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Abstract: A thorough characterization of the evolution process of solid tumors and the composition of 

circulating tumor DNA would greatly facilitate the development of therapeutic approaches. This work depicts 

the computational modeling approach towards unearthing the intricate relationship between spatial 

organization in solid tumors and the circulation tumor DNA. The study assesses how spatial organization 

makes a difference to the tumor cells' release into the blood flow, the incurred effect on mutational landscapes, 

and high resolution about the simulation of heterogeneity in circulating tumor DNA. The spatial confinement 

was found dramatically to affect tumor evolution and ctDNA molecular composition-very important for the 

design of precision medicine strategies, such as non-invasive biomarker detection and personalized 

therapeutic interventions. Results suggest that spatial tumor organization affects the timing of ctDNA release, 

and therefore could influence the sensitivity of liquid biopsy to early tumor tracking and treatment response. 

Integrate computational models with experimental and clinical data in order to validate predictions, refine 

understanding of ctDNA dynamics, and push the advance in oncology diagnostics, monitoring, and treatment 

toward better outcomes in personalized medicine. 
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I.INTRODUCTION 

Cancer is one of the more challenging and complicated diseases, such as that for which the spatiotemporal 

complexity of dynamic evolution within the spatial context of the tumor microenvironment is characteristic. 

Unraveling the intricately interwound complex interplay of genetic mutations in tumour cells, spatial 

distribution of tumor cells, and their microenvironmental influences forms the kernel of understanding tumor 

evolution and its consequences for treatment effectiveness. The past few years have seen unprecedented 

advances in computational modeling and in machine learning, empowering a detailed dissection, which now 

opens the door to spatial dynamics in tumor progression and even to the analysis of composition in circulating 

DNA fragments.CtDNA in circulation is derived from shedding of tumor cells and allows for non- invasive 

cancer diagnosis and monitoring. Paper title: "Spatial heterogeneity within a tumor is dominated by the rates 

of apoptosis and cellular shedding, and impacts the mutational composition of ctDNA that entails genetic 

bias.This study establishes that regional changes in a microenvironment within the tumor can alter ctDNA 

patterns substantially due to variations such as type of immune response and hypoxia.Circulating tumor DNA 

provides a promising approach to the management and treatment of cancers to be diagnosed and monitored 

non-invasively, from which DNA fragments are shed into the bloodstream from the tumor cells through 

apoptosis, necrosis, and active secretion. 

Variations in the rate of apoptosis are observed among different clones of tumors; the effect is that there will 

be unequal representation in the circulation DNA, which subsequently impacts the quality of genetic 

information collected from the blood.  
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For example, immune infiltration, hypoxia, and treatment regimens also impact the rates of processes 

considered and therefore tumor evolution and yield of ctDNA. The central question is to understand how the 

spatial heterogeneity in tumors affects the representation of ctDNA in blood samples and how that impact 

impacts the accuracy with which cancers are monitored and treated. Important specific issues include: 

 

This study is centered on gaining an insight into the complex relationship that exists between tumor evolution, 

spatial heterogeneity, and circulating tumor DNA representation. It tries to shed light on how spatial 

distribution differences create cancer dynamics and lead to shedding of ctDNA. Differential apoptosis rates, 

heterogeneity in cell shedding and regional biology have all been deemed individually to affect genetic biases 

in ctDNA samples. This will address dynamics aimed at the enhancement of reliability of diagnostics of 

cancer treatment, monitoring, and prognostication based on ctDNA. Finally, this research will enhance 

prediction accuracy on cancer advancement to better tailor the treatments for improved outcomes for the 

patients. 

