plant, which involve macroscopic 

characteristics like weight, moment of inertia, and so on, are characterized by joint variables or systemic states. The 

final design of the arm is as shown in Fig. 10, when attached to the drone frame along with the end effector camera. 

Fig. 1 shows the complete implementation of the drone system with the gripper module and the arm with the end 

effector camera. 

 

 
Fig.  10. The manipulator system integration onto the base of a drone. The drone platform’s size and modifications 

accommodate the manipulator, ensuring balance and stability during maneuvers. 

 

IV. DETECTION OF POWER LINES AND ITS ALIGNMENT USING DEEP LEARNING 

 

This approach is also used for detecting objects, specifically power lines. However, it is not integrated with the 

hardware. Instead, the feed from the webcam is used for analysis. This method provides more accurate results 

compared to traditional image processing. For power line detection using YOLO, a dataset of 100 custom images was 

utilized, with 80% of the images allocated for training and 20% for testing. Initially, the training was conducted for 

3000 iterations, but the model showed low accuracy and overfitting. Training was then extended to 10,000 iterations, 

achieving an accuracy of around 80% and significantly reducing the loss function. The model was subsequently 

employed for detection. The code was executed on Jupyter Notebook within a virtual environment, enabling real-

time predictions to determine if an object in the video is a power line. 

YOLO is a real-time object detection algorithm that operates differently from traditional methods by performing 

detection in a single pass. The key steps in its operation are as follows. 

▪ Input: The YOLO architecture receives a full image as its input. 

▪ Convolutional Layers: A series of convolutional layers are applied to this input to extract features from the 

image. The original YOLO model includes 24 convolutional layers followed by 2 fully connected layers. Some 

versions of YOLO also incorporate max pooling layers. 

▪ Split into Grid: The output from the convolutional layers is divided into an S x S grid. For YOLOv1, S is 

typically set to 7, creating a 7x7 grid. 

▪ Predictions: Each grid cell generates predictions, specifically B bounding boxes and their associated confidence 

scores. Additionally, each cell predicts C class probabilities. For YOLO v1, B is usually set to 2. 

▪ Output: The model's output is a tensor with a shape of S x S x (B5 + C). For each bounding box, the model 

predicts the x and y coordinates of the center, the width, the height, and a confidence score, accounting for B5 

parameters. The class predictions add another C parameters. 

▪ Post Processing: The final step involves post-processing the output tensor. Techniques like thresholding on 

confidence scores and non-maximum suppression are applied to produce the final bounding box predictions. 

 

V. INSULATOR FAULT DETECTION USING DEEP LEARNING 

 

A variety of deep learning methods are available for insulator fault recognition. These deep learning algorithms include 

YOLO, R-CNN, Fast CNN, and many more.  
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The YOLO algorithm is utilized in this work for insulator fault detection,as done for power line alignment detection. 

YOLO improved prediction accuracy and bounding box intersection over union. The main benefit of YOLO is its 

quickness. Compared to its competitors, YOLO is a much faster algorithm. 

 

 
Fig.  11. The deep neural network architecture of YOLO. The detection network has 24 convolutional layers followed 

by 2 fully connected layers. 

 

YOLO determines the attributes of these bounding boxes using a single regression module in the following format, 

where Y is the final vector representation for each bounding box. 

 

Y = [pc, bx, by, bh, bw, c1, c2] 
 

This is important during the training phase of the model. The architecture shown in Fig.11 works as follows. 

Preprocessing by resizing the input image into 448 x 448 before giving it to the convolutional network. First, to 

generate a cuboidal output, a 1x1 convolution is applied to reduce the number of channels, followed by a 3x3 

convolution. ReLU is the activation function, except for the final layer, which uses a linear activation function. Batch 

normalization and dropout are then used to regularize the model and prevent it from overfitting. 

Collecting the collection of images with and without fault insulators is the first stage in implementation. By creating 

boundary boxes labeling the fault and no-fault classes, this dataset is used to train the machine. The datasets used for 

insulator fault detection are from the IEEE data port dataset. For insulator fault detection using YOLO, a dataset 

consisting of 914 images was used, from which 80% of the images were used for training and 20% for testing. The 

training was done for 10000 iteration steps, and the training accuracy obtained was around 89% and the loss function 

was reduced to a small value. The model was then used for detection. The code is executed on Jupyter Notebook 

running in a virtual environment. Using this model, real-time predictions can be made to determine if the insulator is 

faulty or not. The precision of the model that we trained is 91%.The mathematical equation for calculating the precision 

is TP/(TP+FP) where TP is the true positive and FP is the false positive. 