II. LITERATURE SURVEY 

This paper proposes a deep learning method of Gulshan et al. in the automatic detection of diabetic retinopathy with CNNs 

using a large set of retinal fundus images. The technique maintains as high an accuracy level as that of an expert human 

being and makes the solution promising enough to be applied as a screening tool for the early detection of diabetic 

retinopathy. [1] 

Ting et al. here describe a deep learning system involving the use of CNNs and image processing techniques for the 

identification of diabetic retinopathy and associated diseases of the eye. The system showed great sensitivity and 

specificity and may potentially find useful applications in the clinic for screening eyes for various diseases. [2] 

Gargeya and Leng utilized an automated detection technique using CNN analysis for the identification of diabetic 

retinopathy in retinal images, that classified these images either as normal or containing diabetic retinopathy. The model 

was accurate to a great extent and efficient in terms of processing. It allowed for large-scale screening initiatives. [3] 

Keel et al. designed a computerized diagnostic model with AI that may be used in outpatient endocrinology services for 

screening diabetic retinopathy. Patient data was bound together by deep learning algorithms to offer personalized 

recommendations for screening. Thus, it may help decrease the costs of health care by ensuring that patients are not left 

behind to receive bad care. [4] Eladawi et al. present an automated detection method for diabetic retinopathy through 

clinical biomarkers and imaging data such as OCT. The system was elaborate on giving insight into vascular anomalies, 

which offered the clinicians a trace of the progression of the disease to form treatments. [5] 

A mobile-based system for the diabetic retinopathy screening using fundus photography and machine learning was made 

by Rajalakshmi et al. The approach as shown served as a proof of concept for feasibility in resource-limited settings; 

cost-effective and accessible remote screening solution. [6] 

A study was conducted by Abràmoff et al. using an autonomous AI diagnostic system for the detection of diabetic 

retinopathy in primary care clinics. The high sensitivity and specificity achieved prove the full potential of AI-based 

screening within real-world health care contexts. [7] 

For the detection of diabetic retinopathy, Gangwar and Ravi also employed transfer learning with pre-trained CNNs, 

which presented higher results than the classical models and confirmed the role of knowledge transfer in the process of 

medical image analysis. [8] 

Araújo et al. considered data augmentation techniques for enhancing deep learning models in an attempt to detect 

proliferative diabetic retinopathy. The synthetic images enhance robustness and generalization capability of models even 

when there is limited training data. [9] 

Tsiknakis et al. reviewed deep learning models for diabetic retinopathy detection and summarized the current methods 

and their performances in terms of accuracy, sensitivity, and specificity. It particularly underlines the need for 

standardized evaluation methods, large-scale validation studies, and actual progress toward applying those models to 

screening programs. [10] 

 

III. METHODOLOGY 

 

The proposed methodology for tumor growth simulation and ctDNA analysis involves multiple stages, incorporating 

computational modeling, apoptosis dynamics, treatment simulation, and ctDNA sampling to explore the interplay 

between tumor spatial heterogeneity and circulating tumor DNA (ctDNA) representation. The tumor growth is modeled 

using the Eden model, a boundary-driven approach that simulates tumor expansion on a 2D lattice. This model is 

particularly suitable for capturing spatial heterogeneity, as it focuses on the proliferation of cells along the tumor 

boundary, reflecting real-life tumor growth patterns. 
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A Moore neighborhood structure is employed, meaning each tumor cell is surrounded by eight neighboring cells. 

This structure ensures that growth is determined by local interactions, simulating how cells proliferate in densely packed 

environments. The simulation begins with a single tumor cell and continues until the tumor reaches a population of 

60,000 voxels or becomes extinct due to cellular apoptosis or other dynamics. 

 

3.1 Clinical Detection and Treatment Simulation Apoptosis, or programmed cell death, is integrated into the 

simulation from the early stages of tumor growth. During the initial phase, a uniform death rate is assumed to 

represent apoptosis, simulating the natural balance between cell proliferation and death that occurs in early 

tumor development. As the tumor grows, the detection and treatment phase is triggered when the tumor reaches a 90- 

voxel radius, simulating the point at which the tumor becomes clinically detectable. At this point, treatment is 

introduced, and its effects on tumor growth and apoptosis are simulated. The treatment phase models the response of 

tumor cells to therapeutic interventions by adjusting the rate of cell proliferation and death, enabling the simulation 

to capture how treatment can slow or reverse tumor growth while increasing apoptosis. 

 
3.2 ctDNA Shedding and Sampling 

A critical aspect of the methodology is the assessment of ctDNA, which is shed by tumor cells into the bloodstream and 

serves as a potential biomarker for cancer detection and monitoring. Throughout the simulation, ctDNA is sampled at 

different stages of tumor growth, both before and after treatment. This sampling is used to assess how well the ctDNA 

reflects the genetic composition and spatial heterogeneity of the tumor. By sampling ctDNA at various points in time, 

the model can capture how the spatial organization of tumor cells influences the amount and type of ctDNA released 

into circulation. After treatment, additional samples are taken to examine how the intervention affects ctDNA shedding 

and its genetic makeup. Bias analysis is then conducted to explore how variations in cell shedding due to spatial 

heterogeneity and apoptosis influence the observed genetic differences in ctDNA. 

 
3.3 High-Dimensional Tumor Evolution Dataset 

This methodology highlights the significant impact of spatial tumor heterogeneity on ctDNA release and composition. 

It allows for the examination of potential biases that may arise in ctDNA sampling, particularly due to uneven cell death 

and shedding across different tumor regions. These findings are crucial for improving the accuracy of liquid biopsies, as 

ctDNA is increasingly used as a non-invasive tool for cancer diagnosis and treatment monitoring. By simulating tumor 

growth, apoptosis, and treatment response, this approach offers a comprehensive understanding of how spatial factors 

shape ctDNA dynamics and provides insights that could enhance personalized medicine strategies for cancer patients. 

The tumor evolution analysis of the used dataset is highly challenging due to dimensions, size, and 

complications due to multiple domains. It comprises multiple attributes that not only offer insight into any 

corresponding aspect of the growth of the tumor but also include temporal, spatial, genetic, and frequency data. Temporal 

attributes like "t" and "norm_t" follow the pace of simulation changes with the passage of time. Spatial attributes like 

"r_mean," "r_std," "centroid_x," "centroid_y," and "centroid_r" present the distribution in space in which the clones of 

the tumor are moving. Genetic information is collected through attributes like "genotype" and "drivers,"describing rich 

information over genetic variations and mutations in the tumor. Furthermore, frequency data (e.g., "tissue," "blood," 

"diff") quantifies the presence of specific genotypes in different environment, and population-related attributes, such as 

"popsize" and "cellhge," give a clue about the tumor's overall and scaled population sizes. Data manipulation and 

analyses turn into very sophisticated tasks to enable meaningful insights.In addition, due to multiple replicates at multiple 

time points and genotypes, the amount of data grows significantly, complicating the analysis even more. Thousands of 

data points are encapsulated within each replicate, and the high- resolution data generated at each point in time for many 

clones results in a gigantic dataset which is difficult to store, process, or analyze efficiently. Temporal complexity adds 

yet another layer of difficulty in the sense that recording changes through time requires the application of sophisticated 

time-series analysis techniques, even with normalized and binned timestamps such as "norm_t" or "norm_t_binned". 

Furthermore, spatial attributes introduce spatial complexity, and useful tools such as GeoPandas and Shapely would be 

required for spatial analysis and distribution visualization of tumor clones. Genetic complexity refers to factors such as 

the "drivers," mutations, and genetic diversity in tumor clones-features that have to do with the requirement for 

bioinformatics for handling and data analysis. 
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Fig 1: Framework for the flow of tumor to analysis. 

 

The image shows comparison graphs of tumor invasion dynamics under different models, with a clear illustration of a 

difference in clonal fraction between blood and tissue across varying estimated 3D tumor sizes. There are four panels 

(A, B, C, D): 

Panels A and B represent driver-dependent invasion in small (A) and large (B) sanctuary sites. Each shows results for 

both the quiescent and proliferative cell models. Panels C and D : Driver-independent invasion in similar small (C) and 

large (D) sanctuary sites for both cell models. Each graph incorporates a color gradient, where normalized age is indicated 

and therefore ranges from younger clones towards the older clones as blue. The x-axis depicts estimated tumour size, 

while the y-axis shows the difference in clonal fraction between samples of blood and tissue. Orange lines delineate mean 

values, highlighting just how different clonal dynamics can be, firstly between quiescent and proliferative cell models 

and second with or without influence by the sanctuary site. 