The focal loss function will address the imbalance between positive and negative samples in target detection. It is 

possible to add weight to the loss corresponding to the sample according to the difficulty of sample discrimination, that 

is, add less weight to the easily distinguishable sample and add greater importance to the complex distinguishable 

sample. The formula used for the classification loss function is as follows. 

 

Lcls =  −ζt(1 − pt)δ log(pt) 

 

where Lclsis the classification loss value.p is the probability that the sample predicted by the model belongs to the 

foreground. To solve the imbalance of sample categories, the weight parameter δ is introduced. 

 

VI. EXPERIMENTAL RESULTS 

 

The experimental results of this work can be discussed in two following subsections, first about the automatic docking 

system on power lines, and then the power line inspection and fault detection using machine learning techniques. 
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6.1 Automatic Docking to Powerline 

 
Fig.  12. Power line detection by on-board ML model. 

 

Result-1: The drone was able to carry a payload with stability, containing the gripper, achieving a stable flight to a 

certain height, and successfully perching onto the identified object. The drone was controlled manually, meaning it was 

operated using direct control inputs from a human operator. This involves using an RF remote controller to send control 

signals to the drone, allowing real-time navigation by the pilot. The manual control process involves the pilot using a 

handheld remote controller with joysticks, buttons, and switches that correspond to different flight controls such as 

throttle, pitch, roll, and yaw. These controls enable the pilot to adjust the drone’s speed, direction, and altitude. During 

manual control, the pilot relies on visual observation and hand-eye coordination to maneuver the drone. Inputs from the 

controller are translated into commands that determine the drone’s behavior, including changes in speed, rotation, and 

flight path. 

Result-2: The drone is equipped with a gripper mechanism that allows it to interact with objects in its environment, 

specifically power lines. This gripper enables the drone to securely perch onto power lines. Utilizing image processing 

techniques powered by YOLO, particularly color code detection, the drone can accurately identify and target power 

lines. The gripper successfully identified the object of interest and automatically perched onto it. A test maneuver of 

successful power line detection is shown in Fig. 12 as a screen shot. 

This system was tested in a controlled environment, aiming to perch on a line at an altitude of 5 meters above the 

ground. Out of 25 trials, the system successfully perched on the target 14 times on the first attempt and 11 times on the 

second attempt. Here, one attempt refers to a direct flight towards the target for perching. 

 

6.2 Power Line Inspection and Insulator Fault Detection 

 

 
Fig.  13. Insulator fault detection by the ML model running in a remote server. The same results are shared with a 

mobile phone that has a VNC client running. 

 

Result 1: At the first result, a lightweight manipulator with 3DoF was designed in Fusion360 and implemented in 

drone.The end effector of the link is also attached with a camera for fault insulator inspection.  
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Result 2: Next using deep learning techniques the real time video feed was taken and processed by identifying the 

insulators as fault or with no fault. Some screenshots are shown in Fig. 13. 

Result 3: The drone could lift the manipulator system by considering its payload capacity for the powerline inspection. 

To achieve a successful lift of the manipulator system, the drone’s payload capacity was carefully assessed to ensure 

that it can handle the additional weight. The structural integrity of the drone was also tested, and necessary 

reinforcements were made to support the manipulator’s weight without compromising stability. 

 

VII. CONCLUSION 

 

The primary goal of the project was to develop and deploy a drone capable of aerial manipulation for executing power 

line inspections.The integration of machine learning and vision-based gripper technology for drone docking on power 

lines, represents a transformative advancement in inspection practices. The 3DoF drone equipped with a manipulator 

system and a camera, integrated with deep learning for insulator fault detection, presents a promising solution for 

efficient and accurate powerline inspections.The combination of the drone’s mobility, the manipulator’s dexterity, and 

the deep learning capabilities of the camera’s AI-powered detection system allows for close-up and real-time 

assessments of powerline insulators. By leveraging and integrating deep learning algorithms, such as YOLO, the drone 

can rapidly detect and classify faulty insulators with high precision, minimizing the risk of potential power failures and 

human hazards. 

This work proposes the design and implementation of a drone that can automatically perch on electricity wires, 

effectively inspecting insulators without human intervention. Additionally, the drone’s aerial perspective offers a 

comprehensive view of the power lines, facilitating better detection of defects, malfunctions, and potential hazards. 

This enhanced monitoring capability ensures the reliability and integrity of the power distribution network, leading to 

improved overall performance of the grid, and reduced downtime.The drone implemented as a part of this 

work,performed exceptionally well during the testing phase, demonstrating its ability to navigate challenging situations, 

and successfully execute inspection tasks. With its safety, efficiency, and cost-effectiveness, it offers a promising and 

tangible solution to the power line inspection menace 
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