 
 

 

Fig 2: Discrepancies between Blood and tissue clonal diversity 
 

This figure depicts four graphs that compare clonal diversity between blood and tissue at normalized time under various 

invasion models and different sanctuary site sizes. In the graphs, the red lines indicate the clonal diversity in **blood, 

while the lines in blue indicate **tissue**. Shading around lines suggests variability in data. 

Panels A and B show driver-dependent invasion for a small(A) and a large(B) sanctuary site. Invasion increases clonal 

diversity in the blood at a higher rate for large sanctuary sites, whereas tissue diversity remains lower for longer 
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times.Panels C and D illustrate the idea of driver-independent invasion.large(D) sanctuary sites. In both cases, blood and 

tissue are sharply increasing late in the normalized time scale of clonal diversity, but more so in the case of the larger 

sanctuary site. 

The graphs above suggest that clonal diversity evolves in blood and tissue differently, in ways sensitive to whether the 

sanctuary site is small or large, and also to which invasion model obtains. 

 

IV. EXPERIMENTAL EVALUATION 

 

We simulated such complex dynamics of tumor evolution with the help of an Eden model and examined the implications 

it provides for the analysis of circulating tumor DNA. The Eden model can effectively capture boundary-driven growth 

in a 2D lattice and is, therefore, well suited to the study of heterogeneity in the spatial growth of tumors. It included two 

main phases: phase I simulated the development of a tumor from a single cell, and phase II analyzed the representation 

of ctDNA at different stages of the growth of the tumor and post-treatment. The first phase of the experiment involved the 

Eden model simulating the development of a tumor with spatial heterogeneity. Starting from a single tumor cell, the 

model enabled a rapid cell division at the edge of the tumor and slower divisions in the core. This spatial heterogeneity is 

quite realistic because the growth rate of real tumors typically tends to be faster on the periphery than in the core, because 

the oxygen levels, nutrient diffusion, or various other environmental conditions will often be more favorable for cell 

division on the periphery. This 2D lattice mapped a much better difference, thus making the simulation more realistic 

towards tumor development and progression. The growth of the tumor was allowed to continue until it was rich enough 

to reach a population of 60,000 voxels, at which point the size was big enough to represent clinically relevant tumor sizes. 

In the second phase, apoptosis modeling and ctDNA analysis were included. The differential apoptosis rates were 

modeled by assuming that after the treatment, the apoptosis rates in the tumor's core and edge regions were dissimilar, 

respectively, by invoking apoptosis rates for the core and the edges of the tumor corresponding to their respective 

values: \(d_1\) and \(d_2\). It was an attempt to capture as closely as possible the reality of chemotherapy or immune 

response not being uniform throughout the tumor and more cell death being at the periphery than at the core of the tumor. 

This phase set up how changes in the dynamics of the tumour would reflect those in its attendant ctDNA. Interestingly, 

areas of the tumor that had a higher apoptosis rate contributed disproportionately to ctDNA, potentially making 

ctDNA a biased subset of the tumor's genetic landscape. Indeed, only mutations in areas with a higher cellular turnover 

rate - at the edge of the tumor are likely to be found in ctDNA. Changes within the core of tumors, relatively more stable 

or quiescent, will underestimate in the blood samples. Such spatial heterogeneity in ctDNA greatly hinders its application 

in clinical diagnostics. Nevertheless, its role as a noninvasive biomarker in the monitoring of the progression of tumors, 

in minimal residual disease detection, and in identification of actionable mutations for use in targeted therapies is rapidly 

increasing. The results presented in this study indicate that owing to uneven cell shedding from various regions into the 

bloodstream, ctDNA may not be a complete reflection of the clonal architecture of the tumor. This means that there is a 

possibility of misinterpretation of ctDNA- based diagnostics when important driver mutations or alterations in genetics 

are not represented preferentially in ctDNA. This has serious implications for clinical decision-making, especially in 

personalized cancer treatment. Understanding the full genetic landscape of a tumor is important to select the appropriate 

therapies. 
 

To explore this problem more elaborately, the model was sampled at various time points during tumor development and 

after treatment. The analysis showed profound biases in ctDNA representation depending on spatial heterogeneity of the 

tumor and differential apoptosis rates applied. ctDNA more frequently reflected mutations within those regions of the 

tumor where apoptosis was more aggressive, whereas those with lower apoptosis rates were underrepresented. This 

spatial bias affects both the content of genetic material in ctDNA and the clinical implications of tumor burden and 

mutation frequency.The authors emphasize further development of more sophisticated models as well as empirical work 

toward decreasing the accuracy gap and achieving reliability in ctDNA-based diagnostics. A potential route ahead would 

involve combining computations with experimental data in order to derive more accurate, larger models of ctDNA 

shedding. Such advancements may also manifest in the form of enhanced algorithms for interpreting ctDNA-derived 

data or assisting clinicians with spatial heterogeneity when the determinations derive from ctDNA as a treatment guide. 

Future validation of these computational models should take place using clinical samples to ensure that the models 

illustrate the complexity of real-world tumors. 
 

Therefore, the Eden model is important for the insight obtained into spatial heterogeneity in growth of tumor and its 

effects on the composition of ctDNA. It points to the need for accounting for complexity at spatial and genetic levels in 

tumour evolution when using diagnostics for cancer with a base of ctDNA. Better understanding of the limitations of 

ctDNA plus models to refine computational analysis can then be used towards further optimization in terms of accuracy 

of ctDNA analysis to enhance monitoring, decision- making about treatment, and outcome for patients. 
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Fig 3: Blood clone fraction 

The scatter plot is drawn based on tumor size in the x- axis in logarithmic scale and difference between blood clone 

fraction and tissue clone fraction in the y-axis between -0.2 and 0.4. To depict "norm_age," points are colored with values 

from 0.0 (yellow), to 0.8 (blue). A number of trend lines corresponding to a range of "norm_age" values are employed. 

The oscillation of the yellow line (norm_age = 0.0) near zero suggests that clones' proportions do not change strongly 

with tumour size. In contrast, the blue line (norm_age = 0.8) dips to below zero for large tumours; this might indicate an 

a depleting or competition interaction between the clones at older tissue ages. Finally, the orange line crosses over and 

then plateaus; this situation appears to have a unique profile at intermediate ages. This plot suggests that the fraction of 

clones circulating in blood and tissue increases with increasing tumor size and may be affected by the normalized age 

of the tissue to some extent, reflecting heterogeneity in clonal dynamics across age groups. 

 

Fig.4: Blood Tissue Growth 

 

The plot of tumor size on a logarithmic scale from to on intratumor heterogeneity (ITH) in blood and tissue samples, 

as measured by the inverse Simpson's diversity index (y-axis) and representing clonal diversity, is done by the red line 

for ITH in blood and by the blue line for ITH in tissue. Shaded areas indicate variability or confidence intervals around 

these measurements. For a small enough tumor (less than \\\\(10^7\\\\)), the values for both blood and tissue ITH are 

very low and essentially the same. At around a tumor size of \\\\(10^7\\\\) there is a sharp spike in blood ITH which then 

drops rapidly but increases slowly with tumor growth. The tissue ITH increases much more gradually and steadily and 

the highest values for tissue ITH occur after tumor size \\\\(10^9\\\\)), although the overall tissue ITH is still 

less than the blood ITH. What the divergence of blood and tissue ITH levels, particularly for the larger tumors, reflects is 

a difference in clonal diversity between the two compartments. Blood reflects greater clonal diversity that peaks earlier 

and fluctuates to a greater degree than does tissue. This may reflect greater or simply more numerous tumor clones in 

the samples collected in blood when compared with tissue at certain tumor sizes, or fewer of these in tissue samples. 
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V. CONCLUSION 

The developed model for cancer biology represents a significant advancement in understanding the influence of spatial 

structure on the composition of circulating tumor DNA (ctDNA) and the evolution of solid tumors. It clearly points out 

that spatial structure plays a crucial role in the modulation of the dynamics of tumor evolution and ctDNA. Spatial tumor 

evolution refers to changes in a tumor's genomic content as the tumor grows and spreads throughout the body; ctDNA 

are the breakdown products that are released from the tumor cells into the bloodstream, allowing one to non- invasively 

determine the genetic make up of the tumor. The vast majority of earlier efforts have been directed at characterizing the 

direction of genomic composition change along different regions of the tumor and how such changes effect treatment 

response and disease progression. 

 

Yet, our model shows higher performance than prior approaches in incorporating both spatial structure and dynamic 

ctDNA into a single framework to further explain tumor heterogeneity. Since cell-free DNA can be analyzed, targetable 

mutations or biomarkers can be found for more-personalized treatment regimes-an approach that is not only non-invasive 

but also superior to traditional biopsies. This model impacts the clinic in very many ways in terms of improvement in 

diagnosing cancer, treatment, and evaluation of prognosis. The insights obtained from this modeling approach may help 

clinicians understand the trajectory of tumor evolution and therefore provide more effective and targeted treatments. This 

model can also help identify ctDNA biomarkers that could improve the accuracy of treatment plans and the probability 

of succeeding for patients. This system has proven to be a key tool in advancing research on cancer. The application of 

the system on multiple datasets and its demonstration show that it can robustly and reliably work with real-world 

scenarios of cancer evolution and ctDNA composition. Its modular architecture makes it relatively easy for different 

tumor growth analysis, spatial structure mapping, and ctDNA prediction flows toward better model adaptability and 

scalability for broader clinical applications. The performance of the model in improved parameters, such as prediction 

of tumor evolution and dynamics of ctDNA, is better than its previous versions with regard to predictability and 

applicability in real-world settings. Modular architecture indeed ensures application of this model in different clinical 

settings to pave the way for new approaches in the field of precision oncology. It serves to be highly relevant to develop 

new and innovative cancer treatment strategies through the advanced understanding of tumor biology, which is a big 

step forward for enhancing the patient outcome. 

 

VI. FUTURE SCOPE 

Promising pathways toward near future directions include the further development and refinement of our understanding 

of the impact of spatial structure on tumor evolution and dynamics of circulating DNA (ctDNA). The advancements in 

computational modeling techniques, which include the more sophisticated simulations of tumor growth and 

heterogeneity, will allow a deeper investigation into how spatial influence contributes to the progression of the tumor 

and resistance to treatment. The combination of multimodal data sources, such as imaging techniques and single-cell 

sequencing, with the analysis process might eventually make ctDNA analysis much more precise and thus more suitable 

for real-time monitoring of tumor evolution. The real-world applications will be in the following extensive clinical trials 

and validation studies testing the accuracy of ctDNA-based diagnostics and prognostics in different types of cancers and 

diverse patient populations. Additionally, these studies might help in further validation of guided use of ctDNA for 

decision-making in treatment steps as part of personalized medicine programs. Iterative testing will further refine models 

and data interpretation in such a way that the predictions for the detection of tumor mutations and responses to therapy 

will be made more accurate. Another promising frontier is adaptive AI- driven models that could learn from patient-

specific data streams, continuously refining predictions of patterns of tumor evolution and ctDNA shedding. The 

adaptability will boost precision oncology with tailor- made insights based on dynamic, real-time changes in a patient's 

tumor biology. Ensuring that the technologies are used ethically in ways that respect ethical standards for data use and 

patient privacy will be important in building trust and achieving wider adoption. 

In a nutshell, this project promises new standards in precision oncology due to strong advancements in the area of 

diagnostics and treatments for cancer. Through future development, the strategies of improving early detection, 

personalization of treatments, and monitoring might lead to more effective interventions while improving patient 

outcomes to pave the way for innovative approaches in the care of cancer. 
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